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Abstract

The Chebyshev series expansion
∑′∞

n=0 anTn(x) of the inverse of a polynomial
∑k

j=0 bj Tj (x) is well defined if the polynomial
has no roots in [−1, 1]. If the inverse polynomial is decomposed into partial fractions, the an are linear combinations of simple
functions of the polynomial roots. Also, if the first k of the coefficients an are known, the others become linear combinations of these
derived recursively from the bj ’s. On a closely related theme, finding a polynomial with minimum relative error towards a given

f (x) is approximately equivalent to finding the bj in f (x)/
∑k

0 bj Tj (x)= 1 +∑∞
k+1 anTn(x); a Newton algorithm produces these

if the Chebyshev expansion of f (x) is known.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Scope

The Chebyshev polynomials of the first kind Tn(x) are even or odd functions of x defined as [1, (22.3.6)] [4, (3.6)]
[10, p. 51]

T0(x) = 1, Tn(x) = n

2

�n/2�∑
m=0

(−1)m
(n − m − 1)!
m!(n − 2m)! (2x)n−2m, n = 1, 2, 3, . . . (1)

where the Gauss bracket �.� denotes the largest integer not greater than the number it embraces. The reverse formula
is [6, p. 412] [10, p. 52] [11],

xn = 21−n

n∑′

j=0
n−j even

(
n

(n − j)/2

)
Tj (x), (2)

where the prime at the sum symbol means the first term (at j = 0) is to be halved—unless it is skipped.
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The expansion of an inverse polynomial of degree k in a power series is [1, (3.6.16)]

1∑k
j=0 djxj

=
∞∑

n=0

cnx
n, (3)

with recursively accessible cn [14, 0.313] [20,18]. The topic of this script is the equivalent arithmetic expansion of the
inverse polynomial in a Chebyshev series,

1∑k
j=0 djxj

= 1∑k
j=0 bjTj (x)

=
∞∑′

n=0

anTn(x), (4)

i.e., computation of the coefficients

an = 2

�

∫ 1

−1

Tn(x)∑k
j=0 bjTj (x)

dx√
1 − x2

(5)

given the sets {bj } or {dj } that define the original function. The expansion (4) exists if the inverse polynomial is bound
in the interval [−1, 1], i.e., if

∑
djx

j has no roots in [−1, 1].
Characteristic approximate methods of evaluating (5) [22] are not reviewed here: (i) Fourier transform methods

[6, (4.7)] [5,9,8], (ii) sampling the inverse polynomial with Gauss-type quadratures [1, (25.4.38)] [10, Section 1.8]
[16,21,28,32,34,35], (iii) approximation by truncation of (3), then insertion of (2) [11,3,2], (iv) using the near-minimax
properties of the Chebyshev series [26,24].

Chapter 2.1 explains how the an of (5) could be computed suppose the inverse polynomial has been decomposed into
partial fractions. Chapter 2.2 provides a recursive algorithm to derive high-indexed an�k suppose the low-indexed an<k

are given by other means. Chapter 2.3 recalls a (standard) integral-free method to compute approximate low-indexed
an, which builds the framework for a specific inverse problem of Chapter 3—that is finding the bj from partially known
an—related to polynomial approximants with minimum relative error.

1.2. Basic properties

We will refer to the well-known product rule [1, (22.7.24)],

Tn(x)Tm(x) = 1
2

(
T|m−n|(x) + Tm+n(x)

)
, n, m�0. (6)

From the case � = − 1
2 in [19, (13)] we derive

ds

dxs
Tn(x) = 2sn

n−s∑′

k=0
n−s−k even

⎛
⎜⎝

n + s − k

2
− 1

n − s − k

2

⎞
⎟⎠ ((n + s + k)/2 − 1)!

