
Ain Shams Engineering Journal (2015) 6, 587–598
Ain Shams University

Ain Shams Engineering Journal

www.elsevier.com/locate/asej
www.sciencedirect.com
MECHANICAL ENGINEERING
Small scale effect on linear vibration of buckled

size-dependent FG nanobeams
* Tel.: +98 917 303 8658.
E-mail addresses: simaziaee@gmail.com, sima_ziaee@yahoo.com,

Ziaee@yu.ac.ir.

Peer review under responsibility of Ain Shams University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.asej.2014.11.014
2090-4479 � 2014 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Sima Ziaee *
Department of Mechanical Engineering, Yasouj University, Yasouj, Iran
Received 27 August 2014; revised 25 October 2014; accepted 26 November 2014

Available online 16 January 2015
KEYWORDS

FG nano-beams;

Vibrating buckled beam;

Nonlocal Euler–Bernoulli

beam theory;

Differential quadrature

method
Abstract The thermal stress due to the temperature rise in micro/nano-beams with immovable

ends produces compressive axial force which can lead to buckling the beams if its value increases

over the critical value. Hence, the investigation of dynamical behaviour of thermal buckled

micro/nano-beams is an important topic.

The present study is an attempt to present linear free vibration of buckled FG nano-beams. It is

assumed that the material properties of FGMs are graded in the thickness direction. The partial

differential equation of motion is derived based on Euler–Bernoulli beam theory, von-Karman geo-

metric nonlinearity and Eringen’s nonlocal elasticity theory. The exact solution of the post-buckling

configurations of FG nano-beams and polynomial-based differential quadrature method are

employed to study the linear behaviour of vibrated nano-beams around their post-buckling config-

urations. The results show the important role of compressive axial force exerted on FG nano-beams

in nonlocal behaviour of vibrating FG nano-beams.
� 2014 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Micro- and nanostructure elements such as micro-/nano-
beams and nanotubes are used in micro- and nano-scale

devices such as micro-probes, micro-actuators, biosensors,
micro-switches, vibration shock sensors [1], nano-motors,
nano-bearings, nano-springs, atomic-force microscopes [2],
nano-oscillators, charge detectors, nano-sensors and clocks
[3], which may experience vibration and/or compressive
inplane forces.

Due to the importance of vibrations of micro-/nano-beams
in a number of devices, extensive studies have already been
done on dynamical behaviour of micro-/nano-beams [1–23]
while there are not notable studies on dynamical behaviour

of micro-/nano-beams subjected to initial stresses due to mis-
match between different materials, initially external axial load
or thermal stresses.

As known, thermal stress due to the temperature rise in
micro/nano-beams with immovable ends produces compres-
sive axial force [24] which can lead to buckling the beams if

its value increases over the critical value. Therefore the inves-
tigation of dynamical behaviour of thermally buckled micro/
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nano-beams, specifically FGM micro-/nano-beams to enhance
the thermal resistance of beams, is of a great importance.

Recently, the study of dynamic behaviour of FGM thin

beams that have been used in micro-/nano-electro-mechanical
systems and atomic microscopes, has received great attention
[25–35] because of the wide application of FGMs due to their

advantages including improved stress distribution, higher frac-
ture toughness and enhanced thermal resistance.

The importance of incorporating the size effect into contin-

uum mechanics, in order to investigate the mechanical behav-
iour of micro- or nano-scale devices, is well known. Couple
stress theory [5], modified couple stress theory [4,6–7], gradient
strain theory [8,25–27] and surface elasticity [9–11,28] are some

theories which are combined with different beam theories to
introduce non-classic beam theories. The nonlocal elasticity
theory is one of the known theories used to simulate dynamical

behaviour of micro/nano-beams [12–21,29–34]. Some research-
ers also used a combination of nonlocal and surface effect the-
ories to investigate their coupling effects on dynamical

behaviour of micro/nano-beams [22,23]. Using nonlocal elas-
ticity theory, linear free vibration [12–18,29,30,33], nonlinear
free vibration [19–21,32,34] and forced vibration [31] of pre-

buckled beams are most topics which have been studied in
dynamic analysis of micro/nano-beams. Researchers not only
tried to propose more accurate nonlocal beam theories [36–
38] to study mechanical behaviour of micro-/nano-beams with

different slenderness ratios and boundary conditions but also
investigated the effects of small scale rise on static and
dynamic characteristics of micro-/nano-beams. Reddy [36]

reformulated Euler–Bernoulli, Timoshenko, Reddy, and Lev-
inson beam theories by using the nonlocal differential constitu-
tive relations of Eringen to study the nonlocal behaviour on

deflections, buckling loads, and natural frequencies of nano-
beams. For the same purpose, Thai [37] developed a nonlocal
shear deformation theory that does not require shear correc-

tion factor. Using nonlocal elasticity theory of Eringen, Emam
[38] presented a unified beam model that is suitable for the
nonlocal Euler–Bernoulli, first-order Timoshenko and
higher-order shear deformation beam theories to study the

nonlocal response of nano-beams in buckling and post-buck-
ling states. It should be noted that the comparison between
nonlocal responses of nano-beams obtained via different non-

local beam theories shows that with an increase in length-to-
thickness ratio, the difference between nonlocal Euler–Ber-
noulli beam theory and other theories decreases [36–38].

