On the Maximum Genus of a Graph

E. A. Nordhaus and B. M. Stewart
Michigan State University, East Lansing, Michigan 48823

A. T. White*
Western Michigan University, Kalamazoo, Michigan 49001
Communicated by Frank Harary

Received August 25, 1970

We define the maximum genus, $\gamma_{M}(G)$, of a connected graph G to be the largest genus $\gamma(N)$ for compact orientable 2-manifolds N in which G has a 2 -cell imbedding. Several general results are established concerning the parameter $\gamma_{M}(G)$, and the maximum genus of the complete graph K_{n} with n vertices is determined:

$$
\gamma_{M}\left(K_{n}\right)=\left[\frac{(n-1)(n-2)}{4}\right]
$$

1. Introduction

Denote the genus of a compact orientable 2-manifold N by $\gamma(N)$. The genus, $\gamma(G)$, of a graph G is the smallest number $\gamma(N)$ for compact orientable 2-manifolds N in which G can be imbedded. An imbedding of G in N is minimal if $\gamma(N)=\gamma(G)$. A 2-cell imbedding of G in N has each component of the complement of G in N homeomorphic to an open unit disk. Youngs [7] has shown that every minimal imbedding is necessarily a 2 -cell imbedding. Define the maximum genus, $\gamma_{M}(G)$, of a connected graph G to be the largest number $\gamma(N)$ for compact orientable 2-manifolds N in which G has a 2-cell imbedding. Note that, if G is not connected, then no imbedding will be 2 -cell. The restriction of consideration to 2 -cell imbeddings is essential, as otherwise arbitrarily many handles may be added to any compact orientable 2-manifold in which a graph is imbedded.

The purpose of this paper is to establish some results about the parameter $\gamma_{M}(G)$ in general and then to determine $\gamma_{M}\left(K_{n}\right)$ exactly, where K_{n} is the complete graph with n vertices.

[^0]
2. A Result on 2-Cell Imbeddings

Let S_{k} denote a compact orientable 2-manifold of genus k (a sphere with k handles). Duke [2] has shown that, if a connected graph G has 2-cell imbeddings in S_{m} and S_{n}, where $m \leqslant n$, then G also has a 2-cell imbedding in S_{k} for every integer $k, m \leqslant k \leqslant n$. The following theorem is now immediate:

Theorem 1. A connected graph G has a 2-cell imbedding in S_{k} if and only if $\gamma(G) \leqslant k \leqslant \gamma_{M}(G)$.

3. Edmonds' Permutation Technique

Several of the proofs to follow employ Edmonds' permutation technique, described in [3] (see also Youngs [7]) and which we now review. Let the n vertices of G be specified by $V(G)=\{1, \ldots, n\}$ with $V(i)$ being the set of vertices adjacent to vertex i, for $i=1, \ldots, n$. Let $P_{i}: V(i) \rightarrow V(i)$ be a cyclic permutation of $V(i)$. Then each choice $\left(P_{1}, \ldots, P_{n}\right)$, together with a fixed orientation, uniquely determines a 2 -cell imbedding of G in a compact orientable 2-manifold N. Conversely, each such imbedding uniquely determines a collection (P_{1}, \ldots, P_{n}) which gives rise to that imbedding. Now, corresponding to an undirected edge $a b$ in G, let (a, b) be the edge directed from vertex a to vertex b. Then, defining $D=\{(a, b): a b \in E(G)\}$ and the permutation $P: D \rightarrow D$ by $P((a, b))=$ ($b, P_{b}(a)$), it follows that the orbits under P correspond to the (2 -cell) faces of the imbedding. As a matter of notational convenience, we will abbreviate an orbit

$$
\cdots(a, b),\left(b, P_{b}(a)\right) \cdots \text { by } \cdots a, b, P_{b}(a), \ldots
$$

4. Bounds for the Maximum Genus

In this section we establish upper and lower bounds for the maximum genus of a connected graph. We first present the following theorem:

Theorem 2. If H is a connected subgraph of a connected graph G, then $\gamma_{M}(H) \leqslant \gamma_{M}(G)$.

