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The concepts of a F, p,-pseudomonotone mapping and of a (C, D)-pseudo-
monotone pair of mappings are introduced. By employing Fan’s lemma, we
establish several existence results for generalized vector equilibrium problems. The
new results extend and modify various existence theorems for similar problems.
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1. INTRODUCTION

Let K be a nonempty convex subset of a topological vector space X and
let f: KX K — R be a scalar bifunction such that f(x, x) > 0 for each
x € K. The scalar equilibrium problem (in short, EP) is the problem of
finding

X € Ksuch that f(x,y) =0 Vy e K.
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This problem has a number of applications in mathematical physics,
economics and operations research and it is extensively investigated; e.g.,
see [1, 2]. Recently, some extensions of EP were introduced for vector-val-
ued functions and the corresponding existence theorems were proved for
extended problems in [3—-5]. Most of them were established under certain
monotonicity type assumptions on the main mapping.

In this paper, we consider a generalization of EP. Namely, let Y be a
topological vector space and let TI(Y) denote the set of all nonempty
subsets of Y. Let F be a mapping from K X K to II(Y). Recall that a set
P C Y is said to be solid if int P # J and P is said to be properif P CY.
Let C: K - II(Y) be a mapping such that C(x) is a closed, convex,
proper, and solid cone for each x € K. The generalized vector equilibrium
problem (in short, GVEP) is to find

X €K suchthat F(Xx,y) ¢ —intC(%) Vy e K.

We will denote by K} . the solution set of this problem. Note that a
similar GVEP was introduced in [5].

The main purpose of the present paper is to establish the existence
results under certain monotonicity assumptions on F, which strengthen
and modify those in [5]. Also, we strengthen and extend the results from
[3, 4] for single-valued and simultaneous problems.

2. PRELIMINARIES

In this section we give some definitions and properties, which are
intended to be used in the sequel.

Firstly we define the dual form of GVEP. Namely, we shall consider the
problem of finding

¥ €K suchthat F(y,x) ¢ intC(x) Vy e K.

We denote by Kﬁyc the solution set of this problem.

DerFINITION 2.1. Let F: KX K-> II(Y) and C: K — II(Y) be map-
pings such that, for each x € K, C(x) is a closed, convex, and solid cone.

() F is C,-quasiconvex if, for all x €K, y €K, y' €K, and
a € [0, 1], we have either

F(x,y) CF(x,ay + (1 - a)y") + C(x)
or

F(x,y") CF(x,ay + (1 —a)y") + C(x).
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(i) F is explicitly 8(C,)-quasiconvex if, for all y € K, y" € K, and
a € (0,1), we have either
F(Yar¥') SF(Yarya) + C(Y)

or
F(Y0:Y") CF(y,:¥,) + C(Y'),

and, in case F(y,,y') — F(y,,y") cint C(y') for all @ € (0, 1), we have

F(yy:Y') SF(Ygr¥,) +IntC(y'),

where y, = ay’ + (1 — a)y".

Remark 2.1. When C(x) = C, the concept of C, -quasiconvexity of F
reduces to that of C-quasiconvexity of F(x,-) for each x € K, which, in
turn, extends that of C-convexity; e.g., see [6].

DerINITION 2.2. Let F: K - II(Y) be a mapping. F is said to be
u-hemicontinuous, if for any x € K, y € K and « < [0, 1], the mapping
a — F(ax + (1 — a)y) is upper semicontinuous at 0",

We now give some relationship between K . and K¢ .

LEMMA 2.1. Let K be a nonempty convex subset of X. Let C: K — TI(Y)
be a mapping such that C(x) is a closed, convex, proper, and solid cone for
eachx € K. Let F: K X K — TI(Y) be explicitly 8§(C,)-quasiconvex, F(y, y)
c C(x) for all x,y € K. Let F(-, y) be u-hemicontinuous for each y € K.
Then, K . € K .