Numerical results reveal that mechanical behaviour of nano-
beams that have the length-to-thickness ratio more than 20
can be predicted by nonlocal Euler–Bernoulli beam theory
[36–38].

Eltaher et al. [29] studied free vibration of FG nano-beams
based upon nonlocal Euler–Bernoulli beam theory and finite
element method. The effect of neutral axis location on linear

natural frequencies of FG macro-/nano-beams was investi-
gated by Eltaher et al.[30] as well. Using nonlocal Timoshenko
beam theory, Rahmani and Pedram [33] investigated the

effects of gradient index and geometrical dimensions on linear
free vibration of FG nano-beams. Kiani [35] proposed a math-
ematical model to investigate the vibration and instability of

moving FG nanobeams based on nonlocal Rayleigh beam the-
ory. Uymaz [31] used generalized beam theory and the
nonlocal elasticity to present forced vibration of FG nano-
beams. Nonlinear free vibration of FG nano-beams was
studied by Nazemnezhad and Hosseini-Hashemi [32] based
on nonlocal Euler–Bernoulli beam theory and multiple scale
method. He’s variational method and nonlocal Euler–Ber-

noulli beam theory were used to study the large amplitude free
vibration of FG nano-beams resting on nonlinear elastic foun-
dation by Niknam and Aghdam [34]. All researchers men-

tioned above showed the important role of nonlocal
parameter value on dynamic responses of FG nano-beams.
Their results also revealed that the effects of nonlocal param-

eters on dynamic responses of FG nano-beams can be changed
with boundary conditions, order of the mode of vibration and
geometrical dimensions.

As known, it is very important to find the proper values of

the nonlocal parameter in order to study mechanical behaviour
of micro-/nano-structures. Previous research shows that the
value of the small-scale parameter depends on material,

boundary condition, chirality, and the nature of motion
[32,39–43]. Zhang et al. [39] found the value of 0.82 nm for
nonlocal parameter when they compared the vibrational

results of simply supported single-walled carbon nanotubes
with molecular dynamics simulations. Based on the similar
way, Hu et al. [40] reported nonlocal parameter values of

0.6 nm for dispersion of transverse waves and 0.2–0.23 nm
for dispersion of torsional waves. Khademolhosseini et al.
[41] presented nonlocal parameters of 0.85–0.86 nm for tor-
sional buckling of armchair and zigzag single-walled carbon

nanotubes. Ansari et al. [42] showed that the value of nonlocal
parameter for axial buckling of single-walled carbon nano-
tubes changes with boundary conditions. They obtained non-

local parameter values of 0.54 nm for simply-supported
boundary conditions, 0.531 nm for clamped–clamped bound-
ary conditions, 0.55 nm for clamped-simply supported bound-

ary conditions and 0.722 nm for clamped-free boundary
conditions [42]. On the other hand, Miandoab et al. [43] esti-
mated the nonlocal parameter value of 8 lm to study the

vibration of polysilicon micro-beams.
So far, there is no rigorous study made on estimating the

value of small scale to simulate mechanical behaviour of func-
tionally graded micro-/nano-beams [32]. Hence all researchers

who worked on size-dependent mechanical behaviour of FG
nano-beams based on the nonlocal elasticity method investi-
gated the effect of small scale parameter on mechanical behav-

iour of FG nano-beams by changing the value of the small
scale parameter [29–32]. Eltaher et al. [30] changed the value
of small scale ((e0a)

2) from zero to 5� 10�12 m2 when they

studied the effect of neutral axis location on the linear natural
frequencies of FG nano-beams while Uymaz [31], Nazemnez-
had and Hosseini-Hashemi [32] used the values from 0 to
4 · 10�18 m2 due to lack of information. These researchers

implicitly showed that the influence of small scale parameter
on mechanical behaviour of FG nano-beams will be noticeable
if the small scale parameter-to-thickness ratio is equal to or

more than 1.
This article aims at investigating the effects of small scale

parameter on linear vibration of thermally post-buckled FG

nano-beams due to the importance of the study of vibration
of buckled nano-beams in some nano-devices. It is assumed
that the material properties of FGMs are graded in the thick-

ness direction. A simple power law distribution in terms of the
volume fractions of the constituents is used to model the
variation of material property in the thickness direction. The
partial differential equation of motion is derived based on
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Euler–Bernoulli beam theory, von-Karman geometric nonlin-
earity and Eringen’s nonlocal elasticity theory. Exact solution
of post-buckling shape of FG nanobeams and differential

quadrature method are employed to find non-dimensional nat-
ural frequencies and their corresponding physical mode shapes
around different buckled configurations of FG nanobeams. In

the parametric studies of this work, due to lack of information,
small scale ((e0a)) is taken to be equal to a fraction of ‘h’ to
investigate the effect of small scale on vibration behaviour of

buckled FG nano-beams.