Proof. Let H be 2-cell imbedded in $S_{\gamma_{M}(H)}$. It is clear that any path in G having only one vertex in common with $I I$ may be added to H so that the modified graph H^{1} is also 2-cell imbedded in $S_{\gamma_{M}(H)}$. Now let Q be a
path of length k in G with end-vertices i and j such that $Q \cap H=\{i\} \cup\{j\}$. It is not difficult to prove, with the aid of Edmonds' permutation technique that the addition of Q to the 2-cell imbedding of H so as to achieve a 2 -cell imbedding of $H \cup Q$ either leaves the genus unchanged or increases it by one. We omit the details. The theorem then follows, since G may be constructed from H by a sequence of operations of the types described above.

Corollary 2a. If G is a connected graph with $\gamma(G)=1$, then $\gamma_{M}(G) \geqslant 2$.

Proof. Since G is non-planar, then, by Kuratowski's Theorem, G must contain a connected subgraph H homeomorphic to the complete bipartite graph $K_{3,3}$ or to the complete graph K_{5}. By use of Edmonds' permutation scheme, it is readily established that $\gamma_{M}\left(K_{3,3}\right)=2$ and $\gamma_{M}\left(K_{5}\right)=3$. Since graphs which are homeomorphic (isomorphic to within vertices of degree 2) have the same maximum and minimum genus numbers, it follows from Theorem 2 that $\gamma_{M}(G) \geqslant \gamma_{M}(H) \geqslant 2$. If G has no subgraph homeomorphic to $K_{3,3}$, we have the stronger result that $\gamma_{M}(G) \geqslant 3$.

We conjecture that, for any connected graph G, the inequality $\gamma_{M}(G) \geqslant 2 \gamma(G)$ is valid. The truth of this conjecture at once implies the truth of a conjecture made by Duke [2] that $\beta(G) \geqslant 4 \gamma(G)$, since $\beta(G) \geqslant$ $2 \gamma_{M}(G)$, as shown below.

We next establish an upper bound for $\gamma_{M}(G)$, in terms of the first Betti number, $\beta(G)$, of the connected graph G. Recall that $\beta(G)=E-V+1$, where G has V vertices and E edges. The notation $[x]$ indicates the greatest integer less than or equal to x.

Theorem 3. An upper bound for the maximum genus of an arbitrary connected graph G is given by:

$$
\gamma_{M}(G) \leqslant\left[\frac{\beta(G)}{2}\right] .
$$

Equality holds if and only if the imbedding has one or two faces according as $\beta(G)$ is even or odd, respectively.

Proof. For any 2 -cell imbedding of a connected graph G in a compact orientable 2 -manifold S_{γ}, the Euler Formula $F+V-E+2(1-\gamma)$ holds, where F is the number of 2-cells. Equivalently, $\beta(G)=2 \gamma+F-1$. Thus γ will be a maximum when F is a minimum, and the theorem follows.

To illustrate the above theorem, note that, in the sphere, trees and cycles
have 2-cell imbeddings with $F=1$ and $F=2$, respectively. Edmonds [4] has shown that every connected graph can be imbedded in some compact 2-manifold N (perhaps non-orientable) so that $N-G$ is a single 2 -cell. In the orientable case, however, the inequality of Theorem 3 may be arbitrarily inaccurate, as the graph G_{n} of Figure 1 indicates. It is clear that $\frac{1}{2} \beta\left(G_{n}\right)=n$, but it is easy to show that $\gamma_{M}\left(G_{n}\right)=0$. The inequality of Theorem 3 may be strict even if G is a block, as the graph G of Figure 2 shows, since

$$
\gamma_{M}(G)=1<\left[\frac{\beta(G)}{2}\right]
$$

Figure 1.

