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1. Introduction

The latest Planck mission results [1] provide the most accu-
rate constraints available till now to inflationary dynamics [2]. So
far the slow roll (SR) mechanism has been confirmed to be a
paradigm capable of reproducing the observed spectrum of cos-
mological fluctuations and the correct tensor to scalar ratio [3].
In spite of the increased precision of observations no evident sig-
nals for quantum gravity can be extracted from the Planck data.
The Inflationary period is the cosmological era describing the tran-
sition from the quantum gravitational scale down to the hot big
bang scale and should, somewhere, exhibit related peculiar fea-
tures. During such a transition the cosmological perturbations with
the longest wavelength are expected to be affected more by quan-
tum gravitational effects since they exit the horizon at the early
stages of inflation and are exposed to high energy and curvature
effects for a longer period of time. Quite interestingly a loss of
power with respect to the expected flatness for the spectrum of
cosmological perturbations can be extrapolated from the data at
large scales. Unfortunately such a feature (evident already in the
WMAP results) exhibits large errors due to cosmic variance and,
till now, its relevance seems to have been overlooked.

In this paper we estimate the effects of quantum gravity using
the Wheeler–DeWitt equation [4]. We calculate, for a realistic in-
flationary model, the spectrum of scalar and tensor perturbations
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to the first order in the SR approximation. Our approach is for-
mally analogous to that introduced in a previous paper [5] where
the quantum effects on scalar perturbations evolving on a de Sit-
ter background were estimated (similar results for the de Sitter
background were also obtained in [6] using a different approach).
Finally the results are compared with observations. Let us empha-
size than we consider a canonical quantization of Einstein gravity
leading to the WDW equation, this is what we mean by quantum
gravity. This is quite distinct to the introduction of so-called trans-
Planckian effects through ad hoc modifications of the dispersion
relation [7] and/or the initial conditions [8].

The article is organized as follows: in Section 2 we review the
main equations describing the dynamics of cosmological perturba-
tions and introduce the master equation governing the dynamics
of such perturbations in the presence of quantum gravitational ef-
fects. In Section 3 we introduce the slow-roll (SR) formalism. In
Section 4 we evaluate the quantum gravitational corrections to
the master equation for scalar perturbations and obtain a general
approximate solution to this equation. Subsequently some partic-
ular solutions associated with different initial conditions (vacuum
choices) are discussed. In Section 5 the case of tensor perturba-
tions is addressed. In Section 6 our general results are compared
with observations and the effects of the quantum gravitational cor-
rections are estimated. Finally in Section 7 we illustrate our con-
clusions.

2. Basic equations

The inflaton-gravity system is described by the following action

S =
∫

dηd3x
√−g

[
MP

2

2
R − 1

2
∂μφ∂μφ − V (φ)

]
(1)
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which can be decomposed into a homogeneous part plus fluc-
tuations around it. The fluctuations of the metric δgμν(�x, η) are
defined by

gμν = g(0)
μν + δgμν (2)

where g(0)
μν = diag[a(η)2(1,−1,−1,−1)]. Only the scalar and the

tensor fluctuations “survive” the inflationary expansion: δg =
δg(S) + δg(T ) . The scalar fluctuations of the metric can be defined
as follows

δgμν = a(η)2
(

2A(�x, η) −∂i B(�x, η)

−∂i B(�x, η) 2δi jψ(�x, η) − Dij E(�x, η)

)
(3)

with Dij ≡ ∂i∂ j − 1
3 δi j∇2. These four degrees of freedom (d.o.f.)

mix with the inflation fluctuation δφ(�x, η) defined by φ(�x, η) ≡
φ0(η) + δφ(�x, η). Finally the scalar sector can be collectively de-
scribed by a single field v(�x, η) which, in the uniform curvature
gauge, is given by v(�x, η) = a(η)δφ(�x, η). Its Fourier transform,
vk can then be decomposed into two parts: v1,k ≡ Re(vk) and
v2,k ≡ Im(vk).

The tensor fluctuations are gauge invariant perturbations of the
metric and are defined by

ds2 = a(η)2[dη2 − (δi j + hij)dxidx j] (4)

with ∂ ihi j = δi jhi j = 0. For each direction of propagation of the
perturbation ki the above conditions on hij with the requirement
gμν = gνμ give seven independent equations for the components
of the tensor perturbations leading to only two remaining polariza-
tion physical degrees of freedom h(+) and h(×) . Then, on defining
v(λ)

1,k ≡ aMP√
2

Re(hk) and v(λ)