2. Equation of motion

Using Hamilton’s principle, one can derive the equations of
motion of a clamped–clamped FG nanobeam with length L,
width b and thickness h and immovable ends. It is assumed

that inplane inertia and rotational inertia terms are negligible
while transverse force is zero [44]. The coordinate system
and geometry of FG nanobeam are shown in Fig. 1.
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¼ 0 ð1Þ
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@x2
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where W = W(x,t) is the transverse displacement of any point
on the mid-plane (z = 0, based on Fig. 1) of beam element and

q(z) is mass density which is functionally graded in the thick-
ness direction, N is the axial normal force andM is the bending
moment. These stress resultants are introduced as follows:

N ¼
Z
A

rxdA;M ¼ �
Z
A

rx�zdA ð3Þ

where �z is the distance from neutral axis of FG nanobeam.
On the other hand, based on Euler–Bernoulli hypothesis

and von Karman type geometrical nonlinearity, strain dis-
placement relationship is [24]

ex ¼
@u

@x
þ 1

2

@W

@x

� �2

� aðzÞDTðzÞ ð4Þ

where u(x,z,t) is the total displacement along the x direction
given by Eq. (5) [30]:

uðx; z; tÞ ¼ u0ðx; tÞ � ðz� z0Þ
@W

@x
ð5Þ

where u0(x, t) is an axial displacement of any point on the mid-
plane (z= 0, based on Fig. 1) of the FG nano-beam element.
Figure 1 Geometry, boundary conditions a
z0 is the distance of the neutral surface of the FG nano-beam

from the mid-plane of the FG nano-beam (z = 0, based on
Fig. 1) [30]. z0 can be obtained based on the physical concept
of the neutral surface and can be written as follows [30]:

z0 ¼
Z
A

zEðzÞdA=
Z
A

EðzÞdA ð6Þ

Based upon Eringen’s nonlocal elasticity, stress–strain rela-

tionship is [30–32]

rx � ðe0aÞ2r2rx ¼ Eex ð7Þ

where e0a is a material length scale parameter including mate-
rial constant and internal characteristic length and $2 is the

Laplacian operator. From Eqs. (3), (4) and (7), the nonlocal
stress resultants can be defined as
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where

Axx ¼
Z
A

EðzÞdA;Bxx ¼
Z
A

ðz� z0ÞEðzÞdA;

Dxx ¼
Z
A

ðz� z0Þ2EðzÞdA; ð9aÞ

NT ¼
Z
A

EðzÞaðzÞDTðzÞdA;

MT ¼
Z
A

ðz� z0ÞEðzÞaðzÞDTðzÞdA ð9bÞ

and E(z), q(z) and a(z) are effective Young’s modulus, specific
mass density and thermal expansion coefficient of FG nano-
beam material, which are functionally graded in thickness

direction based on a simple power law, respectively. Eq. (10)
shows how mechanical and thermal properties of FG beam
material vary in thickness:

PðzÞ ¼ P1 þ ðP2 � P1Þ
2zþ h

2h

� �n

; ð10Þ

where Pi (i= 1,2) represents the mechanical and/or thermal
property of the two materials used in construction of FG
beam.
nd coordinate system of FG nanobeam.
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Introducing the Eqs. (8b) into (2), the partial differential
equation of transverse motion of FG nanobeams is derived
from

�ðe0aÞ2H�N
@2W

@x2
þDxx

@4W

@x4
þ I0

@2W

@t2
¼ 0 ð11Þ

where

H ¼ �N @4W

@x4
þ I0

@4W

@x2@t2
; I0 ¼

Z
A

qðzÞdA ð12Þ

On the other hand, based on Eqs. (1) and (8a), one can find a
relationship between axial force N and displacement compo-

nents of mid-plane of FG beam (W and u) as follows:

N ¼ Axx
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2
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Integrating Eq. (13) yields [32,34,45]Z L
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Based on Eqs. (1) and (9b) which show that N and NT are con-
stant values throughout the beam, one can rewrite Eq. (14a) as
follows:

NL ¼ Axxðu0ðLÞ � u0ð0ÞÞ þ
Axx

2

Z L

0

@W

@x
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dx�NTL ð14bÞ

After applying the boundary conditions (u0(0) = u0(L) = 0) to
Eq. (14b), the following relationship is obtained

N ¼ Axx

2L
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0
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The governing equation of nonlinear free lateral vibration of
FG nano-beams under precompressive axial force is obtained

by substituting Eqs. (15) into (11):
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In order to simplify the parametric studies, one can define the

following dimensionless variables [45,46]:

�x ¼ x

L
;W ¼W

r
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Dxx=I0L

4

q
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where r is the gyration radius of the cross section of the beam.
Then the governing partial deferential equation of motion (Eq.

