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Abstract

If I = (I1, . . . , Id ) is a random variable on [0,∞)d with distribution �(d�1, . . . , d�d), the mixed Poisson
distribution MP(�) on Nd is the distribution of (N1(I1), . . . , Nd(Id)) where N1, . . . , Nd are ordinary
independent Poisson processes which are also independent of I . The paper proves that if F is a natural
exponential family on [0,∞)d then MP(F) is also a natural exponential family if and only if a generating
probability of F is the distribution of v0 + v1Y1 + · · · + vqYq for some q �d, for some vectors v0, . . . , vq

of [0,∞)d with disjoint supports and for independent standard real gamma random variables Y1, . . . , Yq .
© 2006 Elsevier Inc. All rights reserved.

AMS 1991 subject classification: primary 62E10 secondary 60E10

Keywords: Natural exponential families; Multivariate gamma; Overdispersion

1. Introduction

Consider the Poisson distribution with parameter � > 0 defined by

P(�)(dx) =
∞∑

n=0

e−� �n

n! �n(dx).

If we randomize the parameter � by some probability �(d�) on (0,∞) we get a new probability
MP(�) on the set N of nonnegative integers defined by MP(�) = ∫∞0 P(�)�(d�). We have the
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identifiability property: P(�) = P(�′) if and only if � = �′ : just compute the generating function

fMP(�)(z) =
∞∑

n=0

znMP(�)({n})

of MP(�) and link it to the Laplace transform L�(�) of � by fMP(�)(z) = L�(z − 1). One sees
MP(�) as the distribution of N(I) where t �→ N(t) is a standard Poisson process on N which
is independent of the random variable I with distribution �. One reason of the interest on these
mixed Poisson distributions lies on the fact that they are overdispersed, in the sense that their
variance is bigger than their mean. However, it should be pointed out that one easily constructs
an overdispersed distribution � concentrated on N such that no � with � = MP(�) can possibly
exist. An example is

∑∞
n=0 �nz

n = (1+ z+ z2)/(6− 3z). There is an abundant literature on the
topic for which Grandell [5] offers a good synthesis and references.

Suppose now that � belongs to a natural exponential family (NEF) F concentrated on [0,∞).
Denote by VF (m) its variance function defined on the domain of the means MF ⊂ (0,∞) in the
sense initiated by Morris [10]. We consider the model

MP(F) = {MP(�); � ∈ F }.
Let us start with the following simple observation: if � ∈ F has mean m then the variance of
MP(�) is m + VF (m). It is tantalizing to think that we have created a new natural exponential
family G with variance function VG such that MG ⊃ MF and such that VG(m) = m + VF (m)

on MF . This is false: if p > 1 is not an integer consider the NEF F such that MF = (1,∞) and
VF (m) = (m − 1)p. Such a NEF does exist from Bar-Lev and Enis [1] or Jorgensen [7]. Then
one sees that VG(m) = m + (m − 1)p is not a variance function: from Theorems 3.1 and 3.2
of Letac and Mora [8] one should have MG = (1,∞) and thus for m0 > 1 we would have the
contradiction∫ m0

1

dm

m+ (m− 1)p
= ∞.

Furthermore, for some NEF F’s the function m+VF (m) can be actually the variance function of
some NEF G with no relation either with MP(F) or with F. A provocative example is VF (m) =
mp with p > 1 is not an integer and MF = (0,∞). In this case VG(m) = m+mp is the variance
function of a NEF such that MG = (0,∞) but G is concentrated on the additive semigroup
N + pN. For checking this it is enough is to compute the corresponding cumulant transform
and to observe that the elements of G must be infinitely divisible with a discrete Lévy measure
concentrated on N + pN. Finally Bent Jorgensen [7] offers a different construction of mixed
Poisson distributions from a NEF (see the remark in Section 3 below for a description of the
Jorgensen’s manner.)