2,k ≡ aMP√
2

Im(hk) one can describe the ten-

sor perturbations in a manner similar to the scalar perturbations.
In what follows we shall illustrate in detail a point which is of-

ten glossed over: namely the fact that on working in a flat 3-space
and considering both homogeneous and inhomogeneous quantities
one must introduce an unspecified length L. Indeed the effective
action of the homogeneous inflaton-gravity system plus the inho-
mogeneous perturbations finally is [9]

S =
∫

dη

{
L3

[
−MP

2

2
a′ 2 + a2

2

(
φ′ 2

0 − V (φ0)a
2)]

+
∑

i=1,2

∞∑
k 	=0

[
v ′

i,k(η)2 +
(

−k2 + z′′

z

)
vi,k(η)2

]

+ 1

2

∑
i=1,2

∑
λ=+,×

∞∑
k 	=0

[( v(λ)

i,k

dη

)2

+
(

−k2 + a′′

a

)(
v(λ)

i,k

)2
]}

(5)

where z ≡ φ′
0/H and H = a′/a2 is the Hubble parameter and L3 ≡∫

d3x. The interval ds has dimension of a length l and one gen-
erally may either take [a] = l and [dx] = [dη] = l0 or [a] = l0 and
[dx] = [dη] = l. Correspondingly one then has [L] = l0 or [L] = l.
One can eliminate the factor L3 by replacing a → a/L, η → ηL,
v → √

Lv and k → k/L. Such a redefinition is equivalent to setting
L = 1 in the above action (5) (then implicitly assuming the conven-
tion [a(η)] = l and [dx] = [dη] = l0) and then proceeding with its
quantization. Such a choice, although limited to the homogeneous
part, has been previously illustrated [10]. Henceforth we shall use
this latter simplifying choice. Only at the end, in order to com-
pare our results with observations we shall restore all quantities
to their original definition and the dependence on L will become
explicit. Let us finally note that the fact that L is infinite does not
create a problem. As usual the transition from the Fourier integral
w.r.t. the wave number to the Fourier series eliminates the cor-
respondent divergence. The dynamics of each d.o.f. describing the
perturbations is formally analogous to that of a scalar field with a
time dependent mass. The canonical quantization of the action (5)
leads to the following Wheeler–DeWitt (WDW) equation [4] for
the wave function of the universe (matter plus gravitation){

1

2MP
2

∂2

∂a2
− 1

2a2

∂2

∂φ2
0

+ V a4

+
∞∑

k 	=0

[
−1

2

∂2

∂v2
k

+ ω2
k

2
v2

k

]}
Ψ

(
a, φ0, {vk}

) = 0 (6)

where, without lose of generality, just one d.o.f. has been sin-
gled out. In particular ω2

k ≡ k2 + m2(η) and m2(η) = − z′′
z for each

scalar perturbation and m2(η) = − a′′
a for each tensor perturbation.

On performing a Born–Oppenheimer decomposition [11] for the
full WDW equation one can then obtain the Schwinger–Tomonaga
equation for the wave function of each mode of the perturbation v
[12] on following exactly the step by step derivation described in
[5]. Finally the differential master equation governing the evolution
of the two point function

pk(η) ≡ s〈0|v̂2
k |0〉s = 〈

v̂2
k

〉
0 (7)

can be derived:

d3 p

dη3
+ 4ω2 dp

dη
+ 2

dω2

dη
p + �p = 0 (8)

with

�p = − 1

MP
2

d3

dη3

(p′ 2 + 4ω2 p2 − 1)

4a′ 2

+ 1

MP
2

d2

dη2

p′(p′ 2 + 4ω2 p2 + 1)

4pa′ 2

+ 1

MP
2

d

dη

{
1

8a′ 2 p2

[(
1 − 4ω2 p2)2

+ 2p′ 2(1 + 4ω2 p2) + p′ 4]}

− 1

MP
2

ωω′(p′ 2 + 4ω2 p2 − 1)

a′ 2
(9)

where the subscript k has been omitted. The above equation is
exact to the first order in MP

−2 and in the MP → ∞ limit it repro-
duces the standard evolution of the two point function. Let us note
that the above master equation is only valid within a perturbative
approach and �p is the expression for the quantum gravitational
corrections to order MP

−2 to the evolution of the Bunch–Davies
(BD) vacuum [13] (see [5] for more details).

3. Slow-roll inflation

The de Sitter evolution is a fairly good approximation to the
inflationary dynamics. It has been studied in detail in paper [5]
where Eq. (8) was solved exactly for the scalar perturbations. In
the standard approach (where the quantum gravitational correc-
tions are neglected) the dynamics of the tensor perturbations is
exactly the same as that for the scalar sector in the de Sitter case.
However if one wishes to calculate the detailed features of the
spectra of cosmological perturbations in order to compare them
with observations one must go beyond the de Sitter approxima-
tion. A more refined but still approximate approach to the eval-
uation of the spectrum of cosmological perturbations is that of
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slow-roll. Such an approach is not associated with a well defined
gravity-inflaton action but describes well the evolution of cosmo-
logical perturbations during a generic inflationary phase having a
slowly varying Hubble parameter and scalar field. Realistic infla-
tionary models are treated in the slow-roll (SR) approximation and
the features of the spectra of perturbations generated during infla-
tion are accurately estimated in such a framework. It is then worth
generalizing our procedure to such a case.