(16)) changes to
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If the small scale parameter (e0a) and index of power law (n) in

Eqs. (18) and (19) approach zero, Eq. (18) tends to the well
known local equation of nonlinear lateral vibration of beams
which is obtained and used in Ref. [46].
2.1. Buckling and post-buckling of FG nano-beams

Eliminating inertia effect from Eq. (18), one can obtain the

governing equation of buckling behaviour of FG nano-beams
as follows:

d4Ws

d�x4
þ b

d2Ws

d�x2
¼ 0 ð20Þ

If b < 0 the trivial solution is the only possible solution of Eq.

(20). The non-trivial solution of Eq. (20) exists if b > 0. The
non-trivial solution of Eq. (20) can be shown by Eq. (21) which
must satisfy boundary conditions ðWsð0Þ ¼Wsð1Þ ¼
dWsð0Þ=d�x ¼ dWsð1Þ=d�x ¼ 0Þ:

Ws ¼ c1 þ c2�xþ c3 cosðk�xÞ þ c4 sinðk�xÞ ð21Þ

where k2 ¼ b and ci are constants. Satisfying the boundary
conditions leads to a homogeneous system of linear algebraic

equations and if the determinant of its coefficient matrix is
set equal to zero, the critical value of kðkcrÞ will be found.
The first four critical values of k are 2p, 8.9868, 4p and
15.4505. On the basis of the critical value of k, one can find

post-buckling configuration of buckled FG beams:

Ws ¼ cð1� cosðkcr�xÞÞ; sinðkcr=2Þ ¼ 0; ðkcr ¼ 2p; 4p; . . .Þ ð22Þ

Ws ¼ cð1� 2�x� cosðkcr�xÞ þ 2 sinðkcrÞ=kcrÞ; tanðkcr=2Þ ¼ kcr=2;

ðkcr ¼ 8:9868; 15:4505; . . .Þ
ð23Þ
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2
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2Þk4
cr

ð24Þ

By setting the index of power law (n) equal to zero, Eqs. (22)–

(24) tend to the exact solution of the post-buckling configura-
tion of non-beams obtained and used in Ref. [47] .

2.2. Temperature distribution across the thickness

To determine thermal loads (NT) corresponding to tempera-
ture change, one must find the temperature distribution across
the beam thickness (T(z)). The one-dimensional steady-state

heat transfer equation across the beam thickness is [48,49]

d

dz
KðzÞ dT

dz

� �
¼ 0 ð25Þ

where K(z) is effective thermal conductivity of FG nano-beam

and can be obtained by Eq. (10). The solution of Eq. (25) is [49]

TðzÞ ¼ DTR h=2

�h=2 ðKðzÞÞ
�1
dz

Z z

�h=2
ðKðẑÞÞ�1dẑþ Tð�h=2Þ;

DT ¼ Tðh=2Þ � Tð�h=2Þ ð26Þ

(K(z))�1 is estimated by an infinite series to solve Eq. (26).
Substituting the solution of Eqs. (26) into (9b), one can obtain
DT � NT relation as



Figure 2 Comparison between present data and Nayfeh’s work

[46]. (a) Vibration around the first buckled mode, (b) vibration

around the second buckled mode, (c) vibration around the third

buckled mode.
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NT ¼ DTðbhÞN1 ð27aÞ
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ðnjþ 1Þðnjþ 2Þ ;m P 10 ð27cÞ

where Dk = k2 � k1, DE = E2 � E1 and Da = a2 � a1.

2.3. The linear free vibration of buckled beam

The transverse displacement of mid-plane of FG nano-beam
due to free vibration of buckled beam can be shown as [45,46]

W ¼Wsð�xÞ þ Vð�t; �xÞ ð28Þ

where Wsð�xÞ is buckling configuration of nano-beam in which
dynamic disturbance ðVð�t; �xÞÞ occurs around.

Substituting Eqs. (28) into (18) and dropping the quadratic
and cubic nonlinear terms, one can obtain the linear vibration
of thermally buckled FG nano-beams as (the details can be

found in Appendix A)
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One can substitute e��xi�tuð�xÞ for Vð�t; �xÞ in Eq. (29) due to its

linear nature and can obtain ordinary differential equation
governing mode shape of linear vibration ðuð�xÞÞ as follows:
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where �x is dimensionless natural frequency of buckled beam,

i ¼
ffiffiffiffiffiffiffi
�1
p

and ki; i ¼ 0; . . . ; 4 are defined in Eqs. (30a), (30b).
The relationship between dimensionless natural frequency
and natural frequency of buckled beam is �x ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0L

4=Dxx
p

.