Thus, a natural question is: if the NEF G exists do we have G ⊃ MP(F)? In Section 3
Theorem 1 says : yes, if and only if F is a gamma family, i.e. when there exists a number p > 0
such that VF (m) = m2/p. In this case G is a negative binomial NEF. Section 4 extends the
question to Nd . We randomize (�1, . . . , �d) in the product P(�1)(dx1) · · ·P(�d)(dxd) by the
probability �(d�) on [0,∞)d and consider the probability on Nd defined by

MP(�) =
∫ ∞

0
. . .

∫ ∞
0

P(�1) · · ·P(�d)�(d�1, . . . , d�d).

We get a similar characterization (Theorem 2) which is described in the abstract above. The
multivariate distributions which occur in Theorem 2 have been recently isolated and characterized
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by Konstancja Bobecka and Jacek Wesołowski [2] (details are given in Section 4). The proof of
Theorem 2 needs some care and the particular case d = 1 of Theorem 1 is a preparation to d �2.
Section 2 recalls some facts about NEF.

This study was motivated by statistical optics. Mixed Poisson distributions are commonly used
to model data recorded from low flux objects or with short exposure times using photocounting
cameras. This physical model arises from the semiclassical theory of statistical optics described in
Goodman [4]. In this theory, the classical theory of propagation is used up to the camera, leading
to a high flux image. Conditionally to this image, the number of photons counted on the pixels is
distributed according to a Poisson distribution whose mean is the high flux intensity.

A common problem for example in astrophysics is to estimate parameters of the wavefront
(the mixing distribution) from photocounts recorded on a set of pixels. A description is found
in Ferrari et al. [3]. A general assumption is that the vector of complex amplitudes associated
to adjacent pixels of the image is a zero mean Gaussian vector, which implies that the vector of
the corresponding intensities is distributed according to a multivariate gamma distribution. An
important question is to derive conditions ensuring that the associated mixed Poisson distribution
belongs to a NEF. This result is important since the computational complexity of most estimation
or detection methods is usually reduced when applied to distributions belonging to an NEF.

2. NEF on R and Rd

This section describes the notations and classical facts about natural exponential families,
mainly taken from Morris [10] and Letac and Mora [8]. Denote by

L�(�) =
∫

Rd
e〈�,�〉�(d�)�∞

the Laplace transform of a positive measure � defined for � ∈ Rd not concentrated on any affine
hyperplane. The Hölder inequality proves that the set D(�) of � ∈ Rd such that L�(�) < ∞ is
a convex set and that the cumulant function k� = log L� is a strictly convex function on this set.
Denote by �(�) the interior of D(�) and assume that �(�) is not empty. Then k� is real analytic
on �(�). The set F(�) of probabilities

��(d�) = e〈�,�〉−k�(�)�(d�),

where � runs �(�) is called the NEF with generating measure �. Note that F(�) = F(� ′) does
not imply � = � ′ but implies only the existence of some a ∈ Rd and b ∈ R such that �(d�) =
e〈a,�〉+b� ′(d�). Thus, a member � of the NEF F(�) can always be taken as a generating measure.
However, some generating measures are not necessarily probabilities and can even be unbounded.
We mention also that � �→ ��(d�) is called a canonical parametrization of the NEF. Other
parametrizations of the type

t �→ ��(t)(d�) = e〈�(t),�〉+�(t)�(d�)

with �(t) = −k�(�(t)), could be considered. Since � �→ k�(�) is a strictly convex function on the
open set �(�), the map

� �→ m = k′�(�) =
∫

Rd
���(d�)

from �(�) to Rd is one to one. The open set MF = k′�(�(�)) is called the domain of the means
of F . Denote by m �→ � = 	�(m) the inverse function of k′� from MF onto �(�). The Hessian
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matrix k′′� (�) is the covariance matrix of the probability ��(d�). Denoting VF (m) = k′′� (	�(m)),
the map from MF to the positive definite symmetric matrices of order d defined by m �→ VF (m)

is called the variance function of F . It characterizes F since its knowledge leads by integration of
a differential equation to the knowledge of the cumulant function of a generating measure of F .

