
JOURNAL OF ALGEBRA 111, 1-13 (1987) 

On PSU(3, 9) as Collineation Groups 

CHAT YIN Ho 

Department of Mathematics, University of Florida, 
Gainesville. Florida 3261 I 

AND 

ADILSON GONCALVES 

Department of Mathematics, University Federal Pernambuco, 
Rec$e, Pe, Brazil 

Communicated by Walter Feit 

Received August 27, 1984 

1. INTRODUCTION 

In the study of groups of Lie type as collineation groups of projective 
planes, the linear groups of dimension 2 or 3 and the unitary groups of 
dimension 3 are the important families related to the Desarguesian planes. 
The unitary family, PSU(3, q), has been studied, among others, by Hering, 
Hoffer, Kantor, Walker, and Seib. In this paper we study PSU(3, q) as a 
collineation group of a finite projective plane such that its involutions are 
perspectivities. As the situation involving elations has been handled by 
Hering and Walker [4], we assume here that the involutions are 
homologies. Using geometric method, the group structure of PSU(3, q), 
and a character theoretical-like method based on Proposition 2.1, we 
obtain an invariant subplane of order q2 under various conditions. 

THEOREM A. Let z be a jkite projective plane. Then the following are 
equivalent. 

(a) z is a Desarguesian plane of order q2, q odd. 

(b) 7c admits a collineation group G z PSU(3, q), q odd such that G 
does not leave any point or line invariant, an involution in G is a homology, 
and the order of the stabilizer or any point of IT is even. 

THEOREM B. Let G g PSLJ(3, q), q E (3, 5,7), be a collineation group of 
a finite projective plane of order n such that its involutions are homologies 
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and G does not fix any point or line. Assume n # 1 (mod 3) when q = 3. If the 
stabilizer of any point of 7~ in G is not trivial, then rc contains a G-invariant 
Desarguesian subplane of order q2 where G acts naturally on. 

More general results are presented in Theorems 4.1 and 5.1. 

2. NOTATION AND PRELIMINARIES 

Let rc = (9, 9) be a projective plane of order n and G a collineation 
group of rc. For H<G, set Y(H)= (PEP 1 P”=P for all ~EH} and 
T(H)= (1~9 1 I”=/ f or all 0 E H}, and Fix(H) = (Y(H), 2’(H)). For 
AE~, 1~9, X<P, and 9#<49, let [A]={bET 1 AEb}, (I)= 
{PEP 1 PEZ}. 

We call a collineation 1 # o a perspectivity if P(a) = (a) u {A } and 
P’(u)= [A]u {a} f or some A E P and a E 9, and say that A = C(o) is the 
center and a = a(a) is the axis of cr. A perspectivity is called a homology if 
its center does not lie on its axis. We call a collineation o planar (resp. 
triangular) if Fix(a) is a subplane (resp. triangle). If P(cJ) = {A} and 
Y(a) = {u} such that A $ a, then CT is caled an anti-flag collineation. The 
same terminology applies to collineation groups also. A collineation group, 
which does not leave any point, line, triangle, or subplane invariant, is 
strongly irreducible. A G-incidence matrix of x is an integral matrix whose 
rows (resp. columns) are indexed by the line (resp. point) orbits of G such 
that for a line orbit q and a point orbit Q the (q, Q)-entry is the number of 
lines in q passing through a point in Q, which is denoted by qQ. Any per- 
mutation among the columns or rows yields an equivalent G-incidence 
matrix. In order to include the information about the orbit sizes of G, we 
write on top (resp. to the left) of the column (resp. row) indexed by 
Q (resp. q) the number IQ] (resp. 141). This is called the embroidered 
G-incidence matrix of z 

For a finite set of integers {k,l ie I}, let C$, ki be the sum of all non- 
negative integers in this set. 

For any prime p, Syl p(G) denotes the set of Sylow p-subgroups of G. 
For any subset S of G, (S) denotes the subgroup of G generated by S and 
C,(S) denotes the centralizer of S in G. Let K be a subgroup of the sym- 
metric group of a set Sz and let a E 52. The stabilizer of a in K is denoted by 
K,. Other notation and terminology concerning groups (resp. projective 
planes) can be found in [2] (resp. [ 11). For the convenience of the reader, 
we record some known results used in this paper. 

