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Abstract-We discuss the numerical solution of linear partial differential equations with variable 
coefficients by means of an operational approach to Ortiz’ recursive formulation of the Tau 
method. 

We discuss a procedure which makes it possible to determine the coefficients of a bivariate Tau 
approximant by means of a reduced set of matrix operations. It involves no discretization of the 
variables, approximate quadratures or the use of special trial functions, 

Error surfaces exhibit a remarkable equioscillatory behaviour. 

1. INTRODUCTION 

This paper concerns the application of an operational approach to Ortiz’ recursive 
formulation of the Tau method[6] discussed by the authors in a recent paper on the 
numerical solution of non-linear ordinary differential equations [9]. 

The approximate solution obtained with this technique is a polynomial which, as in 
the Tau method, satisfies the given partial differential equation, but for a small per- 
turbation term in the right hand side; the supplementary (initial, boundary or mixed) 
conditions are satisfied exactly, provided they are of polynomial form. 

The coefficients of the Tau approximant in two variables are determined through the 
use of a systematic and computationally simple technique based on the use of linear 
combinations of products of two matrices with only one line different from zero. They are 
used to set up a collection of linear conditions on the coefficients of the approximant, 
imposed by either the differential operator or the supplementary conditions. These are 
equated to the right hand side of the differential equation and of the supplementary 
conditions. 

The approximate solution can be constructed in any bi-variate polynomial basis. In the 
examples given in this paper we have chosen it to be the Chebyshev product basis (see 
Ortiz[7]). 

The examples considered here are second order partial differential equations with either 
constant or variable (polynomial) coefficients. We have successfully solved biharmonic and 
parabolic equations with a variety of supplementary conditions. A more extensive list of 
examples is given in [lo], where we use a technique proposed by Ortiz[8], to deal with 
Burger’s and other examples of non-linear partial differential equations. Their solution is 
reduced to that of a sequence of linear problems with variable coefficients, the fixed point 
of which is the solution of the non-linear problem. Segmentation of the domain into Tau 
elements, used in [4] in connection with crack problems, is also discussed in [lo]. 
Theoretical error estimates suggest that, for a given degree, the error of a Tau approximant 
and the error of the best uniform approximation by polynomials are of the same order 
(see [2]). Further details on Ortiz’ formulation of the Tau method can be found in [l] 
and [5]. 

2. DIFFERENTIATION, SHIFTING, AND TRACES OF 
BIVARIATE POLYNOMIALS 

In this paper we follow the notation of Ortiz[6] for the Tau method, and that of Ortiz 
and Samara[9] for the operational approach. Let ( , ) stand for transposition. Matrices 
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where introduced in [9] to discuss the effect of combined repeated differentiation and 
multiplication by the variable (shifting) on the coefficients of a given polynomial _v(.Y) = a_~, 
where 4 = (a,,, a,, . . , a,, 0, 0, . . .) and z = (1, X, x2, . . . , x”, . . .)‘. It is shown in [9], p. i 7, 
that 

x’-&(x) = qq’p”~ = xlPrfrg 

In the case of two independent variables we have: 

LEMMA 1 
Let 

a(x, y) = c 1 ai&y’ = giy - _ 
,=o,=o 

(2) 

where a = ((Q), i, je N = 0, 1,2, . . . ; then 

where 

B = (p”)“(~‘)‘~~~p”‘. 

ProoJ: Follows by applying (1) to each of the variables. 
Let u = UT, Q = V,~F be two polynomial basis defined by lower triangular matrices U, 

V respectively. Then 

u(u, U) = g.4~ = say, where A = (U’)-‘uV-‘, (3) 

is the expansion of (2) in the basis Y = (u, v>. 

LEMMA 2 
Let u(u, u) be given by (3). The combined effect of repeated partial differentiation and 

shifting of u(u, V) with respect to x and y is given by 

where 

and 

E = (k Xii :)‘A (ri,)‘(l;,)“, 

ti’, = uwu-‘, 6, = VW V-‘, for any matrix w. 

Proof: Follows from (3) and Lemma 1. Let z lzCk = (1, k, k2, . . , k”, k”+‘, . .): = z(k), 

and u(x, k) = gk(x) = g,x be the truce of u(x, y) on y = k, then E - 

u(x, k) = say(k) = $“A l+(k), -- 

and 

U’A Vy(k) = gk. 