3. The case of real exponential families

For d = 1, for p and a > 0 the gamma distribution with shape parameter p and scale parameter
a is


p,a(d�) = e−�/a �p−1

ap
1(0,∞)(�)

d�

�(p)
. (1)

This is a member of the NEF F generated by �(d�) = �p−1

�(p)
1(�)d�. The domain of the means of

F is MF = (0,∞) and its variance function is VF (m) = m2/p. The Laplace transform of 
p,a is

L(z) = 1
(1−az)p

with a suitable definition of this analytic function in {z ∈ C; �z < 1/a}: we have
simply to impose that it is real on the real axis. We see that the generating function of MP(
p,a)

is 1
(1+a−az)p

= (
1−q
1−qz

)p with the notation q = a/(1+ a) ∈ (0, 1). Thus, if N ∼ MP(
p,a) then
with the Pochhammer notation (p)0 = 1 and (p)k+1 = (p + k)(p)k we have

Pr(N = k) = 1

k! (p)k(1− q)pqk = 1

k! (p)k
ak

(1+ a)p+k
, (2)

a negative binomial distribution. This is a member of the NEF G of negative binomial distributions
generated by

∞∑
k=0

1

k! (p)k�k.

The domain of the means of G is MG = (0,∞) and its variance function is VF (m) = m+m2/p.
Thus, both F and G = MP(F) are NEF in this particular example. We show that this is the only
case:

Theorem 1. If the image of the NEF F(�) on [0,∞) by � �→ MP(�) is still an NEF, then there
exists p > 0 such that F(�) is the family of gamma distributions with fixed shape parameter p.

Proof. Denote L�(�) = ∫∞
0 e���(d�) for � ∈ �, where � is the interior of the convergence

domain of L�(�). Note that � is either R or some half line (−∞, a). Suppose that the image of
F(�) by � �→ MP(�) is an NEF on N generated by some measure

∑∞
n=0 pn�n. Consequently,

there exists two functions � and � defined on �+ 1 such that for all n∫ ∞
0

e�(�−1) �
n

n! �(d�) = pne
n�(�)+�(�), (3)

which can be rewritten

L(n)
� (�− 1) = n!pne

n�(�)+�(�). (4)

Recall that � is concentrated on (0,∞) and thus that L� is not a constant. Being a Laplace transform
the function L� cannot be a polynomial and L

(n)
� cannot be identically 0. This implies pn �= 0 for
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all n. Eq. (??) shows that �(�) and �(�) are real-analytic functions on the interval �+ 1. Indeed
� �→ L�(� − 1) is analytic in the half complex plane � + 1 + iR as well as its nth derivative
L

(n)
� (�− 1). Furthermore, since L

(n)
� (�− 1) is positive on �+ 1 (because pn > 0), its logarithm

is real-analytic. Consequently, n�(�)+ �(�) and (n+ 1)�(�)+ �(�) are real-analytic on �+ 1,
which implies by linear combination that �(�) and �(�) are real-analytic on � + 1. This proves
the existence of �′(�) and �′(�). By taking the logarithms of both sides of (??) and differentiating
with respect to � we get

L
(n+1)
� (�− 1)

L
(n)
� (�− 1)

= n�′(�)+ �′(�). (5)

We now fix �. Assume first that a = �′(�) �= 0 and denote p = �′(�)/�′(�). Eq. (??) can be
written L

(n+1)
� (�− 1) = a(p+ n)L(n)(�− 1) hence L

(n)
� (�− 1) = L�(�− 1)(p)na

n. Since � is
concentrated on (0,∞) we have L′�(�− 1) = a > 0. Since L′′�(�− 1) = pa2/2 > 0 we have
p > 0. The Taylor formula applied to the analytic function L� for small values of h can be written
as follows:

L�(�− 1+ h)=L�(�− 1)

∞∑
n=0

(p)n
(ah)n

n!
=L�(�− 1)(1− ah)−p.