The SR approximation is based on the assumption that the in-
flaton field φ0(t) and the Hubble parameter H(t) vary slowly dur-
ing the inflationary period when cosmological perturbations cross
the horizon. Slow rolling can be described on introducing the so-
called SR parameters. There exist different families of SR parame-
ters associated, for example, with inflaton evolution, with Hubble
parameter evolution or with the inflaton potential. In particular we
indicate by εi with i = 1, . . . ,+∞ the hierarchy associated with
the evolution of H(t) defined by

ε0 ≡ H0

H(t)
, εn+1 = 1

εn

dεn

d ln a
(10)

and we indicate by δi the hierarchy associated with the evolution
of φ0(t) where

δ0 ≡ φ(t)

φ0
, δn+1 = 1

δn

dδn

d ln a
. (11)

The SR approximation consists in assuming |εi | 
 1 and |δi | 
 1.
In such a regime the logarithmic derivative w.r.t. a of each of these
parameters is negligible to first order in the parameters them-
selves. Then on neglecting second order contributions one can
treat the parameters as constants and find approximate solutions
to the equations governing the dynamics of the cosmological per-
turbations. We further note that through the Einstein equations
one can generally find various relations among the different hier-
archies at least to the first order in the parameters.

Only few of the above parameters generally appear in the equa-
tions for the perturbations arising from the underlying theory. In
the GR framework it is quite common to introduce the SR param-
eters

εSR ≡ − Ḣ

H2
= ε1 and ηSR ≡ − φ̈0

Hφ̇0
= ε1 − δ2 − δ1 (12)

and obtain the spectra just in terms of these two. To first order
in the SR approximations the scale factor evolution satisfies the
equation

aH � −1 + ε1

η
(13)

where higher orders in εi have been neglected. Its solution is then
given by

a = a0

(
η0

η

)1+ε1

. (14)

In terms of the above quantities one finds

ω2 = k2 − 2(1 + 3εSR − 3
2ηSR)

η2
(15)

for the scalar perturbation and

ω2 = k2 − 2(1 + 3
2εSR)

η2
(16)

for the tensor perturbations. In Eq. (8) the SR parameters appear
in the expressions for ω and a(η). To the first order in the SR
approximation they are small and can be treated as constants. Let
us note that, owing to the forms of (15) and (16), it is possible to
recover the equation for the tensor perturbations starting from the
equation for the scalar perturbations and taking the limit ηSR →
εSR .

4. Evolution of the scalar perturbations

As already mentioned the correct treatment of the quantum
gravitational corrections involves the evaluation of �p using the
unperturbed BD solution. Such a solution can be expressed in a
conventional way in terms of a product of Hankel functions

p(η) = −πη

4
H (1)

ν (−kη)H (2)
ν (−kη) (17)

with ν = 3
2 + 2εSR − ηSR [3]. The expression for �p turns to be

a very complicated function of the above Hankel functions and
their derivatives. We therefore evaluate �p in the short and in
the long wavelength limits and simply keep the leading terms for
each power of −kη. This approximation is reasonable considering
the smallness of the SR parameters. In such an approximation we
neglect irrelevant small deviations from the de Sitter results pro-
portional to the SR parameters and just keep the new peculiar
effects originating from the SR dynamics which can be compara-
ble with the de Sitter terms. In the short wavelength limit (where
the initial conditions are fixed) the expression for the quantum
corrections is given by

�
(S)
p �

(
η
η0

)2(1+εSR)

a2
0MP

2η

[
− 2εSR

(−kη)2
+ 4

(−kη)4

]
(18)

and in the long wavelength limit one finds

�
(L)
p �

(−2kη)−4(2εSR−ηSR)(
η
η0

)2(1+εSR)

a2
0MP

2k4η5

[
7(ηSR − εSR)

(−kη)2
+ 4

]
. (19)

The terms in the brackets with coefficients independent of the
SR parameters reproduce the correct de Sitter behavior for εSR,

ηSR → 0

�
(D S)
p = 4H2

MP
2k4η3

. (20)

The remaining terms have a pure SR origin and have important
consequences in spite of the smallness of the SR parameters. The
terms proportional to SR parameters in Eqs. (18) and (19) dom-
inate over the pure de Sitter contribution (20) in the short and
long wavelength limits respectively.

