Rota's Alternating Procedure with Non-positive Operators

I. Assani*

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 1A1

Let (T_n) be a sequence of linear contractions on all L^p spaces, $1 \le p \le \infty$. We show that $\lim_n T_1^*T_2^* \cdots T_n^*T_n \cdots T_2 T_1 f$ exists a.e. for each function $f \in L \log L$. This extends to the non-positive case (G. C. Rota, *Bull. Amer. Math. Soc.* 68, 95–102; N. Starr, *Trans. Amer. Math. Soc.* 121, 90–115). We obtain also the a.e. convergence of products $J_v T_1^* \cdots T_n^* J_\mu T_n \cdots T_1 f$ in L^p for some non-positive contractions on L^p , 1 . (1989 Academic Press, Inc.

INTRODUCTION

Let (Ω, α, μ) be a σ -finite measure space and L^p the usual Banach spaces constructed on (Ω, α, μ) . A linear operator (all operators in this paper are linear) $T: L^p \to L^p$ is a contraction if $||T||_p \leq 1$, $1 \leq p \leq \infty$. If T is a contraction of all L^p spaces $1 \leq p \leq \infty$, simultaneously then we will say that T is an $L^1 - L^{\infty}$ contraction. The operator T is positive if $Tf \geq 0$ a.e. if $f \geq 0$ a.e.

In [5] G. C. Rota introduced the following procedure for $L^1 - L^{\infty}$ positive contractions. He considered the products $T_1^*T_2^*\cdots T_n^*T_n\cdots T_1$ and proved the pointwise convergence in L^p , $1 . He assumed that <math>T_i \mathbf{1} = \mathbf{1}$ for all *i*. This assumption was removed by N. Starr, who obtained the following result:

THEOREM 1. [6]. Let T_n be a sequence of positive $L^1 - L^\infty$ contractions. Then $\int \sup_{n \ge 1} |T_1^*T_2^* \cdots T_n^*T_n \cdots T_1f| d\mu < \infty$ for $f \in L \log L$ and $T_1^*T_2^* \cdots T_n^*T_n \cdots T_1f$ converges a.e.

This result also generalized earlier work of D. L. Burkholder and Y. S. Chow [3], J. L. Doob [4], and E. M. Stein [7].

We want to show in this paper that in Theorem 1 we can get the pointwise convergence without the positivity assumption, giving a proof of a result announced already in [2]. I. ASSANI

If we use the notation |T| for the linear modulus of an $L^1 - L^{\infty}$ contraction T we see easily that

$$\sup_{n} |T_1^*T_2^*\cdots T_n^*T_n\cdots T_1f| \in L^1 \quad \text{for} \quad f \in L \text{ Log } L$$

because $|T_1^* \cdots T_n^* T_n \cdots T_1 f| \le |T_1|^* \cdots |T_n|^* |T_n| \cdots |T_1| |f|.$

If we wish to apply Banach's principle we need a dense subset on which the poinwise convergence holds. But the existence of such a set does not seem obvious.

In Theorem 4 we will obtain the pointwise convergence of the products $J_{v}^{*}T_{1}^{*} \cdots T_{n}^{*}J_{\mu}T_{n} \cdots T_{1}f$ in L^{p} , $1 , when each contraction <math>T_{n}$ is of the form $T_n f = h_n \cdot \phi_n(f)$ (support separating contractions) and

 $\underbrace{\lim_{\substack{x \to 0 \\ y > 0}} \frac{(\mu(x))^{q-1}}{x} < \infty \quad \text{and} \quad \underbrace{\lim_{x \to 0}}_{x > 0} \frac{(\nu(x))^{p-1}}{x} < \infty \left(q = \frac{p}{p-1}\right).$

As in [2], v and μ belong to the set C of real strictly increasing continuous functions defined on $[0, +\infty)$ verifying $\mu(0) = 0$. The spaces L', $1 < r < \infty$, being smooth there exist a unique map J_{μ} for each $\mu \in C$, $J_{\mu}: L^{p} \to L^{q}$ satisfying

(i) for any f in L^{p} , $(J_{\mu}f, f) = ||J_{\mu}f|| ||f||$,

(ii) for any f in L^{p} , $||J_{\mu}f||_{q} = \mu(||f||_{p})$.