The result L�(�−1+h)
L�(�−1)

= (1− ah)−p is valid for any h ∈ (−∞, 1/a), since the Laplace transform
is an analytic function. The right-hand side of this expression is the Laplace transform of the
gamma distribution 
p,a . Moreover, the Laplace transform of ��−1 is

∫ ∞
0

e�h��−1(d�) =
∫ ∞

0

e�(h+�−1)

ek�(�−1)
�(d�) = L�(�− 1+ h)

L�(�− 1)
,

which shows that ��−1 = 
p,a . In other words, the exponential family for {MP(��); � ∈ �} is
the family of gamma distributions with fixed shape parameter p.

If �′(�) = 0, (??) yields L
(n+1)
� (�−1)

L
(n)
� (�−1)

= �′(�) which leads to

L�(�− 1+ h)

L�(�− 1)
= e�′(�)h.

This is the noninteresting case where � is a Dirac measure concentrated on the point �′(�). Our
definition of NEF excludes this and the proof of Theorem 1 is complete. �

Remark. For clarification it should be pointed out that Jorgensen [7, pp. 166–167] mentions a
different object. Given a NEF F = F(�) on (0,∞) and taking the number 	 in a suitable interval,
Bent Jorgensen considers a NEF H	 on N with a cumulant function of the form � �→ k�(	+ e�).
In this case, introducing the reciprocal function h	(m) of the map z �→ zk′�(	+ z) he proves that

VH	(m) = m+ VF

(
m

h	(m)

)
h	(m)2.

The Jorgensen’s construction seems motivated by the particular case VF (m) = mp with p�1
as considered by Hougaard et al. [6]. This family H	 is obtained from F by a Poisson mixing
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process, but in a slightly complicated way. For describing it adopt the following notation: if � is a
measure on R and c > 0 denote dc� the image of the measure � by the dilation x �→ cx. Then H	
is the set of all MP(dc�	+c) such that c is in �(�). For instance if F is a gamma family generated

by �(d�) = �p−1

�(p)
1(0,∞)(�) d� a simple calculation gives that H	 is a negative binomial NEF with

variance function

VH	(m) = m+ 	

p
m2.

4. The case of multivariate exponential families

A line multivariate gamma distribution governed by a nonzero vector (a1, . . . , ad) in [0,∞)d

and the parameter p is the distribution of the random variable X = (a1Y, . . . , adY ) where Y is a
real random variable with distribution 
p,1. Its Laplace transform is

L�(z) = E(e〈�,X〉) = (1− a1�1 − · · · − ad�d)−p.

Its image by � �→ MP(�) is the negative multinomial distribution on Nd with generating function

E(z
N1
1 . . . z

Nd

d ) = cp(1− c(a1z1 + · · · + adzd))−p

where c = (1 + a1 + · · · + ad)−1. If some of the a′i s are zero, (say ai > 0 if and only if i�m)

then the half line image of [0,∞) by y �→ (a1y, . . . , amy) is concentrated on [0,∞)m and the
corresponding distribution is concentrated on Nm.

For an integer 0�q consider q + 1 subsets of {1, . . . , d} denoted by {T0, . . . , Tq} and such
that {1, . . . , d} = ∪q

m=0Tm, Tm �= ∅,∀m�1 and Ti ∩ Tj = ∅,∀i �= j . Consider a product of line
multivariate gamma distributions concentrated on [0,∞)Tm for m = 1, . . . , q and a Dirac mass on
[0,∞)T0 . More specifically, consider a distribution � on [0,∞)d such that there exist nonnegative
numbers a1, . . . , ad and positive numbers p1, . . . , pq such that the Laplace transform of � is