4.1. Analytical solution

The simplified expressions for the quantum gravitational cor-
rections (18), (19) in the short and in the long wavelength regime
are quite simple and accurate with respect to their exact expres-
sion in terms of the Hankel functions. The smaller the SR pa-
rameters the better is the accuracy of the approximations. One
can find the general solutions of Eq. (8) on solving the equa-
tion in these two regimes and then matching the resulting solu-
tions at horizon crossing. On changing the independent variable
η → ζ ≡ − ln(−kη) Eq. (8) takes the form

d3 p

dζ 3
+ 3

d2 p

dζ 2
+ [

4e−2ζ − 6(1 + 4εSR − 2ηSR)
]dp

dζ

− 4(2 + 6εSR − 3ηSR)p + Ae2εSRζ
[
2εSRe−2ζ − 4

] = 0 (21)

in the short wavelength limit and
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d3 p

dζ 3
+ 3

d2 p

dζ 2
+ [

4e−2ζ − 6(1 + 4εSR − 2ηSR)
]dp

dζ

− 4(2 + 6εSR − 3ηSR)p − A

24(2εSR−ηSR)
e(6εSR−4ηSR)ζ

× [
4 + 7(ηSR − εSR)e2ζ

] = 0 (22)

in the long wavelength limit with

A = 1

a2
0MP

2k2(−kη0)2(1+εSR)
. (23)

Let us emphasize that the expressions (18), (19) both contain the
term which correctly reproduces the de Sitter limit when εSR → 0,
ηSR → 0. Such a term is sub-leading but is necessary to accu-
rately reproduce the short/long wavelength behavior of the quan-
tum gravitational corrections at −kη � 1.

The general solution of Eqs. (21), (22) is given by the general
solution of the homogeneous equation plus the particular solution
of the full equation. In the short wavelength limit an approximate
particular solution can be found starting from the ansatz

p(S) � Ae−2εSRζ
(
αS + βS e2ζ

)
, (24)

then obtaining

αS = 1

4
, βS = 3

4
(25)

to the leading order in SR for each parameter. In the long wave-
length limit we take the following ansatz for the particular solu-
tion

p(L) � A

24(2εSR−ηSR)
e(6εSR−4ηSR)ζ

(
αLe2ζ + βL

)
, (26)

and we obtain

αL = − 7

36
, βL = −25

36
. (27)

The approximate particular solutions (24) and (26) have a different
behavior in the de Sitter limit. Such a difference is a consequence
of the existence of an infinite set of particular solutions to in-
homogeneous differential equations. The difference between these
solutions is equal to a solution of the corresponding homogeneous
equation. We can match the short and the long wavelength expres-
sions (24), (26) by adding

p(L)
0 � A

17

18
22(2εSR−ηSR)e2(2εSR−ηSR)ζ

(
1 + e2ζ

)
(28)

to (26). The expression (28) is an exact solution of the homoge-
neous equation in the long wavelength limit. We then replace the
solution (26) by

p(L) � − A

18

[
2−4(2εSR−ηSR)e(6εSR−4ηSR)ζ

(
7

2
e2ζ + 25

2

)

− 17 × 22(2εSR−ηSR)e2(2εSR−ηSR)ζ
(
1 + e2ζ

)]
. (29)

Now (29) and (25) reproduce the same de Sitter solution when
εSR = ηSR = 0 and, to zeroth order in SR, the solutions (29) and
(25) match at the horizon. To this extent they are two branches of
the same particular solution �p.

Given this particular solution, �p, one can finally write the full
general solution of (8) as

p = π

4k
(1 + Aδ)e−ζ H (1)

ν

(
e−ζ

)
H (2)

ν

(
e−ζ

) + �p (30)

where a residual integration constant δ has been added. Such a
constant multiplied by the factor A ∝ MP

−2 expresses the residual
freedom in fixing the initial conditions (vacuum) to order MP

−2.
This also occurs in the pure de Sitter case.
4.2. Vacuum choice and results

The vacuum prescription, i.e. the initial condition for the evolu-
tion of the modes, is usually fixed in the short wavelength regime
when modes are well inside the horizon. The general BD pre-
scription is equivalent to the requirement p(ζ ) � 1/(2k) when
ζ → −∞. When quantum gravitational corrections are absent in
the pure de Sitter case there is a suitable choice of δ which repro-
duces the BD initial condition for ζ → −∞. This statement can be
easily verified from our expressions. In the short wavelength limit,
on setting the SR parameters to zero, the solution (30) takes the
form

pD S ∼
(

1 + H2

MP
2k4

δ

)
1

2k
+ H2

4MP
2k4

. (31)