2.1. PROPOSITION. Let Q,, Q2, . . . . Q, be the point orbits of G and let 
q, , . . . . qU be the line orbits of G. For 1 d t, s < v, define [q, I 41 o = 
Cy=, IP,l (q,P,)(q.J’J Then Cs, I qJG= lqrl 1q.A +n 14, nqsl. 
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Proof. The conclusion for [q, ( qS]o is a special case of 2.1 of [6]. 

2.2. LEMMA [3, Lemma 5.31. Perspectivity leaving invariant a subplane 
has its center and axis belonging to this subplane. 

2.3. THEOREM [3, Theorem 3.181. Let G be a strongly irreducible group 
of collineations of K and let M be a minimal normal subgroup of G. Then one 
of the following statements holds. 

(a) Each element of M is regular or planar. 

(b) M is elementary abelian of order 9 and Co(M) = M. 

Either each subgroup of M is triangular, or M contains two triangular and 
two planar subgroups of order 3. 

(c) M is not solvable, and each subgroup of any component of M is 
regular or planar. 

(d) M is non-abelian simple and Co(M) is a (2, 3)-group. If 
Co(M) # M, then each subgroup of M is regular, planar, or triangular. 

3. EMBEDDING OF A UNITAL IN x 

In this section let 7c = (P, [I) be a finite projective plane of order n 
admitting a collineation group G z PSU(3, q), where q is a power of an 
odd prime p, such that Fix(G) = (4, 4) and an involution in G is a 
homology. Hence n is odd. Since G has only one conjugacy class of 
involutions, all involutions in G are homologies. Let P E Syl p(G) and 
H= N,(P). 

3.1. LEMMA. Different involutions in G have different centers and axes. 

Proof Let tl #/I be two involutions of G. If c1 and /I have a common 
center, then G = (C,(a), C,(/?)) fixes this common center. This con- 
tradicts Fix(G) = (4, 4). Similarly, u and fi cannot have a common axis. 

3.2. PROPOSITION. The q* distinct centers (resp. axes) of the involutions 
of H are collinear (resp. concurrent) except possibly for q = 3, n = 1 (mod 3), 
Z(P) is planar, and H is strongly irreducible on the subplane of order con- 
gruent to 1 modulo 3, generated by the centers and axes of involutions in H. 

Proof: The following structure of H is used in this proof: H = PC, 
where C is a cyclic subgroup; Z(P) is the unique minimal normal subgroup 
of H, H/Z(P) is a Frobenius group with kernel P/Z(P); and C n P = 1. 

First we claim that H fixes a point or a line, unless we are in the excep- 
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tional situation mentioned in the Proposition. Assume not. Suppose H 
leaves invariant a triangle A. Let H(A) be the kernel of the action of H on 
A, and a= H/H(A). Since Z7 is isomorphic to a subgroup of the symmetric 
group on three letters and IHI = q3(q2 - l)/(q + 1,3), we get H(A) 2 P by 
the structure of H and q* does not divide 6. Hence i? is cyclic of order 1,2, 
or 3. If 1RI d 2, then H lixes a point, a contradiction. Therefore [RI = 3, 
and so all involutions of H belong to H(A). Thus the vertex (resp. sides) of 
A are centers (resp. axes) of three involutions in H(A). Hence these three 
involutions commute with each other. However, this contradicts the fact 
that C is cyclic. Therefore we may assume that H does not leave invariant 
any triangle. Let 71, be the substructure of 71 generated by the centers and 
axes of the involution of H. Hence rc, is an H-invariant subplane. By 
Lemma 2.2, H is strongly irreducible on 7~~. Let H, be the kernel of the 
action of H on rci. Suppose H, # 1. Then H, b Z(P). By the structure of H 
and Theorem 2.3 we get that H, = Z(P), P/Z(P) z C, x C,, q = 3, and non- 
trivial elements of P/Z(P) are triangular, on rri, which implies they are also 
triangular on Fix(Z(P)). Since an element in P/Z(P) is a product of two 
involutions, it is not planar. This implies n E 1 (mod 3). Therefore we may 
assume H, = 1. By Lemma 2.2, Z(P) z C, x C3 and C,(Z(P)) = Z(P). 
However, this contradicts the fact that C,(Z(P)) contains a subgroup of 
order q + 1 = 10. Our claim is established. 