Table 1 Comparison between present data and Eltaher et al.’s work [17] (n= 0, E2 = 30e6 Pa, L = 10 nm, q2 = 1, L/h= 100).

e0a
2 (nm)2 �x1 �x2 �x3 �x4 �x5

1 21.1090 50.9821 85.7164 121.3467 156.7404

21.1096a 50.9844a 85.7081a 121.3058a 156.6286a

2 20.0328 44.3960 70.1222 95.1481 119.6225

20.033a 44.392a 70.1033a 95.0923a 119.5018a

3 19.1029 39.8578 60.8462 80.9051 100.5712

19.1028a 39.822a 60.8244a 80.8443a 100.4574a

4 18.2894 36.3833 54.5239 71.5995 88.4869

18.289a 36.4184a 54.5015a 71.5581a 88.3807a

5 17.5702 33.7993 49.8592 64.9415 79.9461

17.5696a 33.7581a 49.8369a 64.8888a 79.8467a

a Eltaher et al.’s work [17].

Table 2 Comparison between dimensionless first critical

buckling loads of nano-beams with a length-to-thickness ratio

of 100 (L = 10 nm, E2 = 30 Mpa, n= 0).

(e0a)
2 nm2 Present Emam [38]

0 39.478417 39.4784

1 28.304319 28.3043

2 22.060301 22.0603

3 18.073281 18.0733

4 15.306834 15.3068

5 13.274871 13.2749

Figure 3 The first four post-buckling configurations of nano-

beam. B.M. stands for ‘buckling mode shape’.
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In this paper, polynomial-based differential quadrature
(PDQ) method [50] is employed to solve non-homogeneous lin-

ear differential Eq. (31). A non-uniform mesh is used to divide
computational domain 0 6 �x 6 1 into (N � 1) intervals. The
mesh points are placed at the shifted Chebyshev–Gauss–Lob-

atto points [48],

�xi ¼ 0:5½1� cosðpði� 1Þ=N� 1Þ�; i ¼ 1; 2; . . . ;N ð32Þ

Quan and Chang’s Approach [50] is used to compute weight-
ing coefficients for the first order derivative du

d�x
ð�xÞ at any grid

point as

du
d�x
ð�xiÞ ¼

XN
j¼1

aijuð�xiÞ; or
du

d�x

	 

¼ Afug ð33Þ
where

aij ¼¼
1

�xj � �xi

YN
k¼1;k–i;j

�xi � �xk

�xj � �xk

; i–j ð34aÞ

aii ¼
XN

k¼1;k–i

1

�xi � �xk

ð34bÞ

To implement boundary conditions, the modification of the
weighting coefficient matrices method [48,50] is employed.
According to this method, the first and the last rows of the

matrix A= [aij] must be replaced with zero to satisfy deriva-
tive conditions ðdu=d�xj�x ¼ 0 and du=d�xj�x ¼ 1). The new
matrix is named ~A:. Using A and ~A, higher order derivatives
are defined as follows [50]:

d2u

d�x2

	 

¼ A ~A uf g; or d2u

d�x2

	 

¼ ~Bfug ð35Þ

d4u
d�x4

	 

¼ ðAAÞ~A uf g; or d4u

d�x4

	 

¼ ~Dfug ð36Þ

Substituting Eqs. (32), (33), (34a), (34b), (35), (36) and post-
buckling configuration (Eq. (22) for symmetric modes and
Eq. (23) for antisymmetric modes) into Eq. (31) and applying

the remainder of the boundary conditions
ðuð0Þ ¼ 0 and uð1Þ ¼ 0Þ, one can obtain the following discret-
ized Equation as:XN�1

j¼2
ð~dij þ k2

0
~bij þ qijÞuj

 !
¼ �x2

XN�1
j¼2
ðk4dij � k3

~bijÞuj

 !
ð37Þ

where ~bij, ~dij and dij are the components of ~B, ~D and Kronecker
delta respectively and

qij ¼ � k2 þ kcrk1ð Þ d
2Ws

d�x2
ð�xiÞSj ð38Þ

where

Sj ¼
XN�1
i¼1

d2Ws

d�x2
ð�xiÞ~aij þ

d2Ws

d�x2
ð�xiþ1Þ~aðiþ1Þj

� �
�xiþ1 � �xi

2
ð39Þ
3. Verification

To verify the presented model, exact solution proposed by Nay-
feh and Emam [46] to investigate linear vibration of buckled



Table 3 The percentage of the effect of a rise in small scale parameter on static deflection of postbuckled FG nanobeam. (B.M. stands

for buckling mode shape).