Figure 2.

We remark that the Euler Formula $V+F=E+2-\tilde{\gamma}$ for compact non-orientable 2-manifolds shows that $\tilde{\gamma}_{M}(G) \leqslant \beta(G)$, with equality if and only if $F=1$, but we will not pursue the non-orientable case further in this paper.

In [1], Battle, Harary, Kodama, and Youngs have shown that the genus of a graph is the sum of the genera of its blocks. The following theorem gives a lower bound for the maximum genus of a connected graph in terms of the maximum genera of its blocks.

Theorem 4. If G is a connected graph with blocks $H_{i}, i=1, \ldots, n$, then

$$
\gamma_{M}(G) \geqslant \sum_{i=1}^{n} \gamma_{M}\left(H_{i}\right)
$$

Proof. We use induction on n. The result is trivial for $n=1$. Now let G_{n-1} be connected with $n-1$ blocks $H_{i}, i=1, \ldots, n-1$, and assume that

$$
\gamma_{M}\left(G_{n-1}\right) \geqslant \sum_{i-1}^{n-1} \gamma_{M}\left(H_{i}\right) .
$$

In $G=G_{n}$, let $G_{n-1} \cap H_{n}=\{v\}$. Let G_{n-1} and H_{n} have 2-cell imbeddings in $N_{1}=S_{\gamma_{M^{(}}\left(G_{n-1}\right)}$ and $N_{2}=S_{\gamma_{M}\left(H_{n}\right)}$, respectively. Now, following Battle, Harary, Kodama, and Youngs, we take an open 2-cell C_{1} in N_{1} with simple closed boundary curve J_{1} and an open 2-cell C_{2} in N_{2} with simple closed boundary curve J_{2} such that $\left(C_{1} \cup J_{1}\right) \cap G_{n-1}=\{v\}$, and $\left(C_{2} \cup J_{2}\right) \cap H_{n}=\{v\}$. Now identify the boundary curve J_{1} of $\left(N_{1}-C_{1}\right)$ with the boundary curve J_{2} of $\left(N_{2}-C_{2}\right)$ so that the two copies of vertex v coincide. The result is a 2-cell imbedding of G in S_{γ}, where $\gamma_{M}(G) \geqslant \gamma=$ $\gamma_{M}\left(G_{n-1}\right)+\gamma_{M}\left(H_{n}\right) \geqslant \sum_{i=1}^{n} \gamma_{M}\left(H_{i}\right)$.

That the inequality of Theorem 4 may be strict is illustrated by the graph G of Figure 3; each block has maximum genus zero, yet $\gamma_{M}(G)=1$.

Figure 3

Corollary 4a. If G is a connected graph with n blocks $H_{i}, i=1, \ldots, n$, then

$$
\sum_{i=1}^{n} \gamma_{M}\left(H_{i}\right) \leqslant \gamma_{M}(G) \leqslant\left[\frac{\beta(G)}{2}\right] .
$$

Corollary 4b. If G is a connected graph with n blocks H_{i}, such that $\gamma_{M}\left(H_{i}\right)=\frac{1}{2} \beta\left(H_{i}\right), i=1, \ldots, n$, then

$$
\gamma_{M}(G)=\sum_{i=1}^{n} \gamma_{M}\left(H_{i}\right)=\frac{1}{2} \beta(G) .
$$

Proof. We have

$$
\begin{aligned}
\sum_{i=1}^{n} \gamma_{M}\left(H_{i}\right) & =\sum_{i=1}^{n} \frac{1}{2} \beta\left(H_{i}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n}\left(E_{i}-V_{i}+1\right)=\frac{1}{2}(E-(V+(n-1))+n) \\
& =\frac{1}{2}(E-V+1)=\frac{1}{2} \beta(G)
\end{aligned}
$$

Then, by Corollary $4 \mathrm{a}, \frac{1}{2} \beta(G) \leqslant \gamma_{M}(G) \leqslant\left[\frac{1}{2} \beta(G)\right]$, so that $\gamma_{M}(G)=\frac{1}{2} \beta(G)$. Note that the proof shows that, in general, $\beta(G)=\sum_{i=1}^{n} \beta\left(H_{i}\right)$.