Next we prove that if H fixes a point, then H fixes a line containing a 
center of an involution of H. Suppose not. Let the fixed point be P*. By 
Lemma 3.1, there is an involution CI E H such that its center W(U) # P*. 
Since any two involutions of H do not commute, [P*] contains all axes of 
involutions of H. Let x(a) = P*%(a). Then C,(a) = Z(P) C < H,yc,J. Since 
C,(a) is a maximal subgroup of H, we may assume C,(a) = H,(,). Hence 
%‘(a) is the unique center of an involution of H incident with x(a). For 
u.eP\Z(P), let Z(o)= {I’EH 1 i2=1 and ~?=a-‘). Thus the centers of 
involutions of Z(a) are collinear. Denote this line by I(a). For any line 
14 [P*], if 1” = I, then I= f(a). Now P = AB, where A and B are elementary 
abelian normal subgroups of order q2 containing Z(P). Let a E A \Z(P). 
For al E A\Z(P) we have Z(U)~’ = (a). Hence In’ = (a). Since 
I(a)$[P*], I(u)=Z(ul). Let bEB\Z(P). As ASP, u~EA\Z(P). Hence 
/(ah) = I(u). But ,(a”) = (l(u))‘. Therefore /(u)~ = Z(u). Since l(u) $ [P*], 
I(u)=l(b). As A=(A\Z(P)) and B=(B\Z(P)), we get /(~)~=/(a)= 
In. Hence ,(a)‘= I(u). This implies I(a) = l(u) for any 0 E P\Z(P). Thus 
Z(U)~ = l(u). Therefore H always leaves invariant a line containing a center 
of an involution of H. 

By duality we get that if H fixes a line then H fixes a point incident with 
an axis of an involution of H. Since we prove that H fixes a point or a line, 
H fixes a point P* and a line I* such that P* (resp. I*) is incident with an 
axis (resp. a center) of an involution of H. The action of P on [P*] (resp. 
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(I*)) shows that all q* axes (resp. centers) of involutions of H are incident 
with P* (resp. l*). 

3.3. COROLLARY. (a) Zf q # 3 or n # 1 (mod 3), then z contains a G-in- 
variant configuration isomorphic naturally to a unital of the Desarguesian 
plane of order q*. 

(b) (Kantor [8]) Zfafixedpoint of H is incident with afixed line of 
H, then n contains a G-invariant subplane naturally isomorphic to the 
Dearguesian plane of order q*. 

Proof Consider the natural action of G on PG(2, q2) = 9. 

(a) By Proposition 3.2, H fixes a point P* in rr. Applying the 
argument in the proof of Proposition 5.3 of [4] yields that (P*)G is a con- 
figuration isomorphic naturally to a unital of PG(2, q*). 

(b) Let P* E P(H) and 1* E L(H) such that P* E I*. By Lemma 3.1 we 
get that all q* centers of involutions of H are incident with I*. Since H is a 
maximal subgroup of G and Fix(G) = (&4), 1 (I*) n {centers of involutions 
of G} I= q*. An easy counting argument on the axes of involutions of G 
shows that any line joining two points in P *’ is an axis of an involution of 
G. Hence I(l*) n P*G( = 1. Let P* = P*G u {centers of involutions of G} 
and II* = l*‘u {axes of involutions of G}. Then (p*, IL*) is a G-invariant 
subplane of order q *. Therefore (P’*, IL*) is a Desarguesian plane by 
Hoffer [6]. 

4. THEOREM A 

In this section we retain the conditions and notations of Section 3. The 
exceptional situation mentioned at the end of Proposition 3.2 will be called 

Case E. q = 3, n = 1 (mod 3), Z(P) is planar, and H is strongly 
irreducible on the subplane of order congruent to 1 modulo 3, generated by 
the center and axes of involutions in H. 

The following result improves Theorem A except in Case E. 