Similarly, for u(k,y) = hkO,) = hl,v. truce of u(x,y) on x = k, we have -- ____ - 

(4) 

(5) x(k)U’A V = &. 
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3. PARTIAL DIFFERENTIAL EQUATIONS 

(i) The dlrerential operator 
Let 9 (see Ortiz[6]) be the class of linear partial differential operators L in the two 

variables X, y, and with polynomial coefficients. Let 

Prr(A y ) = c Pi&y’? 
il 

be the polynomial coefficient of the partial derivative of order r in x and f in y. Then, 
for all 

“I ‘:I 

Le.9:L =I P,(x,y)&, i = i(r, t), j = j(r, t); 
r, 

(6) 

v, and v,. are the maximum orders of differentiation in x and in y respectively. 

THEOREM 1 
The effect of a linear differential operator LEQ on the coefficients of a bivariate 

polynomial a(x. y) = say = g-4~ is given by - - 

La&y) = u d(Ak, 

where 

(7) 

Proof. Follows from Lemma 2 applied to (6). 
Remark I. The only line of non-zero elements of matrix a, (or fi,,) is obtained by 

multiplying the element I,, s E N, of the unit matrix Z by (r + s)!/s! (or (t + s)!/s!) and 
adding r (or t) rows and i (or j) column of zeros. 

(ii) The supplementary conditions 
The supplementary conditions of a partial differential equation can be regarded as 

defined by differential operators acting on a(x, y) along specified sections of the boundary 
I of the domain R in which the solution is required. If we assume that R is a rectangle 
with sides parallel to the coordinate axis, these operators will depend on only one variable: 

D&3 Y) = [ 1 Sir, xi& 
1 

a (x7 y )ly = y, = g,b 1, 

&a (x3 Y> = 
1 

4x, Y&=,, hiti), 

where i and j stand for indices related to different sectors of the boundary I of the domain 
R; I&,,, B,,? are coefficients related to the differential operators D, and D,. defined on sections 
OfI-. ’ 

THEOREM 2 
The effect of the supplementary conditions on the coefficients of a bivariate polynomial 

a(.u.J,) = .$a! = ~Ati is given by 

and 

4.a (x, Y I= &LA )ZJ, 
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Proof. Follows from Theorem 1 and (8). 

(iii) The right hand side 
Let f(x,_~) = xfv be the right hand side of the partial differential equation we wish to 

solve approxima&y. From (7) it follows that 

y [d(A)]!! =f(x, y) = ycp~, where cp = (U’)-tfv-‘. (9) 

Similarly, the supplementary conditions lead to the following set of conditions on matrix 
A: 

(10) 

These equations can be written as 

R(A) = G, Le(A) = H, 

where R, G are matrices with a number of columns equal to the number of supplementary 
conditions of the form y = const., and H, Le are matrices with a number of rows equal 
to the number of conditions with x = const. 

(iv) Assembly of the equations for the coeficient matrix A 
The conditions on the coefficient matrix A expressed by (9) and (lo), namely 

d(A)=rp; R(A)=G; Le(A)=H 

can be given in the form of a linear matrix equation: 

D(A)=O,whereD(A)=[&/$$/],and@=[%/:]. (11) 

A Tau approximate solution u,,(x, y) of the partial differential equation 

Lahy) =f(x,y) ky)EQ, 

with boundary conditions given by (8), is obtained by given a pair (n, m), where n is the 
degree of approximation in the x variable and m the degree of approximation in the y 
variable, and solving a suitable truncation of (1 l), which gives the approximate coefficient 
matrix A,, = ((a,>), i = O(l)n, j = O(l)m. Then, the Tau approximation is 

4,(x7 Y) = i f aij4xb$_Y 1, 
i=O,=O 

with u,(x)EUX, and Y,(_v)E Vx. 

4. NUMERICAL SOLUTION OF THE ALGEBRAIC 
PROBLEM D(A) = 0 

Although the numerical solution of matrix equations has a substantial literature (see 
for instance Graham[3], and the references given there) we shall describe an ad hoc 
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procedure which has been found efficient to deal with matrix equations of the general form 

D(A ) = 1 AiX + XB, + C;XD,; 

where terms of the forms A,X, B,X come from partial derivatives with respect of the first 
or second variable, and those of the form C,XD, from mixed derivatives. 

Let us consider the linear mapping S :X-+x = T(X), called stringing where 

x=[;,. ii F!;\? and 11.1 

THEOREM 3 
The mapping S is such that: (i) T(ZaA/?) = Cl(aAp); (ii) there exist a unique matrix 

Kg8 such that J”(aAj) = &J(A); (iii) f or any given vector I! there exist a matrix B such 
that 

A4 = c implies BT(A) = c. 