e0a/h 0.25 0.5 0.75 1 1.25 1.5 1.75 2

n = 0

B.M.1 0.0036 0.0144 0.0324 0.0572 0.0885 0.1262 0.1696 0.2184

B.M.2 0.0164 0.0653 0.1454 0.2549 0.3912 0.5512 0.7317 0.9292

B.M.3 0.07427 0.2933 0.6462 1.1164 1.6832 2.3243 3.0173 3.7413

B.M.4 0.2098 0.8222 1.7891 3.0405 4.4966 6.0782 7.7151 9.3506

n = 0.2

B.M.1 0.0041 0.0167 0.0374 0.0660 0.1023 0.1457 0.1959 0.2522

B.M.2 0.0192 0.0764 0.1702 0.2983 0.4577 0.6448 0.8558 1.0866

B.M.3 0.0897 0.3543 0.7803 1.3474 2.0304 2.8019 3.6348 4.5038

B.M.4 0.2668 1.0446 2.2700 3.8517 5.6858 7.6711 9.7186 11.7572

n = 0.6

B.M.1 0.0049 0.0196 0.0439 0.0776 0.1202 0.1712 0.2302 0.2963

B.M.2 0.0229 0.0913 0.2034 0.3565 0.5469 0.7703 1.0222 1.2976

B.M.3 0.1121 0.4426 0.9744 1.6814 2.5315 3.4903 4.5234 5.5994

B.M.4 0.3608 1.4108 3.0595 5.1777 7.6213 10.2518 12.9500 15.6225

n = 1

B.M.1 0.0054 0.0215 0.0482 0.0851 0.1318 0.1878 0.2524 0.3249

B.M.2 0.0255 0.1013 0.2256 0.3953 0.6064 0.8541 1.1332 1.4383

B.M.3 0.1283 0.5062 1.1140 1.92135 2.8911 3.9835 5.1591 6.3818

B.M.4 0.4387 1.7135 3.7095 6.2647 9.2002 12.3467 15.5609 18.7323

n = 1.2

B.M.1 0.0055 0.0222 0.0498 0.0880 0.1363 0.1941 0.2609 0.3359

B.M.2 0.0264 0.1052 0.2343 0.4105 0.6296 0.8867 1.1764 1.4930

B.M.3 0.1348 0.5321 1.1707 2.0187 3.0369 4.1832 5.4163 6.6981

B.M.4 0.47331 1.8474 3.9965 6.7433 9.8932 13.2634 16.7002 20.0857

n = 2

B.M.1 0.0061 0.0243 0.0545 0.0962 0.1490 0.2123 0.2853 0.3674

B.M.2 0.0293 0.1165 0.2595 0.4546 0.6972 0.9818 1.3024 1.6526

B.M.3 0.1549 0.6113 1.3444 2.3167 3.4828 4.7936 6.2015 7.6627

B.M.4 0.5915 2.3049 4.9736 8.3664 12.2344 16.3486 20.5208 24.6101
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beam, is used. For this purpose, the value of small scale param-
eter (e0a) and the index of power law (n) in Eq. (37) are set to
zero. The first three natural frequencies ð�x2 > 0Þ of vibrating
beam around its first buckled mode (P = 1.0025P1) reported
by Nayfeh and Emam [46] are 2.597, 1968.05 and 10,711 respec-
tively. In this study, these three frequencies, which are found

with NT = 1.0025NT1, are 2.595, 1968.049 and 10710.96
respectively. The pure imaginary natural frequency ð�x2 < 0Þ
around the second (P = 1.0025P2) and the third

(P = 1.0025P3) buckled mode of beam computed by Nayfeh
and Emam [46] is �581.416 and �3931.52 respectively. In this
study, by using DQ method these frequencies are also found
based upon similar conditions (NT = 1.0025NT2 and

NT = 1.0025NT3) and they are �581.410 and �3931.517
respectively. As seen, there is a good agreement between pres-
ent results and those of Nayfeh and Emam [46]. Fig. 2 shows

the comparison between present data and exact solution.
As another example, the first five non-dimensional natu-

ral frequencies of a nano-beam whose slenderness ratio is

100 are compared with available results in Ref. [17]
(Table 1). The geometrical and material properties of the
nano-beam were used according to Eltaher et al. [17] and

NT is set to zero. As seen, there is a good agreement
between the results.
To verify the accuracy of predicted critical buckling loads,
the first critical buckling load of a nano-beam whose slender-
ness ratio is 100 are compared with results obtained by Emam

[38] (Table 2). The geometrical and material properties of the
nano-beam were used according to Emam [38] and n is set to
zero. As seen, there is a good agreement between the results.

4. Results and discussion

Thermo-mechanical properties of silicon nitride (Si3N4) and

stainless steel-grade 304 (SUS304) are used in this section. It
is assumed that the nano-beam is constructed of pure metal
when the power-law index (n) is zero and with an increase in

‘n’, the volume fraction of silicon nitride gradually increases
in nano-beam.

As previously mentioned, due to the lack of information, in

the parametric studies of this work, small scale ((e0a)) is taken
to be equal to a fraction of ‘h’ to investigate the effect of small
scale on vibration behaviour of buckled FG nano-beams.

Fig. 3 shows the first four post-buckling configurations of

nano-beam. As seen, the first and the third buckling mode
shapes of nano-beam are symmetric while the second and the
fourth ones are anti-symmetric.
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The effects of the small scale parameter on post-buckling
configurations are examined by comparison of static deflections
of a buckled nonlocal beam under a fixed DT and different

small scale parameters with those of a classic beam at
�x ¼ 0:25 for different power-law indexes. Following mathemat-
ical formula is used to determine the percentage of the effect of

rise in the small scale on these computed static deflections.

c ¼ 100
WNLð0:25Þ �WLð0:25Þ

WLð0:25Þ

����
n

ð40Þ

where WNL and WL are non-dimensional nonlocal and local

lateral displacement respectively. The results are listed in
Table 3. As seen, with an increase in small scale parameter,
the percentage of the difference between nonlocal and local

beam theories rises although one may ignore this difference
if the small scale is far smaller than the beam thickness and
the first post-buckling configuration is under consideration.