~

THEOREM 2. Let T_n be a sequence of $L^1 - L^{\infty}$ contractions. For any $f \in L \log L, T_1^*T_2^* \cdots T_n^*T_n \cdots T_1 f$ converges a.e.

Proof. We can assume that (Ω, a, μ) is a probability measure space. For each T_n , $L^1 - L^{\infty}$ contraction we associate the following $L^1 - L^{\infty}$ positive contraction T_n^+ , T_n^- , where

$$T_n^+ = \frac{|T_n| + T_n}{2}$$
 and $T_n^- = \frac{|T_n| - T_n}{2}$.

Then we consider the spaces $\tilde{L}^p(\Omega_1 \cup \Omega_2, \alpha \cup \alpha, \tilde{\mu})$ (disjoint copies of (Ω, α, μ)) and on these spaces the $\tilde{L}^1 - \tilde{L}^\infty$ positive contractions \tilde{T}_n defined by

$$\widetilde{T}_{n}(\mathbf{1}_{\Omega_{1}}f_{1} + \mathbf{1}_{\Omega_{2}}f_{2}) = (T_{n}^{+}(\mathbf{1}_{\Omega_{1}}f_{1}) + T_{n}^{-}(\mathbf{1}_{\Omega_{2}}f_{2}))\mathbf{1}_{\Omega_{1}} + (T_{n}^{-}(\mathbf{1}_{\Omega_{1}}f_{1}) + T_{n}^{+}(\mathbf{1}_{\Omega_{2}}f_{2}))\mathbf{1}_{\Omega_{2}}$$

(A simple calculation shows that \tilde{T}_n are $\tilde{L}^1 - \tilde{L}^{\infty}$ contractions.) Furthermore the adjoint operator is

$$\tilde{T}_{n}^{*}(\mathbf{1}_{\Omega_{1}}g_{1} + \mathbf{1}_{\Omega_{2}}g_{2}) = (T_{n}^{+*}(\mathbf{1}_{\Omega_{1}}g_{1}) + T_{n}^{-*}(\mathbf{1}_{\Omega_{2}}g_{2})) \cdot \mathbf{1}_{\Omega_{1}} + (T_{n}^{-*}(\mathbf{1}_{\Omega_{1}}g_{1}) + T_{n}^{+*}(\mathbf{1}_{\Omega_{2}}g_{2}))\mathbf{1}_{\Omega_{2}},$$

We observe that if we start with the function $\tilde{f} = \mathbf{1}_{\Omega_1} f - \mathbf{1}_{\Omega_2} f$ $(f \in L^1)$ we have

$$\mathbf{1}_{\Omega_1} \tilde{T}_1^* \cdots \tilde{T}_n^* \tilde{T}_n \cdots \tilde{T}_1 \tilde{f} = \mathbf{1}_{\Omega_1} T_1^* \cdots T_n^* T_n \cdots T_1 f.$$

So if $f \in L \log L$ then the pointwise convergence follows from Theorem 1.

Remark 3. In [1] M. A. Akcoglu obtained recently the pointwise convergence in complex L^p spaces for f in any L^p , $1 . It is easy to see by using Banach's principle that the same conclusion holds in <math>L \log L$. The proof given here is simpler (no use of a reduction to the finite dimensional case and dilation's methods).

For the next theorem we will use some notations given in the Introduction. For instance, \mathscr{C} is the set of real continuous strictly increasing functions defined on $[0, +\infty[$ verifying $\mu(0) = 0$.

THEOREM 4. Let (Ω, α, μ) be a σ -finite measure space, T_n a sequence of support separating contractions on $L^p(\mu)$, $1 (not necessarily positive), and <math>\nu$ and μ two functions in \mathcal{C} .

(i) If v and μ satisfy the conditions $\overline{\lim}_{x \to 0}((\mu(x))^{q-1}/x) < +\infty$ and $\overline{\lim}_{x \to 0}((\nu(x))^{p-1}/x) < +\infty$, then for any f in L^p , $J_v^*T_1^*T_2^*\cdots T_n^*J_{\mu}T_n\cdots T_1^*f$ converges a.e. in L^p .