L�(�) = e
∑

k∈T0
ak�k

q∏
m=1

⎛
⎝1−

∑
k∈Tm

ak�k

⎞
⎠
−pm

. (6)

Another presentation of these distributions can be helpful. If v = (v(1), . . . , v(d)) is in [0,∞)d let
us call support of v the set of i ∈ {1, . . . , d} such that v(i) > 0. If we now define v

(i)
m = ai1Tm(i)

then the q + 1 vectors v0, . . . , vq of Rd have disjoint supports. Introduce the random variables
Ym with distribution 
pm,1 such that (Y1, . . . , Yq) are independent. Then � defined by (??) is
the distribution of v0 + v1Y1 + · · · + vqYq . Conversely if v0, . . . , vq have disjoint supports the
distribution of v0 + v1Y1 + · · · + vqYq has type (??). These distributions (at least for v0 = 0)

have been characterized in Bobecka and Wesołowski [2] as follows: suppose that X and X′ are
independent random variables of (0,∞)d . Write

X

X +X′
=
(

X1

X1 +X′1
, . . . ,

Xd

Xd +X′d

)

Then they obtain an elegant multivariate version of a theorem due to Lukacs [9]: the random
variables X + X′ and X

X+X′ are independent if and only if there exists a nonzero sequence of
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vectors (v1, . . . , vq) in [0,∞)d with disjoint supports and independent standard gamma variables
(Y1, . . . , Yq, Y ′1, . . . , Y ′q) such that X ∼ v1Y1 + · · · + vqYq and X′ ∼ v1Y

′
1 + · · · + vqY ′q .

The real domain D(�) of existence of this Laplace transform (??) is open and is the set � of
�k’s such that 1−∑k∈Tm

ak�k > 0 for all m = 1, . . . , q. For � ∈ �, the element �� of the natural
exponential family F generated by � has the following Laplace transform:

h �→ L�(�+ h)

L�(�)
= e

∑
k∈T0

akhk

q∏
m=1

⎡
⎣1− rm

∑
k∈Tm

akhk

⎤
⎦
−pm

,

where rm = rm(�) = (1 −∑k∈Tm
ak�k)

−1. Note that �� is also a product of line multivariate
gamma distributions. The reader can verify that the family MP(F) = {MP(��); � ∈ �} is indeed
a natural exponential family generated by MP(�) (warning: the parametrization � �→ MP(��) of
MP(F) is not the canonical one). The next theorem shows that we have obtained in this way all
natural exponential families F such that MP(F) is also an exponential family. It is an extension
of the above Theorem 1.

Theorem 2. If the image of the NEF F on [0,∞)d by � �→ MP(�) is still a natural exponential
family, then there exists q + 1 disjoints subsets of {1, . . . , d} denoted by {T0, T1, . . . , Tq} and
there exist nonnegative numbers a1, . . . , ad and positive numbers p1, . . . , pq such that F has a
generating measure � with Laplace transform (??).

Proof. Similar to the proof of Theorem 1, the case where F is concentrated on a subspace of Rd

such as (0, . . . , 0)× Rq with q < d is discarded. This case leads to mixed Poisson distributions
concentrated on (0, . . . , 0)×Nq . Denote by � an arbitrary generating measure of F and L(�) its
Laplace transform defined as

L(�) =
∫
[0,∞)d

e〈�,�〉�(d�),

for � ∈ �, where � is the interior of the domain of convergence of L(�). Note that the fact that
� is concentrated on [0,∞)d implies that �+ a ⊂ � for any a = (a1, . . . , ad) such that ai �0.
Suppose that the image of F(�) by � �→ MP(�) is an NEF on Nd generated by some measure∑

n∈Nd pn�n. We write 1 ∈ Rd for the vector with components equal to 1. We use the standard
notations �n = �n1

1 · · · �nd

d and n! = n1! · · · nd !, for n = (n1, . . . , nd) in Nd and � in [0,∞)d .
Similarly L(n)(�) means

�n1

��n1
1

. . .
�nd

��nd

d

L(�).

