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Rota’s Alternating Procedure with 
Non-positive Operators 

I. ASSANI* 

Let (T,) be a sequence of linear contractions on all LP spaces, I < p < ‘x. We 
show that lim, T: T* T,* T, r, T, .f’ exists a.e. for each function ,JE L Log L. 
This extends to the non-positive case (G. C. Rota. Bull. Anw. Math. Sot. 68. 
95-102: N. Starr, Tram. Amrr. Math. SK. 121. 9&115). We obtain also the a.e. 
convergence of products J, T,* ‘. T,*JI, T,, T, ,/ in Lf’ for some non-positive 
contractions on Lr, I i 4 < x. ( 19X’) Awdem,c Prrrs. Inc 

INTRODUCTION 

Let ($2, n, p) be a a-finite measure space and Lp the usual Banach spaces 
constructed on (a, n, p). A linear operator (all operators in this paper are 
linear) T: Lp + Lp is a contraction if I/TIII, 6 1, 1 < p < m. If T is a con- 
traction of all Lp spaces 1 < p d s;c, simultaneously then we will say that T 
is an L’ - L’ contraction. The operator T is positive if Tf 3 0 a.e. if 
f 3 0 a.e. 

In [5] G. C. Rota introduced the following procedure for L’ -L’ 
positive contractions. He considered the products T: T: ’ T,,* T, T, 
and proved the pointwise convergence in L”, 1 < p < IX. He assumed that 
T,l = 1 for all i. This assumption was removed by N. Starr, who obtained 
the following result: 

THEOREM 1. [6]. Let T,, be a sequence of positive L’ - L” contractions. 
Then 1 supnaI iT,*TP...T,,*T,...T,flC~~<x for fELLogL and 
T: T,* . . T,* T, . . . T, f converges a.e. 

This result also generalized earlier work of D. L. Burkholder and 
Y. S. Chow [3], J. L. Doob [4], and E. M. Stein [7]. 

We want to show in this paper that in Theorem 1 we can get the 
pointwise convergence without the positivity assumption, giving a proof of 
a result announced already in [2]. 
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If we use the notation 
tion T we see easily that 

1 TJ for the linear modulus of an L’ - LX contrac- 

sup IT:Tz*... T,*T,;..T,.flEL’ for feLLogL 

because 1 TT T,: T,, ~,fl~I~~I*~~~l~,I*I~,,I~~~/~,I I.fl. 
If we wish to apply Banach’s principle we need a dense subset on which 

the poinwise convergence holds. But the existence of such a set does not 
seem obvious. 

In Theorem 4 we will obtain the pointwise convergence of the products 
JZT: . T,,*J,, T,, . .I T,,f in Lp, 1 < p < z, when each contraction T,, is of 
the form T,,J’= h, . ~,(.j‘) (support separating contractions) and 

lim M-~))“- ’ < a and & (V(.Y))” ’ 
r-0 x r-0 .Y >>o Y>O 

As in [2], v and ,D belong to the set C of real strictly increasing continuous 
functions defined on [0, + cx, [ verifying ~(0) = 0. The spaces L’, 1 < r < X, 
being smooth there exist a unique map J,, for each p E C, J,,: Lp --f Ly 
satisfying 

(i) for any fin Lpt (J,L f)= llJ,fll llfll, 
(ii) for any .f in Lp. II J,fll y = P( llfll p). 

THEOREM 2. Let T,, he a sequence of L’ - L’ contractions. For an) 
f E L Log L, T: TT . T,* T,, . . . T, f converges a.e. 

Proof: We can assume that (Q, II, p) is a probability measure space. 
For each T,,, L’ - L’ contraction we associate the following L’ - Lx 
positive contraction T,+, Tim, where 

T+ = I T,,I + Tn T = I T,, I - T, ,1 2 and II 2 . 

Then we consider the spaces tP(S2, u&?,, cI u U, fi) (disjoint copies of 
(Q, n, P)) and on these spaces the z’ - LX positive contractions 7” defined 
by 

~n(la,f~ + l&i) = (T,:(l,,f,) + T,, (1nJi)) I,, 

+(T,;(l,,.f,)+ T,:(l,&)) I,,. 
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(A simple calculation shows that T,, are t’ -L’ contractions.) Furthcr- 
more the adjoint operator is 

~,;,I*(l,,g,+ln?g~)=(T,:*(l,,,g,)+T,, *(ln,gJbL, 

+(T,, *(hr,g,)+ T;*U,,gd) 1,:. 

We observe that if we start with the function .I;= ln,.f’- lU,,f’ (j‘~ L’) we 
have 

So if,f‘E L Log L then the pointwise convergence follows from Theorem 1. 

Rermrk 3. In [ I] M. A. Akcoglu obtained recently the pointwise con- 
vergence in complex L” spaces for ,f‘ in any L”, 1 < p < x. It is easy to see 
by using Banach’s principle that the same conclusion holds in L log L. The 
proof given here is simpler (no use of a reduction to the finite dimensional 
case and dilation’s methods ). 

For the next theorem we will use some notations given in the Intro- 
duction. For instance, 55 is the set of real continuous strictly increasing 
functions defined on [0, + z [ verifying ~(0) = 0. 

THEOREM 4. Let (~2, CC, p ) be u a-finite meusure space, T,, u sequence of 
support separuting contractions on L”(p), 1 < p < $ lx (nut necessaril?, 
positive), und v and p two,fimctions in %. 

(i) 
- 

lf’v and p satisjiv the conditions hm, +O((p(.u))qP l/-u) < + cc u& _ 
lim .+,((vc.~,,p-‘/-~, < + x. then ,fbr ml1 f in Lp, J,? T,* T2* T,:J,, T,, . . 
T, ,j’ converges ae. in Lp. 