(ii) If we have $\lim_n ||T_n \cdots T_1 f||_p > 0$ for all functions $f, f \neq 0$, then for any f in L^p the sequence

$$J_{v}^{*}T_{1}^{*}T_{2}^{*}\cdots T_{n}^{*}J_{\mu}T_{n}\cdots T_{1}f$$
 converges a.e. in L^{p} .

Proof. We remark first that from the equality $(J_{\mu}f, f) = ||J_{\mu}f||_{q} \cdot ||f||_{p}$ and the fact that $f^* = |f|^{p-1}$ sgn f is the unique function in L^q such that $(f^*, f) = ||f||_{p}^{p}$ we have

$$J_{\mu}f = f^* \|J_{\mu}f\|_q \|f\|_p^{1-p}.$$
 (*)

When T is a support separating contraction on L^p we know that $Tf = h \cdot \phi f$ (ϕ being multiplicative). We have $\int |h|^p \phi f \, d\mu = \int f \cdot D(h) \, d\mu$, where D(h) is the Radon-Nykodim derivative of the measure $m(E) = \int_{\phi(E)} |h|^p \, d\mu$ with respect to μ . So $||D(h)||_{\infty} = ||T||^p$. Now we compute, for any support separating contraction T and any v, μ in C, $J_v^*T^*J_\mu Tf$. In view of (*) it is enough to know $T^*J_\mu Tf$. We have for any g in $L^q(\mu)$

$$(g, T^*J_{\mu}Tf) = (Tg, J_{\mu}Tf)$$

= $\int h \cdot \phi g \cdot (Tf)^* \|J_{\mu}(Tf)\|_q \|Tf\|_p^{1-p} d\mu$
= $\int h \cdot \phi g \cdot |h|^{p-1} \operatorname{sgn} h \cdot \phi(|f|^{p-1}) \operatorname{sgn} \phi f$
 $\cdot \|J_{\mu}(Tf)\|_q \|Tf\|_p^{1-p} \cdot d\mu$
= $\|J_{\mu}(Tf)\|_q \cdot \|Tf\|_p^{1-p} \cdot \int |h|^p \cdot \phi(g \cdot |f|^{p-1} \operatorname{sgn} f) \cdot d\mu$
= $\|J_{\mu}(Tf)\|_q \cdot \|Tf\|_p^{1-p} \cdot \int g \cdot |f|^{p-1} \operatorname{sgn} f \cdot D(h) d\mu.$

So $T^*J_{\mu}Tf = D(h) \cdot (|f|^{p-1} \cdot \operatorname{sgn} f) \cdot ||J_{\mu}(Tf)||_q \cdot ||Tf||_p^{1-p}$ and $J_v^*T^*J_{\mu}Tf$ = $(D(h))^{q-1} \cdot f \cdot ||J_{\mu}(Tf)U_q^{q-1} \cdot ||Tf||_p^{-1} \cdot ||J_v^*T^*J_{\mu}Tf||_p \cdot ||T^*J_{\mu}Tf||_q^{1-q}$. We can use this last equality for the support separating contraction $\widetilde{T}_n = T_n \cdots T_1$. If we denote $\widetilde{T}_n f = \widetilde{h}_n \widetilde{\phi}_n(f)$ then

$$J_{\nu}^{*}T_{n}^{*}J_{\mu}T_{n}f = (D(\tilde{h}_{n}))^{q-1} \cdot f \cdot \|J_{\mu}(\tilde{T}_{n}f)\|_{q}^{q-1} \cdot \|\tilde{T}_{n}f\|_{p}^{-1}$$
$$\cdot \|J_{\nu}^{*}\tilde{T}_{n}^{*}J_{\mu}\tilde{T}_{n}f\|_{p} \cdot \|\tilde{T}_{n}^{*}J_{\mu}\tilde{T}_{n}f\|_{q}^{1-q}.$$