Thus there exist two functions � : �+ 1→ Rd and � : �+ 1→ R such that∫
[0,∞)d

e〈�,(�−1)〉 �
n

n! �(d�) = pne
〈n,�(�)〉+�(�),

which can be rewritten

L(n)(�− 1) = n!pne
〈n,�(�)〉+�(�) ∀n ∈ Nd . (7)

A discussion similar to that of Theorem 1 shows that pn > 0 for all n ∈ Nd , since � is not
concentrated on some subspace of type (0, . . . , 0) × Rq . As a consequence, the real-analyticity
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of � and � on � + 1 can be deduced of the analyticity of L, by imitating again the proof of
Theorem 1. Denote ei = (0, . . . , 1, . . . , 0) ∈ Nd , where the unique 1 is in position i. We also

write �(�) = (�1, . . . , �d), �ij = ��j

��i
and �i = ��

��i
. By taking the logarithms of both sides of

(??) and applying �
��i

we get

L(n+ei )(�− 1)

L(n)(�− 1)
=
〈
n,

��(�)

��i

〉
+ ��(�)

��i

=
d∑

k=1

nk�ik + �i . (8)

This last equality implies

�ij�jk = �ji�ik, (9)

�ij�j = �ji�i , (10)

for all i, j, k in {1, . . . , d}. Indeed, by using (??) and �2

��i��j
= �2

��j��i
, the quantity L(n+ei+ej )(�−

1) can be written in two ways:

L(n+ei+ej )(�− 1)=L(n)(�− 1)

(
d∑

k=1

nk�ik + �i + �ij

)(
d∑

k=1

nk�jk + �j

)
,

=L(n)(�− 1)

(
d∑

k=1

nk�ik + �i

)(
d∑

k=1

nk�jk + �j + �ji

)
.

Since this equality holds for all n, (??) and (??) are easily obtained.
Assume first that �ij �= 0 for all i and j (separating this case is not absolutely necessary but

makes the reading easier) and fix �−1 (as we did in the proof of Theorem 1). In this case, (??) and
(??) imply that there exist numbers a1, . . . , ad and p such that ai = �ij for all j and p = �i/�ij

for all i and j . Equality (??) can then be written

L(n+ei )(�− 1)

L(n)(�− 1)
= ai

(
p +

d∑
k=1

nk

)
.

As a consequence, the following result can obtained:

L(�− 1+ h)

L(�− 1)
=
(

1−
d∑

k=1

akhk

)−p

, (11)

after noting

1

(1−∑d
k=1 akhk)p

=
∞∑

s=0

(p)s
1

s!

(
d∑

k=1

akhk

)s

=
∞∑

s=0

(p)s
∑

n; n1+···+nd=s

1

n!
d∏

k=1

(akhk)
nk .

Consider now the implications of (??) and (??) in the general case where some �ij can be 0.
For this, consider a directed graph G = (V , E) whose set of vertices V = {1, . . . , d} is such that
(i, j) is an edge if and only if �ij �= 0. We also write i → j instead of �ij �= 0 or (i, j) ∈ E

and i ↔ i when the loop (i, i) exists (this loop may or may not exist). Suppose that there
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exists k such that �ki = 0 for all i. Eq. (??) can then be written

L(n+ek)(�− 1)

L(n)(�− 1)
= �k.

Thus, for any integer nk , we have L(nkek)(� − 1) = L(� − 1)(�k)
nk . After multiplication by

h
nk

k /nk! and summation (with respect to nk) we obtain

L(�− 1+ h) = L(�− 1)e�khk ,

for h = hkek . More generally, denote by T0 the set of k such that there is no i such that k → i.
The above reasoning shows that

L(�− 1+ h) = L(�− 1)e
∑

k∈T0
�k�k , h =

∑
k∈T0

hkek.

