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Let (7,) be a sequence of linear contractions on all L”spaces, | < p<ax. We
show that lim, T¥T¥*-. - T*T,---T.T, f exists ae. for each function fe L Log L.
This extends to the non-positive case (G. C. Rota, Bull. Amer. Math. Soc. 68.
95-102; N. Starr, Trans. Amer. Math. Soc. 121, 90-115). We obtain also the a.c.
convergence of products J . T*...TX) T,---T, [ in L” for some non-positive

nvutn

contractions on L”, [ < p< . ¢ 198 Academic Press, Inc.

INTRODUCTION

Let (£2, «, 1) be a o-finite measure space and L” the usual Banach spaces
constructed on (£, «, #). A linear operator {all operators in this paper are
linear) T: L” - L? is a contraction if [T, <1, I<p<oo. If Tis a con-
traction of all L” spaces 1 < p < 20, simultaneously then we will say that T
is an L' — L™ contraction. The operator T is positive if Tf >0 ae. if
f=0ae.

In [5] G. C. Rota introduced the following procedure for L'—L”
positive contractions. He considered the products T*75*---TXT, ... T,
and proved the pointwise convergence in L”, 1 < p < 0. He assumed that
T.1=1 for all i. This assumption was removed by N. Starr, who obtained
the following result:

THEOREM 1. [6]. Let T, be a sequence of positive L' — L™ contractions.
Then (sup,. |T¥T#---TXT,---T,fldu<x for feLLoglL and
TXTF.- .- TXT,--- T, f converges a.e.

This result also generalized earlier work of D. L. Burkholder and
Y. S. Chow [3], J. L. Doob [4], and E. M. Stein [7].

We want to show in this paper that in Theorem 1 we can get the
pointwise convergence without the positivity assumption, giving a proof of
a result announced already in [2].
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If we use the notation |T| for the linear modulus of an L' — L™ contrac-
tion T we see easily that

sup |[T*T---T*T,---T,flelL’ for felLlogl

n

because [T --- T*T, - T fI<|T\|* - [T/ T,| - IT\| | f].

If we wish to apply Banach’s principle we need a dense subset on which
the poinwise convergence holds. But the existence of such a set does not
seem obvious.

In Theorem 4 we will obtain the pointwise convergence of the products
JET¥...T*J,T,---T,fin L”, 1< p< o, when each contraction T, is of
the form T, f'=h, -¢,.(f) (support separating contractions) and

ﬁrﬁM<o@ and ITIH(—V('\;L)—F<OO< =——p——>.

X0 X x—0 —~1
v>0 x>0 P

Asin [2], v and p belong to the set C of real strictly increasing continuous
functions defined on [0, + oo verifying u(0)=0. The spaces L, 1 <r < oo,
being smooth there exist a unique map J, for each ueC, J, :L”— LY
satisfying

(1) forany fin L%, (J, £, Y=, fI 1 fl,
(1) for any fin L |1, fll,=ulllf1,).

THEOREM 2. Let T, be a sequence of L' — L™ contractions. For any
feLlogL, T¥TY---TXT, ---T,f converges a.e.

Proof. We can assume that (£, «, u) is a probability measure space.
For each T,, L'—L” contraction we associate the following L'— L™
positive contraction 7,7, T, where

no

T, + T |IT,|—T,
T+= n d T — ld n.
n 2 an n 2

Then we consider the spaces L7(Q,UQ,, « U, i) (disjoint copies of

(L, @, p)) and on these spaces the L' — L™ positive contractions T . defined
by

T,,(191f1 + lngz): (T:(l.(2|fl)+ T,, (lgz;fz)) 191
H(T, (Lo, [+ T, (1g,12) 1g,.
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(A simple calculation shows that T are L' — L* contractions.) Further-
more the adjoint operator is

Tn*(lszlgl + lgzgz)=(T,,+*(191g1)+ T, ‘(193g2))'1521
+(T, *(152181)'* Tn“(lsz;gz)) lg;-

We observe that if we start with the function 7= 1o /=1, (fel') we
have

lQlTl*”'Tr;an“'Tl.fz lf.)[Tl* Tn*Tn”' Tl/
So if fe L Log L then the pointwise convergence follows from Theorem 1.

Remark 3. In [1] M. A. Akcoglu obtained recently the pointwise con-
vergence in complex L” spaces for fin any L”, 1 < p< oc. It is easy to see
by using Banach’s principle that the same conclusion holds in L log L. The
proof given here is simpler (no use of a reduction to the finite dimensional
case and dilation’s methods).

For the next theorem we will use some notations given in the Intro-
duction. For instance, % is the set of real continuous strictly increasing
functions defined on [0, + =« [ verifying u(0)=0.

THEOREM 4. Let (2, «, 1) be a a-finite measure space, T, a sequence of
Support separating contractions on L7(p), 1 <p<+oc (not necessarily
positive), and v and it two functions in 6.