4.1. THEOREM. In addition to the conditions, we assume that lG,I is 
either even or a power of q. Then 71 contains a Desarguesian subplane of 
order q* where G acts naturally on, except possibly in Case E. 

Proof Suppose this theorem is false. Let the fixed line and point of H 
in Proposition 3.2 be I* and P*. By Corollary 3.3(b) we may assume that 
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P* 4 1*. Let c1 be an involution of H and let B = ~(a) n f*. So Bzfp’ = B, and 
lU(cc)” n I*1 = q2 = I BG n I*1 by counting axes of involutions. 

If IG,I is always even, then I* = (V(a)“nl*)u (B”nl*). Since Z(P) 
fixes each point in these two sets, Z(P) consists of homologies with com- 
mon axis (resp. center) I* (resp. P*). Hence 2q2 - 1 = n = 1 (mod q), a con- 
tradiction. Therefore there exists a point U of I* such that [GUI is a power 
of q. Let %?(a)“, BG, 01, . . . . OS be the G-orbits of points whose intersections 
with I* are not empty. For i= 1, . . . . s let Ui E Oi n I*. Thus IGUil is a power 
of q. Let Wl G, . . . . WrG (resp. 1/l ‘, . . . . Vt”) be the G-orbits of points whose 
intersections with a(a) (resp. P*%?(a)) are non-empty. 

If all elements in P\Z(P) are anti-flag, then p(Z(P)) b (I*), which 
implies n + 1 E 0 (mod p) and n - 1 E 0 (mod p). This contradiction shows 
that there exists a non-antiflag element o E P\Z(P). Thus r~ fixes a point on 
I*. Since (T is a product of two involutions in H, p(a) < {P*} u (1*). Thus 
n E 1 (mod p). The action of P on I* now implies the existence of Z E I* 
such that G, = P. 

We now use the method introduced in [S] based on Proposition 2.1 to 
construct the following part of the embroidered G-incidence matrix involv- 
ing the line orbits a(a), P*%‘(a), and I*. For the convenience of the reader, 
the number of points of a G-orbit on a line of a line orbit is put in the 
lower corner of that entry for some cases. Also we indicate the represen- 
tative of G-orbits involved. 

Some remarks concerning Table I are in order. Note that the points in 
the line orbits represented by a(a), P*%(a), l* are contained in the point 
orbits shown in Table I, where V= (q+ 1, 3) and U= (q* - 1)/V. 

Clearly I%‘(a)“1 = la(~)‘I = q2(q2 -q + 1). Since H = G,, = GP., I[*“[ = 
q3 + 1 = JP*GI. AS [Cc(a): C,(a) n HI = q + 1, I [W(a)] n Z*‘I 3 q + 1. From 
II* n %(a)“( = q’, we get ][B]nl*GI=l. Hence G.dGll=H and so 
G,= H,=Z(P) C. Therefore lBGl =q2(q3+ 1) and I[V?(a)] nI*GI =q+ 1. 
Similarly JP*9T(a)GI = q2(q3 + 1) and 1 P*%(a) n ??(a)“] = q + 1. 

The columns indexed by %(a), B, P* are easily obtained by counting 
axes and centers of involutions. 

Counting incidence in {X n y / x # y E a(a)” > yields the remaining upper 
corner entries of the first row. Computing [first row I third row] yields the 
entries of the third row indexed by the Urs, which are zeros. Counting 
incidence in {x n y I x # y E I*‘} yields the remaining upper corner entries 
of the third row. 

Let Uj” E P*%?(a). Suppose G”,R n Z(P) # 1. Then GU,g n Z(P) < P” 
implies PR = P by the structure of PSU(3, q). Hence g E H and so P*n = P*. 
Thus P*V(a) = P*Uj” = (P*Uj)g = Fg, a contradiction. Therefore 
Z(P) n G,, = 1, and Pg # P. As Pp.wy(l) = Z(P), I(P*V?(a))Gu~nl = lGujnl = 
IGuil. This shows that i[Uj”] n (P*%?(c~))~\ = \Gujl J+, where yj>, 1. 
Thus ([Uj] n (P*%‘(a))GI = JG,I yj. Computing [P*%‘(a)G 1 Z*G] yields 
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q2(q3+1)2=q2(q2-q+1)(q+l)(q+1)+~~=, IUj”I(IG,,Iyj). Since /GJ= 
q3(q3 + 1) (q2 - 1 )/V, the above equation gives 

v= i yj. (1) 
j= I 

Since the cyclic subgroup of order q - 1 of C is inverted by an 
involution, it is not planar. 