Proof. Let us consider only the case I(aA) = (alhuh,, a,,&, . . .), where the repetition 
of an index indicates summation over it. We can write 

where i is clearly unique. If we call Le = UJ, i = 1,2, . . . , it follows that r(aA) = Le T(A). 
The same arguments lead to T(Afl) = R-r(A), hence (ii). 

If we write 4: for the ith row of A, and ai, for the general element of A, we have 

c, = &I = a,, = B;r(A) 

and the same argument as before completes the proof of (iii). We notice that matrix B is 
such that there exists an integer k : b, = 0 for all j - i = k. We will refer to such matrices 
as banded from below>; its transpose is then banded from above. 

Remark 2. The linearity of the mapping S makes it possible that the operations of 
generation of the equation D(A) = @ and its stringing be carried out simultaneously, which 
is computationally convenient. Let 

be a representative of the terms in the differential operator. Such terms will be used to 
generate a matrix 

d(2) =pl,r,Oi:,A&r where c?,,= Uq’p’U-‘, 6, = Vq’pjV-‘; 

the process of stringing can be applied to the matrix d(A) to obtain A such that 
1_” (d(i.)) = A T(A). 

Let us assume that each of the individual terms of D (A ), and also of the supplementary 
conditions, are treated in this way, and that each of them is accumulated in a bi- 
dimensional array. We then obtain a linear algebraic system for the unknown vector T(A). 
The coefficients of a Tau approximate solution are obtained by solving a suitable 
truncation of that system. and re-defining the indices to transform the elements of the 
solution vector back into the a,, form. That is. applying S -’ to the vector to get elements 
a,, of A. 
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4. NUMERICAL EXAMPLES 

The numerical solution of a linear partial differential equation by means of the present 
approach to the Tau method requires following the steps listed below: 

(1) Choice of the degrees (n, m) of approximation in each of the variables. 
(2) Choice of the basis Y = {u. u}. 
(3) Construction and simultaneous stringing of the matrices d(A), R,(A), Le,(A), G, H 

and cp, that is of the elements of the matrix equation D(A) = CD, up to the given (n, m). 
(4) Inversion of the linear system of algebraic equations defined by the strang out 

problem for (n, m). 
(5) Redefinition of indices to get the required coefficient matrix A = ((a,)), i = 0( 1)~ 

j = O( 1)m. 
We shall consider two numerical examples. 
Example 1. Poisson’s equation in the square. 

V*a(x, y) =f(x,y), for (x, JJ)EQ = [ - 1, l] x [ - 1, 11, with 

a@, - 1) =gi(x); a@, 1) = g2(X), 
a( - 1, Y) = MY); a(l, v) = kCY). 

(12) 

Thus, L 3 Vz is Laplace’s operator and DX,, DX_,, Dly, D_,, are point evaluation 
functionals applied to the variables x or y. 

We shall assume that f(x, y) = xfr = ucpc, g,(x) = zg, = z_Gi, h,(J) = &y = yl,u, i = 1,2, 
are polynomials (or polynomial approximations of given functions) of degree at most equal 
to n in x and m = n in y; we are interested in obtaining an approximate solution of 
degree 2 (n, n). Let us choose as Y = {u, U} the double Chebyshev basis defined in 
[ - 1, I] x [ - 1, 11, with u = Us, p = Vy, where U = V is the Chebyshev coefficient matrix 
in [ - 1, 11: T,(t) = cos (r arc cos t) = Uj = Vi, r E N. On account of Theorem 1, Laplace’s 
operator applied to a(x, y) leads to the condition 

d(A) = g[t’*A + Arj*]v = ycpg (13) 

The boundary conditions, because of Theorem 2, lead, in turn, to the conditions 

r.&(A) = gAv( - 1) = uG,; 
&,(A)q =-u( - 1)Ag =-H g; 

@,(A) = uAu(l) = yGz 
Le,(A)g =-u(l)Ag = @,zI, (14) 

= = 

where u(+_ l), u( + 1) have the meaning indicated in (4), (5). As the elements of Y are 

linearly independent, from (12), (13) we deduce the following matrix equation 

L i’*A + Af2 = cp 
Au( - 1) = c, 
Au(J) =G2 

u( - 1)A = !$I 

uU)A = $9 

which, as in (11) we write in the following form 

where 

D(A)=crX+Xp =@ (15) 

Application of the stringing mapping S to (15) leads to a linear system of algebraic 
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Table I. Numerical approximation of the solution of V’ a(x, y) = - 2 in R, with 
homogenous boundary conditions 

Degree of approximation 
in x in 1 

Maximum Absolute error 

4 4 1.6 x lo-’ 
6 6 2.5 X lo-’ 
8 8 4.0 X IO-4 

equations of the form 

for the column coefficient vector l(X). A re-definition of indices gives us the required 
approximate coefficients for the Tau approximant a&,~). In Table 1 we give the 
maximum absolute error of approximations of degree 4, 6 and 8 in each of the variables 
for the case of Saint Venant’s torsion problem for a prismatic bar of section R, for which 
the exact solution is known. The problem solved is: 

with 
V’a(x, y) = - 2, (x, y)& = [ - 1, l] x [ - 1, 11, 

a( - 1.y) = a(l,y) = a(x, - 1) = a(x, 1) = 0. 