Table 3 clearly shows that a rise in power-law index increases
the effect of small scale parameter on static deflection of buck-
led beam.

The effects of DT on the percentage error due to ignoring

the small scale parameter in post-buckling analysis of FG
nano-beams are demonstrated in Fig. 4. As seen, with an
increase in DT, the effect of small scale parameter decreases

although it cannot be ignored if the small scale-beam thickness
ratio is large enough or the static deflection of higher order of
post-buckling configurations is taken into consideration.

In Fig. 5a–d, the first three non-dimensional natural fre-
quencies of vibrating beam around the first four buckling
modes are shown. Fig. 5a–d demonstrates the pre-buckled
Figure 4 The change of the effect of small scale on static

deflection of post-buckled configuration at x = 0.25 L with an

increase in compressive axial force a) the first buckling mode b) the

fourth buckling mode (n is 0.2).
non-dimensional natural frequencies of FG nano-beams as
well. As expected, with an increase in the compressive axial
force, the first natural frequencies of FG nano-beams
Figure 5 Non-dimensional natural frequencies of pre-/post-

buckled FG nanobeam. (a) the first buckling mode (b) the second

buckling mode (c) the third buckling mode (d) the fourth buckling

mode.
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approach zero due to compression softening effect. After buck-
ling, natural frequencies increase or become fixed although
pure imaginary natural frequency ð�x2 < 0) can be seen too.

In this investigation, any pure imaginary natural frequency
that belongs to a physical mode shape is not found for the first
buckling mode shape, while vibrating beam around the second,

third or fourth buckling mode shape has one, two and three
imaginary natural frequencies which correspond to physical
mode shapes respectively. Fig. 6 shows the mode shapes of

these imaginary natural frequencies. It is concluded that
among the first four buckling modes of the FG nano-beam,
the first one is stable and the value of small scale parameter
cannot affect it.

The mode shape of vibrating beam corresponding to its
fundamental natural frequency around each post-buckling
configuration is similar to the same buckling mode shape

due to the linear nature of small amplitude vibration although
it is not true for all compressive axial forces. Fig. 7a shows the
Figure 6 Physical mode shapes of imaginary natural frequencies

of vibration around (a) the second buckled beam, (b) the third

buckled beam, (c) the fourth buckled beam.
mode shapes of the fundamental natural frequencies of beams
which vibrate around the first or the second buckled mode.
With comparison between Fig. 7a and Fig. 3 which shows

the first and the second buckled mode shapes of beam, the sim-
ilarity which is mentioned above is seen.

Based upon Fig. 5, the possibility of the occurrence of one-

to-one internal resonance is seen in some compressive axial
forces which change with power-law index. If compressive
axial force exerted to FG nano-beam is more than one-to-

one internal resonance limit, the fundamental mode shape will
not be similar to post-buckling configuration. This fact can be
seen in comparison between Fig. 7a and b.

The effects of small scale parameter on non-dimensional

natural frequencies of pre- and post-buckled FG nano-beam
are also investigated and the results are summarized in
Fig. 8a–c. Although with an increase in small scale or the order

of natural frequency, the difference between local and nonlocal
natural frequencies almost always rises, the important role of
compressive axial force should not be ignored. As seen, small

scale parameter, similar compressive axial force, has a soften-
ing effect on FG nano-beam before buckling and a rise in small
scale increases this effect. When the fundamental frequency is

studied, the percentage of difference between nonlocal and
local theories can be much more significant near critical
load-bearing capacity of FG nano-beam due to decreasing crit-
ical buckling load with an increase in the small scale value that

leads to mix the zones of pre- and post-buckling of FG nano-
beams with different small scale values which is clearly demon-
strated in Fig. 9.

After buckling, the effect of small scale on the natural fre-
quencies of the FG nano-beams completely depends on both
Figure 7 The effect of compressive axial force on the mode

shapes of the fundamental natural frequencies of beams which

vibrate around the first or the second buckled mode.



Figure 8 The difference between nonlocal and local beam

theories to determine natural frequencies of pre-/post-buckled

FG nanobeams, (a) fundamental frequency, (b) the second natural

frequency, (c) the third natural frequency.

Table 4 The percentage of difference between nonlocal and

local theories to predict natural frequency of buckled FG

nanobeam.