As $||D(\tilde{h}_n)||_{\infty} = ||\tilde{T}_n||^p \leq 1$ we have $0 \leq D(\tilde{h}_n) \leq 1$ a.e. The sequence $D(\tilde{h}_n)$ is a decreasing one. In fact if we denote $\tilde{T}_n f = \tilde{h}_n \cdot \tilde{\phi}_n f$, $T_{n+1} f = h_{n+1} \cdot \phi_{n+1} f$ then we have $\tilde{T}_{n+1} f = \tilde{h}_{n+1} \cdot \tilde{\phi}_{n+1}(f) = h_{n+1} \cdot \phi_{n+1}(\tilde{T}_n f)$,

$$\int |h_{n+1}|^p \cdot \widetilde{\phi}_{n+1}(|f|^p) \, d\mu = \int |f|^p \cdot D(\widetilde{h}_{n+1}) \cdot d\mu$$
$$= \int |h_{n+1}|^p \cdot \phi_{n+1}(|\widetilde{T}_n f|^p) \, d\mu$$
$$= \int D(h_{n+1}) \cdot |\widetilde{T}_n f|^p \cdot d\mu$$
$$\leqslant \int |h_n|^p \cdot \widetilde{\phi}_n(|f|^p) \, d\mu$$
$$= \int |f|^p \cdot D(\widetilde{h}_n) \, d\mu.$$

So $D(\tilde{h}_n)$ converges a.e. to the function \tilde{h} . Let us denote $A = \{\tilde{h}(\omega) > 0 \text{ a.e.}\}.$

(i) In this case we write

$$J_{\mathbf{v}}^{*}\tilde{T}_{n}J_{\mu}\tilde{T}_{n}f = (D(\tilde{h}_{n}))^{q-1} \cdot f \cdot \frac{(\mu(\|\tilde{T}_{n}f\|_{p}))^{q-1}}{\|\tilde{T}_{n}f\|_{p}} \cdot \frac{\mathbf{v}(\|\tilde{T}_{n}^{*}J_{\mu}\tilde{T}_{n}f\|_{p})}{\|\tilde{T}_{n}^{*}J_{\mu}\tilde{T}_{n}f\|_{p}};$$

(a) if $\lim_{n} \|\tilde{T}_{n}^{*}J_{\mu}\tilde{T}_{n}f\|_{p} > 0$ (which exists by Theorem 1) then we must have also $\lim_{n} \|\tilde{T}_{n}f\|_{p} > 0$ and $T_{*}^{*}\tilde{T}_{n}T_{\mu}\tilde{T}_{n}f$ converges a.e. to

$$(\tilde{h})^{q-1} \cdot f \cdot \lim_{n} \frac{\left(\mu(\|\tilde{T}_{n}f\|_{p})^{q-1}\right)}{\|\tilde{T}_{n}f\|_{p}} \cdot \lim_{n} \frac{\nu(\|\tilde{T}_{n}^{*}J_{\mu}\tilde{T}_{n}f\|_{p})}{\|\tilde{T}_{n}^{*}J_{\mu}\tilde{T}_{n}f\|_{p}^{q-1}};$$

(b) if $\lim_{n} \|\tilde{T}_{n}^{*}J_{\mu}\tilde{T}_{n}f\|_{p} = 0$ and $\lim_{n} \|\tilde{T}_{n}f\|_{p} = 0$ then $\int \tilde{h} \cdot |f|^{p} d\mu = 0$ and f = 0 on A. By using the assumptions $\overline{\lim}_{x \to 0} ((\mu(x))^{q-1}/x) < +\infty$ and $\overline{\lim}_{x \to 0} ((\nu(x))^{p-1}/x) < +\infty$ we conclude that $J_{\nu}^{*}T_{n}J_{\mu}T_{n}f \to 0$ a.e.;

(c) If $\lim_n \|\tilde{T}_n^* J_\mu \tilde{T}_n f\|_p = 0$ and $\lim_n \|\tilde{T}_n f\|_p > 0$ we have then $\int \tilde{h} \cdot |f|^p d\mu > 0$ and $f \neq 0$ on A. By using (**) as in (i) we conclude that

$$\lim_{n} \|J_{\mu}(\tilde{T}_{n}f)\|_{q}^{q-1} \cdot \|\tilde{T}_{n}f\|_{p}^{-1} \|\tilde{T}_{n}^{*}J_{\mu}\tilde{T}_{n}f\|_{q}^{1-q} = \frac{1}{\|\tilde{h}_{q}^{q-1}} \cdot f\|_{p} < +\infty$$