As an application of Corollary 4 b , let G_{n} be any graph with n blocks, each of which is isomorphic to the graph H formed by removing one edge from K_{4}. Since $\gamma_{M}(H)=1=\frac{1}{2} \beta(H)$, it follows that $\gamma_{M}\left(G_{n}\right)=n$, and we have a family of graphs for which the two bounds of Corollary 4 a coincide.

Youngs [6] defined a graph G to be irreducible of genus n if $\gamma(G)=n$, but $\gamma(G-e)<n$ for every edge e of G. Similarly, we say that G is irreducible of maximum genus n if $\gamma_{M}(G)=n$, but $\gamma_{M}(G-e)<n$ for every edge e of G. The graph G_{n} defined above is irreducible of maximum genus n, for:

$$
\begin{aligned}
\gamma_{M}\left(G_{n}-e\right) & \leqslant\left[\frac{\beta\left(G_{n}-e\right)}{2}\right]=\left[\frac{\beta\left(G_{n}\right)-1}{2}\right] \\
& =\frac{\beta\left(G_{n}\right)}{2}-1=\gamma_{M}\left(G_{n}\right)-1,
\end{aligned}
$$

for all $e \in E\left(G_{n}\right)$.
The regional number, $\delta(G)$, of a graph has been defined in [7] to be the maximum number of components of $(N-G)$ for all possible 2-cell imbeddings of G. Battle, Harary, Kodama, and Youngs [1] have shown that, for a connected graph G having n blocks $H_{i}, i=1, \ldots, n$,

$$
\delta(G)=1-n+\sum_{i=1}^{n} \delta\left(H_{i}\right)
$$

Let $\delta_{M}(G)$ be the minimum number of components of $(N-G)$ for all possible 2-cell imbeddings of $G ; \delta_{M}(G)$ may be interpreted as a regional number for maximal 2 -cell imbeddings.

Theorem 5. If G is a connected graph having n blocks $H_{i}, i=1, \ldots, n$, then

$$
\delta_{M}(G) \leqslant 1-n+\sum_{i=1}^{n} \delta_{M}\left(H_{i}\right) .
$$

Proof. From the Euler formula, we have that

$$
\delta_{M}\left(H_{i}\right)=2+E_{i}-V_{i}-2 \gamma_{M}\left(H_{i}\right)
$$

and

$$
\begin{aligned}
\delta_{M}(G) & =2+E-V-2 \gamma_{M}(G) \\
& =2+\sum_{i=1}^{n}\left(E_{i}-V_{i}\right)+n-1-2 \gamma_{M}(G) \\
& =n+1+\sum_{i=1}^{n}\left[\delta_{M}\left(H_{i}\right)-2+2 \gamma_{M}\left(H_{i}\right)\right]-2 \gamma_{M}(G) \\
& =1-n+\sum_{i=1}^{n} \delta_{M}\left(H_{i}\right)+2\left[\sum_{i=1}^{n} \gamma_{M}\left(H_{i}\right)-\gamma_{M}(G)\right] \\
& \leqslant 1-n+\sum_{i=1}^{n} \delta_{M}\left(H_{i}\right), \quad \text { by Theorem 4. }
\end{aligned}
$$

5. The Maximum Genus of the Complfte Graph

In this section we show that the upper bound for the maximum genus given in Theorem 3 is attained by the complete graph K_{n}. This leads to a determination of all compact orientable 2-manifolds on which a given complete graph has a 2 -cell imbedding.