Figure 1 displays the normalized error surfaces 

a, Y) - U”rn(X, Y) 

my Ju(x, Y) - k& ~11 

for n = rn = 4, 6 and 8. They show a remarkable equioscillatory behaviour. 
Remark 3. If equation MT(X) = T(Q) is solved parametrically in terms of the 

coefficients G,, & E_I, and gZ a system of linear relations is obtained which gives the values 
of the coefficients of the Tau approximate solution u,,,(x,y) in terms of those of the 
coefficients of the boundary conditions. Thus the solution of the problem, for fixed n, m 
and changing boundary conditions is expressed in a closed algebraic form. Further- 
more, for a given equation, say Poisson’s or the biharmonic, and a fixed degree of 

Fig. l(a). 
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n=m=8 

(cl 

Fig. I. Normalized error surfaces for Tau approximations u,(x, y), n = m = 4(2)8, of the solution 
of Saint Venant’s torsion problem for a prismatic bar with a square section. 

approximation (n, m) it is possible to store Mn;’ and find u,,,,(x, y) by simply doing the 
product of a matrix and a vector. 

Example 2. Let us consider the following second order partial differential equation with 
variable coefficients: 

(16) 
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with either of the two sets of boundary conditions: 

13 

i 

@,.Y)I,,= *I =x2 
~4x,Y)l,=-, =2x 

(i) a(x,y)l,=,, =y’ 
or (ii) . 8 

--a(x,y)I,=, =2x2 
ay 

4W)l*=,l =y*. 

It is remarked in [6] that a Tau approximation of degree n should be identical to the 
solution if the latter is a polynomial of degree I n. In the case of (16), a(x, y) = x’y’. 
Approximations of degree n, m 2 2 give exactly unm(x, y) = x’y’. 

Acknowledgement-We wish to thank K.-S. Pun, of The British Petroleum Co. and Imperial College, for 
producing the figures which appear in this article and for useful comments. 

I. 

2. 

3. 

4. 

5. 

6. 
I. 

8. 

9. 

10. 

REFERENCES 
M. R. Crisci and R. Russo, An extension of Ortiz’ recursive formulation of the Tau method to certain linear 
systems of ordinary differential equations. Math. Cornput. 41, 27-42, 1983. 
J. H. Freilich and E. L. Ortiz, Numerical solution of systems of ordinary differential equations with the Tau 
method: an error analysis, Maths. Comput. 39, 480-496 (1982). 
A. Graham, Kriinecker Products and Matrix Calculus with Appliiations, Chap. 3. Ellis Horwood, London 
(1981). 
A. E. El Misiery, E. L. Ortiz and L. S. Xanthis, A new approach to the numerical treatment of crack 
problems based on the recursive formulation of the Tau method. Proc. Third Int. Conf, on Numerical 
Methods in Fracture Mechanics, to appear (1984). 
P. Onumanyi and E. L. Ortiz, Numerical solution of high order boundary value problems for ordinary 
differential equations with an estimation of the error. Int. J. Namer. Meth. Engng 18, 775-781 (1982). 
E. L. Ortiz, The Tau method, SIAM J. Numer. Anal. 6, 480-492 (1969). 
E. L. Ortiz, Polynomial condensation in one and several variables with applications. Topics in Numerical 
Analysis III (Edited by J. Miller), pp. 327-360. Academic Press, New York (1977). 
E. L. Ortiz, On the numerical solution of non-linear and functional differential equations with the Tau 
method. Numerical Treatment of Dzyerential Equations (Edited by E. Ansorge and W. Tornig), pp. 127-139. 
Springer-Verlag. Berlin (1978). 
E. L. Ortiz and H. Samara, An operational approach to the Tau method for the numerical solution of 
non-linear differential equations. Computing 27, 15-25 (1981). 
E. L. Ortiz and K.-S. Pun, Numerical solution of non-linear partial differential equations with the Tau 
method. Numerical Approximation Seminar Res. Rep. Imperial College, 1983. 