The BD vacuum is recovered when δ = −k/2. Consequently the
long wavelength limit of the evolved BD vacuum is

pD S ∼
[

1 + H2

MP
2k4

(
−k

2

)]
e2ζ

2k
+ 3H2

4MP
2k4

e2ζ

= e2ζ

2k

(
1 + H2

MP
2k3

)
(32)

and just corresponds to the results obtained in [5].
When SR dynamics is taken into account an approximate con-

stant solution in the ζ → −∞ limit no longer exists as the leading
part of the particular solution is

p(S) � A

4
e−2εSRζ = A

4
(−kη)2εSR (33)

and is time dependent.
A prescription to fix the vacuum at some time during the evo-

lution of each mode would determine the parameter δ (in general
as a function of k). The long wavelength limit of the full solution
is

p(L) = (1 + δA)
1

8k

Γ (ν)2

Γ (3/2)2

(−kη

2

)−2(1+2εSR−ηSR)

− 17

18
A

[
7

34
2−4(2εSR−ηSR)(−kη)−2(1+3εSR−2ηSR)

− 22(2εSR−ηSR)(−kη)−2(1+2εSR−ηSR)

]
. (34)

Just keeping the first order SR coefficients in the exponents of −kη
in (34) is sufficient to analyze the interesting features of the full
solution p. It can be rewritten as

p(L) � 1

2k
(−kη)−2(1+2εSR−ηSR)

×
[

1 + Ak

(
δ

k
+ 17

9
− 7

18
(−kη)−2(εSR−ηSR)

)]
. (35)

The coefficient A is approximately

A � H2

MP
2k4

(36)

where H is the Hubble constant evaluated at some time during
inflation (small deviations due to SR are neglected). Let us note
that p is the two point function associated with the perturbation
v which includes a factor 1/

√
L and is expressed in terms of the

corresponding set of rescaled quantities. If one now returns to the
original physical quantities by substituting v → v/

√
L (and thus

p → p/L), k → Lk, a → La, η → η/L one has that kη remains in-
variant and an overall factor L−1 appears on both sides of Eq. (35)



76 A.Y. Kamenshchik et al. / Physics Letters B 734 (2014) 72–78
and cancels. The quantum gravitation contribution which is mainly
encoded in the A · k term changes since A · k → A · k/L3. This is
the only replacement one needs in order to return to the original,
physical, degrees of freedom. The scale L ≡ k̄−1 would then appear
in the result as an effect of the initial integration of the homo-
geneous dynamics. Analogous results are obtained for the tensor
case. We shall return to this later.

Thus, for k large, the quantum gravitational corrections are neg-
ligible. For k small, small (perhaps observable) deviations from the
standard SR predictions arise. Depending on −kη and the expo-
nent −2(εSR − ηSR) such deviations would lead to a power loss
in the spectrum of scalar perturbations independently of δ. Let us
note that such a possible power loss is a particular consequence
of the SR dynamics. In the pure de Sitter the power loss can only
originate form some vacuum prescription other than pure BD.

On setting δ = −k/2, as in the de Sitter case, one finds

p � 1

2k
(−kη)−2(1+2εSR−ηSR)

×
[

1 + Ak

18

(
25 − 7(−kη)−2(εSR−ηSR)

)]
, (37)

leading to a power loss if εSR > ηSR and for −kη small enough.
We further note that if δ ≤ − 17

9 k the quantum gravitational cor-
rections always lead to a power loss in the spectrum. The latter
prescription leads to a power loss in the de Sitter limit as well and
does not depend on SR but is related to the initial conditions of
the evolution of the perturbations.

5. Tensor perturbations

In the de Sitter and the power-law cases, the evolution of the
tensor perturbations is governed by the same equation as deter-
mines the dynamics of the scalar sector (at least in GR). Differences
appear for the case of slow roll. In such a case the effective mass
of the scalar perturbation is given by

z′′

z
� 2

η2

(
1 + 3εSR − 3

2
ηSR

)
(38)

while for tensor perturbation one has

a′′

a
� 2

η2

(
1 + 3

2
εSR

)
. (39)

The unperturbed solution for p is given by (17) with

ν = 3

2
+ εSR. (40)

Let us note that the results obtained for scalar perturbations in
the SR approximation can be easily changed into the correspond-
ing results for tensor perturbations on letting ηSR → εSR . In such
a limit the peculiar behavior found in the scalar sector disappears.
The particular solution associated with these corrections is

p(L) � − A

18
e2εSRζ

[
2−4εSR

(
7

2
e2ζ + 25

2

)
− 17 × 22εSR

(
1 + e2ζ

)]
(41)

in the long wavelength regime. The general solution of (8) is finally
given by the approximate expression

p � 1

2k
(−kη)−2(1+εSR)

[
1 + Ak

(
δ

k
+ 3

2

)]
(42)

for −kη → 0 and on neglecting SR parameter dependence as in
expression (35). On setting δ = −1/(2k) (BD prescription) one finds
p � 1

2k
(−kη)−2(1+εSR)[1 + Ak] (43)

which leads to a power increase in the small k region. Primordial
gravitational waves have not been detected till now. Such an in-
crease, however, would suggest that some signal may be observed
in the lowest multipoles interval first if the BD assumption is cor-
rect.