() Ifvand p satisfy the conditions lim  _ o((u(x))"/x) < + oc and
im. L o((v(x))"~/x) < +oc. then for any fin L7, J¥T¥T¥ - TXJ, T, -
T, f converges a.e. in L".

(i) If we have lim, [T, --- T, f|,> 0 for all functions f, f #0, then for
any [ in L7 the sequence

JXTFTS---TXJ,T,--- T, f converges a.e.in L”.

Proof. We remark first that from the equality (J,.f, /)= 1J,fll, I/,
and the fact that f*=|/f|” ' sgn fis the unique function in LY such that

(f*.f)=1/1] we have
LI =1, 1 110" *)

When T is a support separating contraction on L” we know that Tf = h - ¢f
(¢ being multiplicative). We have | |h|7 ¢f du = f f - D(h)du, where D(h) is
the Radon-Nykodim derivative of the measure m(E}=j¢(E, |A|7 du with
respect to p. So ||[D(h)], =||T|".
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Now we compute, for any support separating contraction 7 and any v, u
in C, J¥T*J,Tf. In view of (*) it is enough to know T7'*J,Tf. We have for

any g in LY(y)
(8. T*J, Tf)=(Tg, J, Tf)

jhwbg-(Tf)* TN NTS N,

= [ h-gg-Ihl7 " sgn h-p(1f17~") sgn gf
AT NTA I 7 -d
= (TN, ITF1L 7 [ 1A17 gl 1f17 " sgn £) - du

= 1L(TN, - ITF1L 7 [ g-1f17 " -sgn f- Dih) dy

So T*J, Tf=D(h)-(If1” '-sgn f)- W LTI, - ITf, 7 and JXT*J, Tf
=(D(h))" L LLTINU TS, IIJ*T*J“TJ‘II,, IT*,Zf1l, *
We can use this last equality for the support separating contraction
=T,.--T,. If we denote T, f=h,d,(f) then

JXTX, T, f=DHE) " AL AT A,
NIXTEL T AN, N TR0 T 1 e

T

n

As |D(R,)|,.=IT,|”<1 we have 0< D(f,) <1 ae. The sequence D(%,) is
a decreasing one. In fact~if wedenote T, f=h, ¢,/ T, . f=hy 1 -bnirf
then we have Tn+1f:hn+1 'an+l(.f):hn+l '¢n+1(Tnj‘)ﬂ

[Vl Bo 1117 d= [ 1117 DR, 1) - d

l

il b 1T S17)

I

A

|kl ? - $,01£17) du

J
J
| Dty )T f 17
J
-

/17 D(h,) dy.
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So D(h,) converges a.c. to the function h. Let us denote

={h(w)>0ae.}.

(1) In this case we write
- WU T 1D U T T,

J¥T,J, T, f=(D(h))? ! AL ST 28
: i HT,,/HP TR, T

S, >0 (which ex1sts by Theorem 1) then we

(a) if lim’l ” Tn*Jﬂ h
T, f converges a.e. to

must have also lim, |7 f I, >0 and T*T, T B

WU wITEL TS
h g-1, 1 . r l # /’
A Y AR

n

(b) if lim, | T*J, T, f],=0 and lim, | T, f1|,=0 then [/i-|f|” du
=0and /=0 on 4. By using the assumptions lim, _ o((u(x))Y '/x) < +x
and lim,_, o((v(x))” " '/x)< + o0 we conclude that J¥T,J,T,f —0ace.;

(c) If lim, HT,,*J“ T,,fH,,zO and lim, | T,IfHF>0 we have then

jﬁ- |f1”du>0 and f#0 on A. By using (**) as in (i) we conclude that

. ~ . 1
lim | J (T, N AT 0, T T T Sl <+
and
~ 1
hmJ*T,,*JuT,,fzh" Lf o dim | JAT S, T,?‘Jl,T,,fHI"H/.“lf—l IR
n 1 . »

If lim,, | T,,_/"Hp> 0 for all functions fin L7, f#0, then as

tim [ 17,17 du= [ 10,17+ 3,(1/17) d
:JD(~11)[~f|pdll~T>JE|f|Pd#

(i1)

we must have A(w)>0 ae and 4=0. We can get the pointwise

convergence as follows:

for feL?, f+0 we have

DAY Ll N LT O NT AN, ITRL T AL =1 (#%)

SO
: T -1 7 * Tl g l
ll’l;n ”Jp( Tn_f)“q ” Tnf“ HT J Tn/ “q —llm” ”D(ﬁn)qf l(pr

1

WA=t fl,
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We now use Corollary 2 in [2] to conclude that

1

lim J‘*Tr;k‘]uTnfzgqil /hm “J»*Tn*JuTanp W
n n . P

Remark 5. The assumptions

im (((x))*~"Yx)< +oo,  lim ((v(x))" '/x)< +

x—=0 x =0

are satisfied by the maps p(x)=x?"', v(x)=x*"" which defined the
classical duality maps f —|f|” 'sgn fand g > |g|¢ 'sgn g
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