Some definitions about graphs need to be recalled. Consider a directed graph G = (V , E), where
V is a finite set and E ⊂ V × V . The graph G1 = (V1, E1) is called a subgraph of G if V1 ⊂ V

and E1 ⊂ E ∩ (V1 × V1). Furthermore, G1 is the induced graph on V1 if E1 = E ∩ (V1 × V1).
The following result can be easily obtained:

Lemma. Consider the graph G defined as above on V={1, . . . , d} by the matrix (�ij ) satisfy-
ing (??). Then

1. Let i and j be distinct in V. If the induced subgraph G1 on V1 = {i, j} contains either the
subgraph i → j ↔ j or the subgraph i ↔ j , then the induced graph is i ↔ i ↔ j ↔ j .

2. If the induced subgraph G1 on V1 = {i, j, k} contains the subgraph i → j → k then G1
contains the subgraph k← i ↔ i ↔ j ↔ j → k.

3. If the induced subgraph G1 on V1 = {i, j} is either the subgraph i ↔ i → j or the subgraph
i → j , then �j = 0.

These results are illustrated in Fig. ??. The proof of the lemma involves the three following
cases:

1. If i → j ↔ j , by setting k = j and k = i in (??), we obtain �ji �= 0 and �ii �= 0. If i ↔ j ,
by setting k = j and k = i in (??), we obtain �jj �= 0 and �ii �= 0.

2. (??) imply �ji = �jk = �jj = aj and �ij = �ii = �ik = ai . If �ij �= 0, we obtain �ii �= 0 and
�ik �= 0. Similarly, if �jk �= 0, we obtain �jj �= 0 and �ji �= 0.

3. Apply (??).
We come back to the proof of Theorem 2. Define the relation i ∼ j on V = {1, . . . , d} by

either i = j or the induced graph on {i, j} is i ↔ i ↔ j ↔ j . It is easy to deduce from the
Lemma that ∼ is an equivalence relation. We remark that this implies that each element of T0 is
alone in its equivalence class. Recall also that the definition of T0 implies that there are no arrows
between two elements of T0. Denote the other equivalence classes by T1, . . . , Tq .

Suppose now that there exists i ∈ ⋃q

m=1 Tm and k ∈ T0 such that i → k. Then part 3 of the
Lemma implies that �k = 0. Eq. (??) can be used to prove that L(n+ek) = 0 for all n ∈ Nd . Thus,
h �→ L(� − 1 + h) does not depend on hk . Since �k = 0, this implies that � is concentrated
on {� ∈ Rd; �k = 0}, a case which has been excluded from the beginning. There are finally no
arrows between

⋃q

m=1 Tm and T0.
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Fig. 1. Illustration of the lemma.

As a summary, the picture of the graph G is

1. a collection T0 of vertices without any arrow and any loop.
2. q disjoint classes T1, . . . , Tq without arrows between vertices of different classes, and with all

possible arrows (including loops) inside a same class Tm.
Consider a fixed m in {1, . . . , q}. For all i, j in Tm, by setting k = i in (??), we obtain

�ij�ji = �ji�ii . Thus, �ji �= 0 implies �ij = �ii . By using (??), for i ∈ Tm and for any n ∈ Nd ,
the following result can be obtained:

L(n+ei )(�− 1)

L(n)(�− 1)
= �ii

⎛
⎝ �i

�ii

+
∑
k∈Tm

nk

⎞
⎠ . (12)

Recall that the number pm = �i/�ii does not depend on i when i runs Tm (indeed �ij = �ii and
use (??)). Denote ak = �kk as above. The imitation of the proof of (??) and the formula (??) lead
to:

L(�− 1+ h)

L(�− 1)
=
⎛
⎝1−

∑
k∈Tm

akhk

⎞
⎠
−pm,

(13)

for any h =∑k∈Tm
hkek . This concludes the proof of theorem. �
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