and

$$\lim_{n} J_{v}^{*} \widetilde{T}_{n}^{*} J_{\mu} \widetilde{T}_{n} f = \widetilde{h}^{q-1} \cdot f \cdot \lim_{n} \|J_{v}^{*} \widetilde{T}_{n}^{*} J_{v} \widetilde{T}_{n}^{*} J_{\mu} \widetilde{T}_{n} f\|_{p} \cdot \frac{1}{\|\widetilde{h}^{q-1} \cdot f\|_{p}}.$$

(ii) If $\lim_{n \to \infty} \|\tilde{T}_n f\|_{\rho} > 0$ for all functions f in L^{ρ} , $f \neq 0$, then as

$$\lim_{n} \int |\tilde{T}_{n}f|^{p} d\mu = \int |h_{n}|^{p} \cdot \tilde{\phi}_{n}(|f|^{p}) d\mu$$
$$= \int D(\tilde{h}_{n}) \cdot |f|^{p} d\mu \longrightarrow \int \tilde{h} \cdot |f|^{p} d\mu$$

we must have $\tilde{h}(\omega) > 0$ a.e. and $A = \Omega$. We can get the pointwise convergence as follows:

for $f \in L^p$, $f \neq 0$ we have

$$\|D(\tilde{h}_{n})^{q-1} \cdot f\|_{p} \|J_{\mu}(\tilde{T}_{n}f)\|_{q}^{q-1} \|\tilde{T}_{n}f\|_{p}^{-1} \|\tilde{T}_{n}^{*}J_{\mu}\tilde{T}_{n}f\|_{q}^{1+q} = 1 \quad (**)$$

so

$$\lim_{n} \|J_{\mu}(\tilde{T}_{n}f)\|_{q}^{q-1} \|\tilde{T}_{n}f\|_{p}^{-1} \|\tilde{T}_{n}^{*}J_{\mu}\tilde{T}_{n}f\|_{q}^{1-q} = \frac{1}{\lim_{n} \|D(\tilde{h}_{n})^{q-1}f\|_{p}}$$
$$= \frac{1}{\|\tilde{h}^{q-1} \cdot f\|_{p}} < +\infty.$$

We now use Corollary 2 in [2] to conclude that

$$\lim_{n} J_{v}^{*} \widetilde{T}_{n}^{*} J_{\mu} \widetilde{T}_{n} f = \widetilde{h}^{q-1} \cdot f \cdot \lim_{n} \|J_{v}^{*} \widetilde{T}_{n}^{*} J_{\mu} \widetilde{T}_{n} f\|_{p} \cdot \frac{1}{\|\widetilde{h}^{q-1} \cdot f\|_{p}}$$

Remark 5. The assumptions

$$\overline{\lim_{x \to 0}} \left((\mu(x))^{q-1}/x \right) < +\infty, \qquad \overline{\lim_{x \to 0}} \left((\nu(x))^{p-1}/x \right) < +\infty$$

are satisfied by the maps $\mu(x) = x^{p-1}$, $v(x) = x^{q-1}$ which defined the classical duality maps $f \to |f|^{p-1} \operatorname{sgn} f$ and $g \to |g|^{q-1} \operatorname{sgn} g$.

REFERENCES

- 1. M. A. AKCOGLU, Alternating sequences with non positive operators, preprint.
- 2. I. ASSANI, Alternating procedures in uniformly smooth Banach spaces, Proc. Amer. Math. Soc., in press.
- 3. D. L. BURKHOLDER AND Y. S. CHOW, Iterates of conditional expectations operators, *Proc. Amer. Math. Soc.* **12**, 490-495.
- 4. J. L. DOOB, A ratio operator limit theorem, Wahrsch. 1, 288-294.
- 5. G. C. ROTA, An Alterniernde Verfahren for general positive operators, Bull. Amer. Math. Soc. 68, 95-102.
- 6. N. STARR, Operator limit theorem, Trans. Amer. Math. Soc. 121, 90-115.
- 7. E. M. STEIN, On the maximal ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 47, 1894-1897.