Proof. Let X € K .. Assume, for contradiction, that X ¢ Kj .. Then
there exists y € K such that

F(x,y) € —intC(x).
By u-hemicontinuity of F(-, y), it follows that, for some «a € (0, 1),
F(x,.y) € —intC(¥) (1)

where x, = ay + (1 — a)x. By explicit §(C,)-quasiconvexity of F, we now
have either

F(xq,y) S F(x,,x,) + C(¥) € C(%)
or

F(x,,%) CF(x,,x,) +C(%)cC(x).
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The first relation contradicts (1). Thus, we must hav F(x,, X) € C(%),
hence,

F(x,,X) —F(x,,y) cintC(%).
By explicit 8(C,)-quasiconvexity of F, we then have
F(x,,X) CF(x,,x,) +intC(x) cintC(x),
which contradicts our assumption. The proof is complete. |

DerINITION 23. Let F: KX K- II(Y) and C: K — II(Y) be the
same as in Definition 2.1. Let G: K X K —» II(Y) and D: K — II(Y) be
mappings such that, for each x € K, D(x) is a closed convex solid cone.

(i) Gis F¢ pypseudomonotone if, for all x,y € K,
G(x,y) ¢ —int D(x) implies F(y,x) ¢ intC(x).

(ii) F is C,-pseudomonotone if it is F . . -pseudomonotone.

(iii) The pair of mappings F and G is (C, D)-pseudomonotone if G is
Fc. py-pseudomonotone and F is G, (,-pseudomonotone.

The following property can be viewed as an extension of the correspond-
ing results in [2, 7, 3].

CoROLLARY 2.1. Let K, C, and F be the same as in Lemma 2.1. Suppose
also that F is C -pseudomonotone. Then, K} . = K} .

Proof. From Lemma 2.1 we have K{ . CKj .. By C,-pseudomono-
tonicity, we obtain K} . € K . and the result follows. [

The following well-known Fan lemma [8, Lemma 1] will play a crucial
role in proving the existence results of solutions for GVEP in our paper.

THEOREM 2.1 (Ky Fan). In a Hausdorff topological vector space, let Y be
a convex set and X a nonempty subset of Y. For each x € X, let F(x) be a
closed subset of Y such that the convex hull of every finite subset {x,, ..., x,}
of X is contained in the corresponding union U?_, F(x;). If there is a point
Xy € X such that F(x,) is compact, then N, y F(x) # &.

DerINITION 2.4 (see [9]). A set-valued mapping F: X — 2% is called
KKM-map if

conv{x,,...,x,} € U F(x,)
i=1

for any finite subset {x,, ..., x,} of X, where “conv A" denotes the convex
hull of the set A.
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3. EXISTENCE RESULTS FOR GVEP

We now establish the main result of this paper.

THEOREM 3.1. Let X and Y be Hausdorff topological vector spaces. Let K
be a nonempty compact convex subset of X. Let C: K — II(Y) and D:
K — TI(Y) be such that for each x € K, C(x) and D(x) are closed, convex,
proper, and solid cones. Let F: K X K — TI(Y) be explicitly 5(C ,)-quasicon-
vex, F(y,y) € C(x) for all x,y € K. Let F(-,y) be u-hemicontinuous for
eachy € K. Let G: K X K = II(Y) be F pypseudomonotone and D,-qua-
siconvex, G(y,y) € D(x) for all x, y € K. Suppose also that the set

Fy(y) = {x € KIF(y,x) cintC(x))
is open for each'y € K. Then, there exists X € Kj; ..
Proof. Define set-valued mappings G, F,: K - 2% by
Gy(y) = {x €KIG(x,y) ¢ —int D(x)}
and
Fy(y) = K\Fy(»).
We divide the proof of the theorem into several steps.

(i) G, isa KKM-mapon K.
Let u € conv{y,,...,y,} for any finite subset {y,,...,y,} of K. Assume,
for contradiction, that

u ¢ O Gi(»)-

i=1
Then, u € K and
G(u,y;) € —int D(u) Vi=1,...,n.
Since G is D,-quasiconvex, we have
G(u,y;) CG(u,u) + D(u) CD(u)

for some i, which is a contradiction.

(i) G(y) cF,(y)forall ye K and F, is a KKM-map on K.
By F¢ pypseudomonotonicity of G, we have G,(y) C F,(y) forall y € K.
Since G, is a KKM-map, so is F,.

(iii) For each y € K, F,(y) is a closed subset of K.
Indeed, since F,(y) is open, F,(y) is closed.