6. Comparison with observations

The scalar perturbations are usually described in terms of the
quantity

Rk ≡ H

φ̇0
δφ = − vk

a

H

φ̇0
(44)

namely the comoving curvature perturbation R in the uniform
curvature gauge. In the long wavelength limit the power-spectrum
associated with R is

PR = k3

2π2
|Rk|2 = k3

2π2

H2

φ′ 2
0

p(L)
s (45)

where p(L)
s is given by (35) and the subscript s indicates the “scalar

sector”. When the quantum gravitational corrections are neglected,
the above spectrum (45) is constant to first order in SR. When
quantum corrections are not negligible a time dependence due to
the contribution proportional to the (−kη)−2(εSR−ηSR) term in the
brackets of expression (35) is present. The overall amplitude of
the scalar perturbations can be evaluated at the end of the in-
flationary era when η = η f . The modes we observe today left the
horizon during the inflationary era around 60 e-folds before infla-
tion ended. For these modes −kη f ∼ e−60 up to small corrections
proportional to the SR parameters. In Figs. 1, 2 we show that a
power loss for small k with the BD vacuum prescription leading to
expression (37) is obtained with a set of SR parameters compat-
ible with observations. We also assume that the evolution of the
spectrum of the scalar perturbations after inflation ends does not
significantly alter this power loss, at least qualitatively.

The spectrum of the tensor perturbations

∣∣h(λ)

k

∣∣ = √
2/(aMP)

√ ∑
i=1,2

(
v(λ)

i,k

)2
(46)

is defined as

Ph = k3

2π2

(∣∣h(+)

k

∣∣2 + ∣∣h(×)

k

∣∣2) = 4k3

π2a2MP
2

p(L)
t , (47)

where p(L)
t is given by (42) and the subscript t indicates the “ten-

sor sector”. Let us note that the spectrum (47) is still constant on
including the quantum gravitational corrections. The above ampli-
tudes (45), (47) define the tensor to scalar ratio which is usually
evaluated in the leading order in the SR approximation and is
given by

r = Ph

PR
= 16|εSR| (48)

when quantum gravitational corrections are neglected. The tensor
to scalar ratio is modified by quantum gravitational corrections and
in particular, in the low k region, a power enhancement in the
numerator may be either balanced by a power enhancement or
counterbalanced by a power loss in the denominator. In the latter
case an overall increase in the ratio for k small occurs. On neglect-
ing the quantum corrections one finds the standard results for the
spectral indices and in particular
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Fig. 1. Marginalized joint 68% (darker) and 95% CL regions for (r,ns), using Planck +
WP + BAO with a running spectral index. The region shaded with horizontal lines
is that for which εSR − ηSR > 0, the region shaded with vertical lines is where
(−kη f )

−2(εSR−ηSR) > 25
7 .

Fig. 2. Marginalized joint 68% (darker) and 95% CL regions for (r,ns), using Planck +
WP + BAO without a running spectral index. The region shaded with horizontal
lines is that for which εSR − ηSR > 0, the region shaded with vertical lines is where
(−kη f )

−2(εSR−ηSR) > 25
7 .

ns − 1 = 2ηSR − 4εSR (49)

and

nt = −2εSR. (50)

During inflation one generally has Ḣ < 0 and consequently εSR > 0.
One then has the following relation

r = −8nt = 16εSR. (51)

The values of εSR and ηSR depend on (ns, r) through Eqs. (49) and
(51). In particular we are interested in the sign of εSR − ηSR which
appears throughout our results. The area shaded with horizontal
lines in Figs. 1, 2 plots the region where εSR − ηSR > 0 and com-
pares with the observed values for ns and r.

Let us note that the quantum gravitational corrections in
the expressions (35) and (42) have the form of a few additive,
k-dependent terms. The wavenumber k is dimensionless in our
notation. In GR k may have the dimensions of an inverse length
depending on the conventions used. The final results must be con-
sistent with both the conventions. Let us remember that in this
paper the scale factor, which is quantized, has the dimensions of
a length thus leading to a dimensionless k and we have already
illustrated in Section 2 the reasons for such a choice. In order to
obtain the final results in terms of the original physical quantities
we must again reintroduce the scale k̄ (L−1) as we explicitly il-
lustrated at the end of Section 4. This reintroduction then makes
our results independent on the conventions used. The value of k̄−1

is a length scale and is usually taken to be the largest observable
scale of the universe today [14]. If so, it is then comparable with
the pivot scale k∗ which in the case of the Planck data analysis has
been taken to be k∗ � 0.05 Mpc−1 [1].