There is exactly one axis a(P) of an involution /? of G passing through W 
for any WE U := , WY. Therefore G W d GU(81 = C,(p). The axis of any 
involution commuting with Z(P) is in [P*]. Hence lZ(P) n G,] = 1 for 
WE WiG n P*%Y(a), i = 1, . . . . r. This and the last paragraph now imply that 
1 WiG n P*V(a)/ = q(q - 1) b, for some non-negative integer bi. Since 
P*%?(a) n w(a)” = {%‘(a)}, (P*%(a))8 # P*%?(a). Hence ai2 2. 

Let X be a point in the G-orbits of the U’s or Vs. Then lGxl is a power 
of q. Hence IG, n Cl = 1. Therefore C acts semi-regularly on XG n P*%‘(a). 
This shows that 1 ViGn P*%?(a)1 = udi for some non-negative integer di. 
Assume now X is a point in the G-orbits of the Us. Then IG, n Z(P)1 = 1. 
Therefore I UjG n P*%‘(a)1 = qUx, for some non-negative integer xi. 
Since I Uj”l . JG,I yi = q2(q3 + 1 )(qUx,) by the incidence structure 
(P*%?(a)“, Uj’), xj=yj. 

IU:=, WF n P*q(a)l = (q2 - q)(q2 - 1) by counting the intersection of 
axes of involutions with P*U(a). On the other hand, this number is 
C:=, q(q - 1) bi. Hence 

i b;=q2-1. (2) 
,=I 

Counting the points on P*%(a) we get 

nzl (mod?). 

Since Zp = Z, (P*Z)‘= P*Z. As P(a) < I* u {P*} for UE p\Z(p), the 
action of P on the points of P*Z yields n = 1 (mod q2), By (3) we get 

n= 1 +1(12(42- 1) 
V 

for some integer 2. 

Counting the points on P*%(a), we now get 

1 +142(Y2-l) 
V 

=n=l+q(q-1) i bj+ 
i=l 

+v ,i di. 
r=L 

(4) 
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By (1) and (2), the last equation, after we first cancel 1 from both sides and 
then divide them by (q2- 1)/V, becomes Aq*=q(q- 1) V+qV+C:=, di= 
q2V+ C:= r di. Therefore, 

i L&=(1- V)q2. 
i=l 

(5) 

Counting incidences in {xny 1 x #y E (P*W(ct))“}, we get (q2(q3 + 1)) 
(q2(q3 + 1) - 1) = q2(q2 - q +1)(q + 1) .q + (q3 + l)q2(q2 - 1) + 
C?ZI q2(q3 + *)q(q -*)bi(a; - 1) + Cf~1 IUGI lG~il.Yi(lG~;I.V-*) + 
xi+, ((q2 - 1)/V) di.q2(q3 + l)(Ci - 1). After dividing by q2(q3 + 1), this 
equation simplifies to 

q(q4- l)=q(q- 1) 2 b,(a,- l)+y(y*; 1) s+ 
i=l 

,C, Yi(lGUtI Yi- l) 

+ q2-1 7 c d;( ci - 1). 

By (1) (2) and the fact that a, 2 2 and IG “iI > q, we get from the last 
equation that 

q(q4- l)>q(q- I)($- l)+4(q2; 1). V(q- l)+Y i di(Ci- 1), 
,=I 

which, after dividing by q2 - 1, yields 

4(q2+ 1)2q4(4- l)+q(q- l)+i.i: di(Ci- 1). 
,=I 

(6) 

If ,I = V, then by (5) we have di = 0 for i = 1, . . . . t. This means that the V’s 
do not exist. We recall that G vj g n Z(P) = 1 = G ,+, n Z(P). Therefore Z(P) 
fixes exactly two points on P*%(a), and so Z(P) is not planar. Thus 
P(Z(P)) d I* u {P*}. Hence P(P) <I* u {P*}. Now the action of P on 
P*Z yields n = 1 (mod q3), which gives n = 1 (mod q’((q* - 1)/V)) by (3). 
However, I = 1 implies n = 1 + q2(q2 - 1)/V by (4), which contradicts the 
last congruence. Therefore we may assume ,I> V and t > 1. 