Theorem 6. The maximum genus of the complete graph on n vertices is given by

$$
\gamma_{M}\left(K_{n}\right)=\left[\frac{(n-1)(n-2)}{4}\right]
$$

Proof. Let the n vertices of K_{n} be specified by $V\left(K_{n}\right)=\{1, \ldots, n\}$, with

$$
V^{\prime}(i)=\{i+1, i+2, \ldots, i+n-1\}
$$

being the set of vertices adjacent to vertex i, for $i=1, \ldots, n$. All arithmetic in connection with this labeling of the vertices of K_{n} is modulo n, with n written instead of 0 . We use Edmonds' permutation technique to produce a 2 -cell imbedding of K_{n} for which $F=1$ or 2 , according as $n \equiv 1$ or 2 $(\bmod 4)$ or $n \equiv 0$ or $3(\bmod 4)$, respectively. The result will then follow directly from Theorem 3, as

$$
\beta\left(K_{n}\right)=\frac{(n-1)(n-2)}{2}
$$

The presentation of the appropriate imbeddings falls most naturally into the two following cases:

Case (i). n even. Imbed K_{n} by selecting:

$$
\begin{aligned}
P_{i} & :(i+1, i+2, \ldots, i+n-1), i=1, \ldots, n-2, \\
P_{n-1} & :(n ; 1, n-2,3, n-4,5, \ldots, 4, n-3,2), \\
P_{n} & :(n-1 ; 1, n-2,3, n-4,5, \ldots, 4, n-3,2) .
\end{aligned}
$$

Now, form the orbit $S=\left\{P^{k}(2, n-1): k=0,1, \ldots\right\}$; the length of S is the minimum positive integer r such that $P^{r}(2, n-1)=(2, n-1)$. It is helpful to study the occurrences of edges of the form $(2 h, n-1)$ in orbits under the permutation P (see Section 3). For $h=1$, we have as successive vertices in the boundary of the face corresponding to the orbit containing ($2, n-1$):

$$
2,(n-1), n, 1,2,3, \ldots,(n-3),(n-2),(n-1), \ldots ;
$$

for $h=2$, we have:

$$
4,(n-1),(n-3), n, 2,1,3,2, \ldots,(n-3),(n-1), 2, n,(n-1), \ldots
$$

for $h=3, \ldots,(n / 2)-1$, we have:
$2 h,(n-1),(n-2 h+1), n,(2 h-2), 1,(2 h-1), 2,2 h, 3, \ldots$, $(n-2 h+1),(n-1),(2 h-2), n,(n-2 h+3), 1,(n-2 h+4), 2, \ldots$, ($2 h-4$), $(n-1), \ldots$;
finally, for $h=n / 2$, we have:

$$
\begin{aligned}
& n,(n-1), 1, n,(n-2), 1,(n-1),(n-2), n, 3,1,4, \\
& 2, \ldots,(n-4),(n-1), \ldots
\end{aligned}
$$

It is now clear that, in S, directed edges of the form $(2 h, n-1)$ appear, in order, for $2 h=2, n-2, n-6, \ldots, x, 0<x \leqslant 4$; where $x=2$ if $n \equiv 0(\bmod 4)$, and $x=4$ if $n \equiv 2(\bmod 4)$. In the former case, we have completed one orbit (of length $r=\left(n^{2} / 2\right)-n$), and a second orbit (of length $r=n^{2} / 2$) occurs with edges of the form ($2 h, n-1$) appearing, in order, for $2 h=n, n-4, \ldots, 8,4, n$. If, however, $n \equiv 2(\bmod 4)$, the orbit containing edge ($2, n-1$) continues, with $2 h=n, n-4, \ldots, 6,2$. In either case, the orbit(s) we have computed contain all

$$
n+\left(\frac{n}{2}-1\right)(2 n)=n(n-1)=2 E
$$

directed edges, so that our imbeddings have $F=2$ and $F=1$ for $n \equiv 0$ and $n \equiv 2(\bmod 4)$, respectively.