The quantum gravitational corrections determine a deviation
with respect to the standard results (without quantum gravita-
tional corrections) proportional to the time independent coefficient
A · k which can be rewritten, after some algebra, as

A · k =
(

k̄

k

)3 H2

MP
2(1 + εSR)2(−kη)2εSR

. (52)

Let us note that the ratio k̄/k is unchanged if physical wavenum-
bers k̄/a and k/a are used and, of course, kη � k/(aH) is inde-
pendent of the applied conventions. The time dependence of the
numerator and that of the denominator exactly cancel to the first
order in SR. Then (52) can be evaluated at any time during infla-
tion and in particular at the horizon crossing when −kη � 1 and
H � H∗ . To the leading order in SR we then obtain

A · k �
(

k̄

k

)3 H2∗
MP

2
. (53)

The ratio H2∗
MP

2 ≤ 10−6 is related to the amplitude of the scalar per-

turbations and is very small. Thus A · k|k∼k∗ is tiny if we take
k̄ � 1.4 · 10−4 Mpc−1 to be the largest observable scale in the uni-
verse today. On the other hand if k̄ ∼ k∗ the amplitude of the
quantum gravitational corrections is bigger but still too small to be
observed given the precision of present day experiments. For the
case of tensor perturbations the results are similar and the same
considerations hold.

Let us however note that the results obtained so far are based
on the assumption that SR approximation is valid during the evo-
lution of each observable mode. What happens between the last
stages of inflation (when SR no longer applies) and today is still
unspecified as far as the quantum gravitational part of the spec-
trum is concerned. A tiny power loss or enhancement may well be
dampened or enhanced during the evolution till now and its effect
may then be observed in Planck data. The evolution of such cor-
rections from the end of inflation until today is an ambitious task
which goes beyond the scope of this paper.

7. Conclusions

In this paper we solved the general master equation (8) de-
scribing the lowest order corrections coming from quantum grav-
itational contributions to the spectrum of cosmological fluctua-
tions on assuming an inflationary evolution generically described
by SR dynamics. This letter is a generalization of the previous
article [5] where such an equation was obtained through a Born–
Oppenheimer decomposition of the inflaton-gravity system and
solved exactly for the two point function of the scalar fluctuation
for the case of a de Sitter evolution. The more realistic case of an
inflationary SR dynamics has been addressed here. The quantum
gravitational corrections for the SR case have peculiar features and
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are very different from the de Sitter case. In particular, for the case
of the scalar fluctuations, their form is not simply a deformation
of the de Sitter result proportional to the SR parameters. New con-
tributions arise due to SR and their effect dominates over the de
Sitter-like contributions for very small and very large wavelengths.
The small wavelength region is that which affects the initial state
(vacuum) of each mode of the perturbations. The long wavelength
region is that associated with the observations of the spectrum of
perturbations. The new contributions are proportional to εSR − ηSR

and are zero for the de Sitter and power-law cases. They can lead
to a power-loss term for low k in the spectrum of the scalar curva-
ture perturbations at the end of inflation providing the difference
εSR − ηSR > 0. Furthermore the evolution of the primordial gravi-
tational waves has also been addressed. The quantum gravitational
corrections also affect the dynamics of tensor perturbations and
determine a deviation from the standard results in the low multi-
pole region.

Finally our analytical results are compared with observations.
The quantum gravitational corrections originate a power loss in the
scalar spectrum compatible with the Planck constraint on εSR −ηSR .
Another possible source of the power loss is related to the per-
turbed vacuum choice. An accurate analysis of the possible out-
come of some non-standard choices of the vacuum is beyond the
scope of this paper and is not addressed here. The amplitude of
the quantum gravitational effects depends on the product A · k.
Unfortunately within the present approach an estimate of this am-
plitude during inflation leads to a tiny result. Such an estimates
has been performed in a conservative manner [14] by introducing
a length scale k̄−1 associated to the size of the observable universe
today. Should such corrections freeze at the end of inflation they
are probably invisible to present day experiments. Different choices
of k̄ should however lead to very different estimates. Of course the
choice of a smaller length scale (k̄−1) will lead to stronger quan-
tum gravitational effects.
Acknowledgements

The work of A.K. was partially supported by the RFBR grant
14-02-00894. We wish to thank F. Finelli for useful comments.