(iv) There exists x € Kj .
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From Step (iii), as K is compact and F,(y) € K, we see that F,(y) is a
compact subset of K, for each y € K. Thus, by Theorem 2.1, we have

Kic= N FAy) # D
yekK

Besides from Lemma 2.1 we have K{ . € Kj .. Consequently, there exists
¥ € K} , as required.

The proof is complete. ||

We now establish the similar result for GVEP in the unbounded case.
We note that F is said to be v-coercive on K if there exists a compact
subset B of X and y € B N K, such that

K\B c Fy(¥). (2)

THEOREM 3.2. Let X, Y, C, D, F, and G be the same as in Theorem 3.1.
Let K be a nonempty closed convex subset of X. In addition, suppose that F is
v-coercive on K. Then, there exists ¥ € K .

Proof. We first define set-valued mappings G, F,: K — 2X as those in
the proof of Theorem 3.1. Choose compact subset B of X and y € BN K
such that (2) holds.

To prove this theorem it is sufficient to follow Steps (i)—(iii) in the proof
of Theorem 3.1 and the following step.

(ivy  There exists ¥ € K ..
Since K\ B C F,(y), we have F,(y) € K N B. Hence F,(y) is a compact
subset of K. Thus, by Theorem 2.1, we have

Kg,c = ﬂ Fy(y) + O.
yeK

Besides, from Lemma 2.1 we have K . € K} . Consequently, there exists
X € K§ ¢, as required.

The proof is complete. ||

Remark 3.1. (i) The assertions of Theorems 3.1 and 3.2 remain valid if
we replace the condition of D, -quasiconvexity of G with the following:

{y € KIG(x,y) c —int D(x)}
is convex for each x € K.

(ii) The topologies on X and Y need not be equivalent. For in-
stance, if X and Y are normed spaces, we can use the weak topology on X
and the norm topology on Y.
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Remark 3.2. (i) In [3], several existence results were established for the
case where F is a single valued mapping, C is a constant mapping, and Y
is locally convex. Thus, Theorems 3.1 and 3.2 can be viewed as extensions
of Theorems 3.1 and 3.2 from [3].

(i) Note that our existence results are different from those in [5]. In
fact, Theorem 1 in [5] contains two relationships between the pairs (f, C)
and (g, D), respectively (see assumptions (iv) and (v) in Theorem 1),
assumption (iv) corresponding to 8p, c-pseudomonotonicity of f. How-
ever, Theorem 1 in [5] contains also the ‘“‘reverse’” assumption (v), whereas,
in Theorems 3.1 and 3.2 we make use of F ,,-pseudomonotonicity of G
which allows us to exclude any additional joint condition. Therefore, our
existence results also modify and strengthen those in [5].

We now establish existence results for simultaneous GVEP’s.

THEOREM 3.3. Let X, Y, K, C, and D be the same as in Theorem 3.1.
Let F: KX K-> TI(Y) and G: K X K — II(Y) be a (C, D)-pseudomono-
tone pair of mappings. Let F (respectively, G) be explicitly §(C,)-quasiconvex
(respectively, explicitly 8(D,)-quasiconvex and D -~quasiconvex), F(y,y) C
C(x) for all x,y € K (respectively, G(y,y) € D(x) for all x,y € K). Let
F(-,y) and G(-,y) be u-hemicontinuous for each y € K. Suppose also that
the set F)(y) is open for each 'y € K. Then,

0] Kg,c =Kjic= Kg?,D = K¢ p;

(i)  there exists X € K} .

Proof. From Lemma 2.1 we have K{ . € K} - and K¢ , €K% 5. On

the other hand, since the pair F,G is (C, D)-pseudomonotone, we have
K} . cK& , and K%, € K{ .. Hence, (i) holds. Assertion (ii) follows
from Theorem 3.1. The proof is complete. |

THEOREM 3.4. Let X, Y, C, D, F, and G be the same as in Theorem 3.3.
Let K be a nonempty closed convex subset of X. In addition, suppose that F is
v-coercive on K. Then,

() Kfc=Kfc=KEp=Ké p
(i)  there exists X € K} ..

Proof.  Assertions (i) and (ii) are true due to the same argument as that
in Theorems 3.3 and 3.2, respectively. |

The assertions of Theorems 3.3 and 3.4 can be viewed as extensions of
Theorem 3.1 in [4] to the set-valued and “moving’ case.
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