(ii) [f’we have lim, I/ T,, T, ,fil, > 0 for all,firnctions,f,uf # 0, then for 
any ,f‘ in Lp the sequence 

J,*T:T: T,,*J,, T,, T, .f converges a.e. in Lp. 

ProojY We remark first that from the equality (J,f, j) = ilJk,,f‘lly. Il,f’li, 
and the fact that f* = I.f‘l P ’ sgn f is the unique function in Ly such that 
Cf*, .f I= Il.f II,” we have 

J,,f=f *llJ,,f’//<, lI.fll; - “. (*I 

When T is a support separating contraction on L” we know that Tf = h . dj 
(4 being multiplicative). We have 1 IIzIp q3f dp = s j’.D(h) dp, where D(h) is 
the Radon-Nykodim derivative of the measure m(E) = IdIE, Ihl p dp with 
respect to il. So lID(h)ll ~ = /I TIJ “. 
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Now we compute, for any support separating contraction T and any v, p 
in C, JZT*J,, Tf: In view of (*) it is enough to know T*J,, 7” We have for 
any g in Ly(p) 

(8. T*J,?‘f)=Vg, J,Tf) 

= h.&.(V)* llJ,,(Tf)/l, IITfII;~-“4 J 

= h.(%hg.lhl”-’ s wh~d(lflPp1)wc4f 

4J,Kf)Il, lIVI/;- “.& 

=lIJ~,~Tf~ll,~IlTfll~~P~~l~lP~~~s~lflp~’~~~.f~~~~ 

So T*J,,Tf=D(h).(lflP ‘~sgnf)~llJ,(T~‘)I/,~lITfll~~P and J,*T*J,Tf 
= (D(h))” ‘YllJ,(TfW; ~l~Il~fll,l~IIJ,*~*J,,~fll,~II~*J,,~fII~ ‘. 

We can use this last equality for the support separating contraction 
Fn = T, . . . T,. If we denote Tn,.f = K,,?,(f) then 

JTT:JpTT,f =(D(&Y’.f. IIJ,(~,dll~- ‘. Il~nfll, ’ 

. II J%J,, t/II,. II p,TJ, tfll: ‘. 

As liD(i;,,)ll ~ = I/ TET,ll p < 1 we have 0 d D(Kn) d 1 a.e. The sequence D(h”,) is 
a decreasing one. In fact if we denote pfi f = Kn ‘6, j; T,, + , f = h, + , ‘9, + , f 
then we have ~~+lf=~~+,.~,+,(.~)=h,+,.~,+,(~~f’). 

= I~,+,Ip~~,+,~l~~flP~~~ i‘ 

= D(h,+, j HtfY’4 

G s Ih,lP~~,AflP) & 

= I.fl”JYh”,W~. i 
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So @I;,) converges a.e. to the function &. Let us denote 
A= j@o)>Oa.e.!. 

(i) In this case we write 

J,?-I;,,J,,F,,,f = (D(I;,,))” ’ .,f‘. (~(ll~,,,fll,W- ’ ~~(lI~,TJ,,~,:,,.fII,). 
II ~,,.r‘ll /I II F,TJ,,%,f II; ” 

(a) if lim,, I/ TzJI, F,:,.fll,, > 0 (which exists by Theorem 1 ) then we 
must have also lim,, llp,;,,,f (I,,>0 and T,?T,,T/, T,,,f converges a.e. to 

(b) if lim,, 11 FZJ,, F,zflI, = 0 and lim,, )I F,, f iI,, = 0 then j /;. 1.f P & 
7 

= 0 and f = 0 on A. By using the assumptions hm ~ ._ ,J (p( X) ) q ~~ I/.X-) < + #x 
and lim., ~((v(x))“-- ‘/xl < + z we conclude that JZT, J,, T,,f + 0 a.e.; 

(c) If lim,, 11 ~,:,,*J,,~,,,fli,, = 0 and lim,, /I =i;,fll, > 0 we have then 
{~+I”&>0 and,f#O on A. By using (**) as in (i) we conclude that 

lim llJ,,~~~f~ll,Y~‘~ll~,j;lf’llp’ Il~,~JIL~,,,fll~~ ‘=& , .fIl, < + 3= ,I 
and 

lim J,?F,,fJ, p,;,.f = Kc’ 
n ’ .f‘.h lIJT~,;,,*J,,~,FJ,, ~,,.f/l,,. ll,;,pi ,f.ll II P 

(ii) If lim, // T,r.f‘lj,, > 0 for all functions f in Lp, .f # 0, then as 

limj lFn.flp&=j Ih,lp~~,(l.J’lp)4c II 

= I D(L,,) If‘/” Lip )I i h”. Ifl” lip 

we must have K(w) > 0 a.e. and .4 = Q. We can get the pointwise 
convergence as follows: 

for,fELP, f#O we have 

lW~l;,)“-‘.fll, llJ,~(~,;If,ll~ ’ llr?;lfll, ’ ll~,TJ,,~,T;lfll~ y= 1 (**I 
so 

1 
= llp’.,fll,< +m. 
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We now use Corollary 2 in [2] to conclude that 

Remark 5. The assumptions 
T- 

lim ((P(.Y))~-‘lx)< +m, lim ((v(x))P ‘/.Y) < + x 
.Y - 0 T-r0 

are satisfied by the maps p(.u) = xP ‘, v(x) = Y ’ which defined the 
classical duality maps f + IfI pP ’ sgn f and g + 1 gly ’ sgn g. 
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