DT= DTcrj n ¼ 0
e0a

� �
e0a/h

3.0234 4.5351 6.0468 7.5585

n = 0

0.5 Fundamental frequency 0.1354 �0.4305 �0.4305 �0.4305
1 0.5290 �1.7001 �1.7001 �1.7001
2 0.1105 �6.4715 �6.4715 �6.4715
0.5 Second frequency �0.4305 0.0268 �0.0504 �0.1089
1 �1.7001 0.00934 �0.2158 �0.4483
2 �4.7817 0.1555 �1.0787 �1.9828
0.5 Third frequency �0.6057 �0.5477 �0.4977 �0.4604
1 �2.3650 �2.1347 �1.9371 �1.7913
2 �8.6320 �7.7297 �6.9784 �6.4502

n = 0.6

0.5 Fundamental frequency 0.2229 �0.4305 �0.4305 �0.4305
1 0.8783 �1.7001 �1.7001 �1.7001
2 3.3073 6.4715 6.4715 6.4715

0.5 Second frequency �0.4305 0.1016 0.0251 �0.0349
1 �1.7001 0.3937 0.0865 �0.1535
2 �6.4715 1.3725 0.1280 �0.8327
0.5 Third frequency �0.6330 �0.5902 �0.5467 �0.5080
1 �2.4739 �2.3034 �2.1305 �1.9774
2 �9.0620 �8.3892 �7.7134 �7.1292

n = 1.2

0.5 Fundamental frequency 0.2686 0.1324 �0.4305 �0.4305
1 1.0599 0.5172 �1.7001 �1.7001
2 4.0151 �0.5177 �6.4715 �6.4715
0.5 Second frequency �0.4305 �0.4305 0.0553 �0.0043
1 �1.7001 �1.7001 0.2078 �0.0314
2 �6.4715 �4.2254 0.6187 �0.3462
0.5 Third frequency �0.6413 �0.6044 �0.5650 �0.5279
1 �2.5070 �2.3600 �2.2032 �2.0562
2 �9.1924 �8.6124 �7.9961 �7.4279

Figure 9 Mixing the zones of pre- and post-buckling of FG

nanobeams with different values of small scale parameter.
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the order of the natural frequency and compressive axial force.
Although the nonlocal fundamental frequency rises in compar-
ison with the local one, it decreases when compressive axial
force exceeds the one-to-one internal resonance limit. Follow-
ing formula is used to determine the effect of power-law index

and small scale on the percentage of difference between non-
local and local theories to predict non-dimensional natural fre-
quencies of the post-buckled FG nano-beams under a fixed

value of DT (Table 4).

g ¼ 100
�xNL
i � �xL

i

�xL
i

jn; i ¼ 1; 2; 3; . . . ð41Þ

where �xNL
i and �xL

i are ith nonlocal and ith local non-dimen-
sional natural frequencies respectively. Table 4 clearly shows
the important role of compressive axial force in difference

between nonlocal and local theories to predict non-dimen-
sional natural frequencies.

The behavioural model of Fig. 8 is correct for other post-

buckling configuration although it shows the effect of small
scale parameter on the natural frequencies of the vibrated
FG nano-beam around its first buckling mode shape. It must

be mentioned that the percentage of error due to neglecting
small scale parameter can be more when the higher order
post-buckling configurations are taken into consideration.

5. Conclusion

In this study, the exact solution of post-buckling behaviour of
FG nano-beams and generalized differential quadrature
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method (GDQ) is used to model the linear free vibration of
buckled FG nano-beams and investigate the effect of small
scale on non-dimensional natural frequencies of pre-/post-

buckled configurations of FG nano-beams. Nonlocal Euler
Bernoulli beam theory is employed for this purpose. The results
show that the percentage of difference between nonlocal and

local theories to predict natural frequencies of FG nano-beams
depends on the compressive axial force exerted on FG nano-
beams. The natural frequencies of the pre-buckled FG nano-

beams decrease with an increase in the small scale parameter.
Pre- and post-buckling zones of local and nonlocal FG nano-
beams mix near the critical load-bearing capacity of FG
nano-beams due to the effect of small scale on critical buckling

forces. This occurrence can affect the percentage of difference
between nonlocal and local theories significantly. After buck-
ling, a rise in small scale can increase or decrease the natural fre-

quencies of the FG nano-beams. It completely depends on both
the order of the natural frequency and compressive axial force.

Appendix A

The Eq. (18) can be written as

ð1�ððe0aÞ2NT=DxxÞþððe0aÞ2Axxr
2=2DxxL

2Þ
Z 1

0
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 !
¼ 0 ðA1Þ

Substituting W ¼Wsð�xÞ þ Vð�t; �xÞ into Eq. (A1), the nonlinear
vibration of buckled nano-beam is obtained as
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It is known that Ws is buckling configuration of nano-beam
and it satisfies following equation:
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Then Eq. (A2) can be rewritten as
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Eq. (A4) is known as nonlinear vibration equation of buckled
nano-beam. As seen, there are quadratic and cubic nonlinear

terms in Eq. (A4). To study linear vibration of buckled
nano-beam, quadratic and cubic nonlinear terms must be
dropped. The result is
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