Case (ii). n odd. Imbed K_{n} as follows:

$$
\begin{aligned}
& P_{i}:(i+1, i+2, \ldots, i+n-1), i=1, \ldots, n-1, \\
& P_{n}:(1,3, \ldots, n-2 ; n-1, n-3, \ldots, 2) .
\end{aligned}
$$

We proceed as in case (i), applying P to directed edges of the form ($2 h, n$). For $h=1$, we have:

$$
2, n, 1,2,3, \ldots,(n-2),(n-1), n, \ldots ;
$$

for $h=2$:

$$
\begin{aligned}
& 4, n, 2,1,3,2,4, \ldots,(n-2), n,(n-1), 1, n, 3, \\
& 1,4,2,5, \ldots,(n-3), n, \ldots ;
\end{aligned}
$$

for $h=3, \ldots,(n-1) / 2$:

$$
\begin{aligned}
& 2 h, n,(2 h-2), 1,(2 h-1), 2,2 h, \ldots,(n-2 h+2), n, \\
& (n-2 h+4), 1,(n-2 h+5), 2, \ldots,(2 h-4), n, \ldots .
\end{aligned}
$$

Here, we see that edges of the form $(2 h, n)$ appear, in order, for $2 h=2$, $n-1, n-5, \ldots, x, 0<x \leqslant 4$, where $x=2$ if $n \equiv 3(\bmod 4)$, and $x=4$ if $n \equiv 1(\bmod 4)$. In the former case, we have completed one orbit (of length $\left.r=\left[(n-1)^{2} / 2\right]+1\right)$ and a second orbit (of length $r=\left(n^{2}-3\right) / 2$) includes edges ($2 h, n$), in order, for $2 h=4, n-3, n-7, \ldots, 8,4$. For $n \equiv 1(\bmod 4)$, the orbit containing edge $(2, n)$ continues, with $2 h=n-3, n-7, \ldots, 6,2$ in succession. In either case, the orbit (s) we have computed contain all

$$
n+(4 n-5)+\left(\frac{n-5}{2}\right)(2 n-2)=n(n-1)=2 E
$$

directed edges of K_{n}, so that these imbeddings have $F=2$ and $F=1$ for $n \equiv 3$ and $n \equiv 1(\bmod 4)$, respectively. This completes the proof.

Since Ringel and Youngs [5] have shown that

$$
\gamma\left(K_{n}\right)=\left\{\frac{(n-3)(n-4)}{12}\right\},
$$

for $n \geqslant 3$ (where $\{x\}$ denotes the least integer greater than or equal to x), we have, using Theorems 1 and 6:

Corollary 6 a. The complete graph $K_{n}, n \geqslant 3$, has a 2 -cell imbedding in S_{k} if and only if

$$
\left\{\frac{(n-3)(n-4)}{12}\right\} \leqslant k \leqslant\left[\frac{(n-1)(n-2)}{4}\right] .
$$

References

1. J. Battle, F. Harary, Y. Kodama, and J. W. T. Youngs, Additivity of the genus of a graph, Bull. Amer. Math. Soc. 68 (1962), 565-568.
2. R. A. Duke, The genus, regional number, and Betti number of a graph, Canad. J. Math. 18 (1966), 817-822.
3. J. R. Edmonds, A combinatorial representation for polyhedral surfaces, Notices Amer. Math. Soc. 7 (1960), 646.
4. J. R. Edmonds, On the surface duality of linear graphs, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 121-123.
5. G. Ringel and J. W. T. Youngs, Solution of the Heawood map-coloring problem, Proc. Nat. Acad. Sci. U. S. A. 60 (1968), 438-445.
6. J. W. T. Youngs, Irreducible graphs, Bull. Amer. Math. Soc. 70 (1964), 404-405.
7. J. W. T. Youngs, Minimal imbeddings and the genus of a graph, J. Math. Mech. 12 (1963), 303-315.

[^0]: * Research supported in part by NSF Grant GZ 1222.