References

[1] P.A.R. Ade, et al., Planck Collaboration, arXiv:1303.5082 [astro-ph.CO].
[2] A.A. Starobinsky, Lect. Notes Phys. 246 (1986) 107;

A.D. Linde, Particle Physics and Inflationary Cosmology, Harwood, Chur,
Switzerland, 1990.

[3] E.D. Stewart, D.H. Lyth, Phys. Lett. B 302 (1993) 171, arXiv:gr-qc/9302019.
[4] B.S. DeWitt, Phys. Rev. 160 (1967) 113.
[5] A.Y. Kamenshchik, A. Tronconi, G. Venturi, Phys. Lett. B 726 (2013) 518.
[6] C. Kiefer, M. Krämer, Phys. Rev. Lett. 108 (2012) 021301;

D. Bini, G. Esposito, C. Kiefer, M. Kraemer, F. Pessina, Phys. Rev. D 87 (2013)
104008, arXiv:1303.0531 [gr-qc].

[7] J. Martin, R.H. Brandenberger, Phys. Rev. D 63 (2001) 123501, arXiv:hep-
th/0005209;
A.A. Starobinsky, Pisma Zh. Eksp. Teor. Fiz. 73 (2001) 415;
A.A. Starobinsky, JETP Lett. 73 (2001) 371, arXiv:astro-ph/0104043.

[8] U.H. Danielsson, Phys. Rev. D 66 (2002) 023511, arXiv:hep-th/0203198;
G.L. Alberghi, R. Casadio, A. Tronconi, Phys. Lett. B 579 (2004) 1, arXiv:gr-
qc/0303035.

[9] V.F. Mukhanov, Sov. Phys. JETP 68 (1988) 1297;
J.M. Maldacena, JHEP 0305 (2003) 013;
V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger, Phys. Rep. 215 (1992) 203;
V.F. Mukhanov, Phys. Lett. B 218 (1989) 17.

[10] F. Finelli, G.P. Vacca, G. Venturi, Phys. Rev. D 58 (1998) 103514.
[11] M. Born, J.R. Oppenheimer, Ann. Phys. 84 (1927) 457;

C.A. Mead, D.G. Truhlar, J. Chem. Phys. 70 (1979) 2284;
C.A. Mead, Chem. Phys. 49 (1980) 23;
C.A. Mead, Chem. Phys. 49 (1980) 33.

[12] R. Brout, G. Venturi, Phys. Rev. D 39 (1989) 2436;
C. Bertoni, F. Finelli, G. Venturi, Class. Quantum Gravity 13 (1996) 2375;
G. Venturi, Class. Quantum Gravity 7 (1990) 1075;
G.L. Alberghi, R. Casadio, A. Tronconi, Phys. Rev. D 74 (2006) 103501;
G.L. Alberghi, C. Appignani, R. Casadio, F. Sbisa, A. Tronconi, Phys. Rev. D 77
(2008) 044002;
A. Tronconi, G.P. Vacca, G. Venturi, Phys. Rev. D 67 (2003) 063517.

[13] T.S. Bunch, P.C.W. Davies, Proc. R. Soc. Lond. Ser. A 360 (1978) 117.
[14] G. Calcagni, Ann. Phys. 525 (2013) 323, arXiv:1209.0473 [gr-qc].

http://refhub.elsevier.com/S0370-2693(14)00330-X/bib636D62s1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib696E666C6174696F6Es1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib696E666C6174696F6Es2
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib696E666C6174696F6Es2
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib537465776172743A313939336263s1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib446557697474s1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4Bs1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4B6965666572s1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4B6965666572s2
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4B6965666572s2
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4D617274696Es1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4D617274696Es1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4D617274696Es2
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4D617274696Es3
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib696E69636F6E64s1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib696E69636F6E64s2
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib696E69636F6E64s2
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4D756B4D616C64s1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4D756B4D616C64s2
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4D756B4D616C64s3
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4D756B4D616C64s4
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib465656s1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib424Fs1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib424Fs2
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib424Fs3
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib424Fs4
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib424F2D636F736Ds1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib424F2D636F736Ds2
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib424F2D636F736Ds3
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib424F2D636F736Ds4
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib424F2D636F736Ds5
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib424F2D636F736Ds5
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib424F2D636F736Ds6
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib4244s1
http://refhub.elsevier.com/S0370-2693(14)00330-X/bib43616C6361676E69s1

	Signatures of quantum gravity in a Born-Oppenheimer context
	1 Introduction
	2 Basic equations
	3 Slow-roll inﬂation
	4 Evolution of the scalar perturbations
	4.1 Analytical solution
	4.2 Vacuum choice and results

	5 Tensor perturbations
	6 Comparison with observations
	7 Conclusions
	Acknowledgements
	References