Let iE { 1, . . . . t}. Since p(P\Z(P))<l*u{P*} and VGnl*=& we 
obtain Gvj n (P\Z(P))” = 0. This implies that G, = Z(P”) for some 
g E G, as lGvil is a power of q. Thus there are two kinds of Z(P) C orbits of 
KG n P*C. The first kind has size (q2 - 1)/V and the stabilizer of a point is 
Z(P). The second kind has size q( (q2 - 1 )/V) and the stabilizer in Z(P) C 
of a point is 1. Let ri= number of Z(P) C orbits of the first kind and 
fi = number of Z(P) C orbits of the second kind. By the incidence structure 
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((P*%(U))“, Vi”) and lGvil =q, we get that dj= C,. Counting 
1 Vi” n P*%‘( CX) 1 yields 

q*- 1 u’,=q2-1 r + q (q2 - 1) 
V’ V’ Ffi. 

Hence 

4 = q.f, + yi for i = I, . . . . t. (7) 

Let m=l +((q2-l)/V)Cj=, ri. S’ mce the fixed points of Z(P) on P*%‘(E) 
different from P* and @(Cc) are in C:=, (Vi’n P*U(cr)), 
m= Ip(Z(P))n P*Gf(cc)( - 1. 

LetQ,={l<j<t~f,#O}.SupposeQ,=@.Thenfor l<j<twe have 
fi = 0 and so VjG n P*%(a) 6 IFD(Z(P)). Since t 2 1, Fix(Z(P)) is a subplane 
of order m. Thus m=l+((q*-l)/V)C:=,d,=l+(&V)q”((q*-1)/V) 
by (5). Since il> V and qa3, m>q. By (4) we get n-m=q2(q2-1), 
which is strictly less than Vm as I > V. Hence n < ( V + 1) m. Since m* < n, 
we get m < V + 1 d 4, a contradiction. Therefore we may assume 52, # 0. 
For ~EQ, we have Ci=di>qf,bq by (7). Now (6) yields q(q*+l)> 
2q(q-‘)+(‘/V)Ci,~~,q,fi(q-‘). Thus q2-’ +2=q2+‘32(q-1)+ 
(l/V)(q- l)Clca,fj. After dividing by q- 1, this becomes 
q+1+2/(q-1)>2+(l/V)C,.,,f,.Therefore 

V(q- ‘)+-, 2v > xfj=i:fi. 
q-1 lER, ,=I 

(8) 

Case 1. V= 1. 
By (8), C:=,f,<q. By (7) X:=, d,<q*+C:=, ri. Therefore 

(A - 2) q* <C:=, ri by (5). Hence m 2 1 + (A- 2) q2(q2 - 1). Suppose ,? > 2. 
Then Z(P) is planar and m is the order of Fix(Z(P)). By (4) 
n - m < 2q2(q2 - 1 ), which is strictly less than 2m. Thus m* d n < 3m and so 
m < 3. However, by the definition of m, 1> 2, and q 2 3, we get m > 3. This 
contradiction shows that 1= 2 as 12 2. By (4), n = 1 + 2q2(q2 - 1). If Z(P) 
is not planar, then n = 1 (mod q3(q2 - 1)) by the action of P on P*Gf(a) 
and (3). This contradiction shows that Fix(Z(P)) is a subplane of order m. 
Thus n-m E 0 (mod q). Since n-m = (2q* - xi= 1 ri)(q2 - 1), XI=, ri = 0 
(mod q). By the definition of m, we get m Z 1 + q(q2 - 1). Hence m* > n, a 
contradiction. Therefore case 1 cannot occur. 

Case 2. V = 3. 
Since V=(q+ 1, 3), q#3. Thus q>,5. So 2V/(q- 1)<2V/(q+ l)< 1. By 

(8), 3q-2>CIc,f,. By (7), C:=l didq(3q-2)+X:=, ri. Therefore, by 
(5), Cf=, ri > (2 - 6) q* + 2q. By the definition of m, we now have m 2 1 + 
[(~-6)q2+2q]((q2-l)/V).Hence,by(4),n-md2q(3q-l)((q2-l)/V). 
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Suppose A> 6. Then Fix(Z(P)) is a subplane of order m and 
ma 1+ [q2+2q]((q2- l)/V)>7. Thus n-m<6m. Hence m2<n<7m, 
and so m < 7. This contradiction shows that 4 < il< 6. 

Assume that Z(P) is planar. Then Fix(Z(P)) has order m. Since 
n-m z 0 (mod q), II=, ri = 0 (mod q). Thus m 2 1 + q((q2 - 1)/V). Since 
I d 6, we have 1 + 6q2((q2 - 1)/V) n > m2 > 1 + q2((q2 - l)/V)2. This con- 
tradicts (q2 - 1 )/V> 8. Therefore Z(P) is not planar. As before we get n = 1 
(mod q3((q2 - 1)/V)). By (4), q divides il> 6. This forces q= J.= 5, and 
n = 1001 z 0 (mod 7). Table I shows that if \Gxl is even then 7 1 (q2 - q + 1) 
must divide (PI. Hence 7 l IG,J. However, n2 + n + 1 = 1 (mod 7) implies 
that an element of order 7 of G cannot act semi-regularly on the points of 
rc. This contradiction shows that Case 2 cannot occur either, and the proof 
of the theorem is complete. 

We prove Theorem A in the rest of this section. By Theorem 4.1, it 
s&ices to treat Case E. By Proposition 3.2, n, is a subplane, whose order 
will be denoted by m. Let fi be the collineation group of H induced on rci . 

If o E P\Z(P), Fix(B) is a triangle. Since fi is strongly irreducible, P acts 
transitively on Fix(8). Let the vertex of Fix(&) be denoted by {R, S, T}. 
LetZ(o)={iEHIi’=l,a’=a-’ }. Then the three centers of involutions of 
Z(o) are on one side of Fix(&) and different from its vertex. Let this line 
be ST. Then the three axes of the involutions of Z(a) are in [R]. 
Let d = (axes of involutions in G}. Then l[X] n&pe( 2 3 for XE {S, T}. 
Since an involution commutes with 9 - 3 = 6 other involutions, 
we have I(CSl u CT1 u UJisIc,j [U(i)])) n .&I 3 3 + 3 + 3.6 = 24. Since 
I.&I = 9(9 - 3 + 1) = 63, there are at most 39 axes in & intersecting ST not 
in S, T or Q?(i) for i E Z(a). Since IG VI = even for any point V, 
n + 1 - 5 < 39. Thus n ~43. By Proposition 3.2, m E 1 (mod 3). Since 
m2 < n, m = 4. Therefore an involution will induce an elation on rt 1, which 
contradicts the fact that it is a homology. The proof of Theorem A is now 
complete. 

5. THEOREM B 

Conditions and notations of Section 3 are kept in this section, 

5.1. THEOREM. We assume the following additional conditions: 
(1) (fG, (q + 1)/V) = 1, where fc = l.c.m.{ lGABCDl I A, B, C, D form a 
quadrangle in K}, and I/= (q+ 1, 3); (2) lGvl is either even or not less than 
q, where q is a prime. Then 71 contains a Desarguesian subplane of order q2, 
where G acts naturally on, except possibly in Case E of Section 4. 

Proof Using the same notations as in the proof of Theorem 4.1. 
Following the proof of Theorem 4.1 with slight modification we get a con- 
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tradiction except IZ = 1001 and q = 5. As 1001 is not a sum of two squares 
we can apply The Bruck-Ryser Theorem [ 11. 

5.2. In the rest of this paper we prove Theorem B. Define fG as in the 
statement of Theorem 4.1. Theorem: Since (q + 1 )/V is a power of 2, 
(fG, (q+ 1)/V)= 1. As in the proof of Theorem 4.1, it suffices, by 
Theorem 5.1, to consider XE P*%(a) such that lGxl is odd. Thus X belongs 
to the orbits of Vs. 

Assume lGxl < q. Since lJ?l is divisible by (q* - 1)/V. q, lGxl divides 
q3+1 =4.7 if q=3 and 8.43 if q=7. Therefore lGxl =7 if q=3 and. 
lG,J = 43 if q = 7 as lGxl is odd. This contradicts lGXl < q. 

In the rest of the proof we assume that q = 5 and IG,l < 5. Since q3 + 1 = 
3*. 2 .7, (G,I = 3. This shows that we may assume that lGXl > 3 for any 
point X such that lGxl is odd. As in the proof of Theorem 4.1, we get 
q(q2+ l)Bq(q- l)+q(q- l)+ (l/V) C:=, di(Ci- 1). We just show that 
Ci > 3. Since dj > qfi, the last equation yields (q* - 2q + 3) > (2/V) If= 1 A.. 
As q = 5, we get 9V> C:= ifi. Since 9 = 2q - 1 and V= 3, the last equation 
yields 6q2 - 3q = q(2q - 1) V> C:= i qJ;. From the proof of Theorem 4.1 we 
get xi=, di = (A- 3) q2 as V= 3. Hence Cf= i yi Z (2 - 9) (q2 + 1) 3q, and 
m = 1 + (Cf= i r,)((q* - 1)/V) > 1 + ((2 - 9) q* + 3q)((q2 - 1)/V). Recall 
n = 1 + Aq2((q2- 1)/V) in the proof of Theorem 4.1. If 12 9, then 
m > 1 + 3q((q* - 1)/V). Suppose L > 9. Then Z(P) is planar and 
m > (q* + 3q)((q2- 1)/V) > 9. Now 12 -m < (9q*- 3q)((q*- 1)/V)< 8m. 
Since m* <n, the last inequality yields m < 9, a contradiction. Suppose 
A= 9. Then n = 1 + 9(q2(q2 - 1)/V and m > 1 + 3q((q* - 1)/V). Thus Z(P) is 
planar. Hence m2 < n, which is impossible. Therefore 3 d L < 8 as 12 I’= 3. 
Now n< 1+8q*((q*- 1)/V) and ma 1 +q(q2- 1)/V. Since (q2- l)/V>S, 
m*>n. Hence Z(P) cannot be planar. This implies n z 1 
(mod q3((q2 - 1)/V)). Since n = 1 + 12q2((q2 - 1)/V), q divides 2. As 
3<A<8 and q=5, A=q=5 and n=lOOl. This has been shown to be 
impossible in the last part of the proof of Theorem 5.1. The proof of 5.2 is 
now complete. 

ACKNOWLEDGMENT 

The second author wishes to express his gratitude to the hospitality of the University of 
Toronto, where this research has been developed. 

REFERENCES 

1. P. DEMBOWSKI, “Finite Geometries,” Springer-Verlag, Berlin, 1968. 
2. D. GORENSTEIN, “Finite Groups,” Harper & Row, New York, 1968. 



ON Psu(3, 4) AS COLLINEATION GROUPS 13 

3. C. HERING, On the structure of finite collineation groups of projective planes, Abh. Muth. 
Sem. Univ. Hamburg, (1979), 154-182. 

4. C. HERING AND M. WALKER, Perspectivities in irreducible collineation groups of projec- 
tive planes, II, J. Statist. Plann. Inference, (1979), 151-177. 

5. C. Y. Ho, Finite projective planes that admit a strongly irreducibly collineation group, 
Cunad. J. Muzh. 37 (1985), 579-611. 

6. A. R. HOFFER, On unitary collineation groups, J. Algebra 22 (1972), 211-218. 
7. W. KANTOR, On unitary polarities of finite projective planes, Canud. J. Math. 23, No. 6 

(1971), 106(r1077. 
8. W. KANTOR, On homologies of finite projective planes, Israel J. Math. 16 (1973), 351-361. 
9. W. KANTOR, On the structure of collineation groups of finite projective planes, Proc. 

London Math. Sot., (1976), 385402. 
10. M. SEIB, Unitlre Polaritaten endlicher projectiven Ebenen, Arch. Math. 21 (1970), 

103-l 12. 