((n − s + k)/2)! Tk(x), s = 1, 2, 3, . . . . (7)

2. Accesses to the expansion coefficients

2.1. The case of known partial fractions

A compact, exact way of computing the Chebyshev series (4) decomposes 1/
∑

djx
j into partial fractions [14,

2.102], which reduces (4) to the calculation of the an,s in

1

(z − x)s
≡

∞∑′

n=0

an,s(z)Tn(x), (8)

where z is a root of the polynomial,
∑k

j=0 dj z
j = 0.
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Sign flips of z and x in (8) show that

an,s(−z) = (−1)n+san,s(z). (9)

Lemma 1. For multiplicity s = 1, the expansion coefficients are

an,1(z) = 2

(z2 − 1)1/2

1

wn
, w ≡ z + (z2 − 1)1/2, z /∈ [−1, 1]. (10)

The branch of (z2 − 1)1/2 must be chosen such that |w| > 1.

Lemma 2. For general s�0, n�0 the coefficient is

an,s+1(z) =
(

s + n

s

)
2s+1w3s−n−2

(z2 − 1)1/2(w2 − 1)2s

[
(w2 − 1)2F1

(
1 − s, n + 1 − s

n + 1
| 1

w2

)

+ 2s

n + 1 2F1

(
1 − s, n + 1 − s

n + 2
| 1

w2

)]
, (11)

in terms of two hypergeometric series—which terminate if s�1 or sum up to (10) if s = 0.

Proof. Eq. (10) has already been demonstrated [15, (A.6), 31,33] based on [1, (22.9.9)] [36, (18)]. Eq. (11) is a
transformation of the Legendre Function P −n

s−1(z/
√

z2 − 1) in Elliott’s equations [7, (18)+(26)] to a unified formula
for arbitrary signs of Rz and Iz. An independent derivation starts from the derivative

ds

dxs

1

z − x
= s! 1

(z − x)s+1 = ds

dxs

∞∑′

n=0

an,1(z)Tn(x) = s!
∞∑′

n=0

an,s+1(z)Tn(x).

Insertion of (10) for an,1(z) and use of (7) builds at the r.h.s.

an,s+1 = 2s

s!
∞∑

m=n+s
m−n−s even

2m

(z2 − 1)1/2

1

wm

⎛
⎜⎝

m + s − n

2
− 1

m − s − n

2

⎞
⎟⎠ ((m + s + n)/2 − 1)!

((m − s + n)/2)!

= − 2s+1w

s!(s − 1)!(z2 − 1)1/2

�

�w

⎡
⎣ 1

wn+s

∞∑
k=0,2,4,...

(k + s − 1)!
(k)!

(k + s + n − 1)!
(k + n)!w2k

⎤
⎦

= −
(

s + n − 1

s

)
2s+1

(z2 − 1)1/2

w

n

�

�w

[
1

wn+s 2F1

(
s, s + n

n + 1
| 1

w2

)]
. (12)

The product rule for derivatives is applied, then both 2F1( ) are converted from infinite to terminating series with [1,
(15.3.3)]. One of the two is re-formatted with an intermediate variable � ≡ 1/w2,

�

�w

[(
1 − 1

w2

)1−2s

2F1

(
1 − s, n + 1 − s

n + 1
| 1

w2

)]

= −2
1

w3

�

��

[
(1 − �)1−2s

2F1

(
1 − s, n + 1 − s

n + 1
|�
)]

, (13)

and reaches (11) facilitated by [1, (15.2.6)]. �



R.J. Mathar / Journal of Computational and Applied Mathematics 196 (2006) 596–607 599

Note 1. The coefficients for the polynomial roots of multiplicity 2 are

an,2(z) = 4

(z2 − 1)1/2wn−3(w2 − 1)

[
n − 1

w2 + 2

w2 − 1

]
, n�0, (14)

where w2 − 1 = 2w(z2 − 1)1/2 with s = 1 has been used in (11). The Laurent series of the w-terms

1

w2 − 1

[
n − 1

w2 + 2

w2 − 1

]
= n + 1

w4 + n + 3

w6 + n + 5

w7 + · · · (15)

transforms (14) with (10) into

an,2(z) = 2
∞∑

k=1

(n + 2k − 1)an+2k−1,1(z), (16)

which is the case � = − 1
2 , q = 1 of [19, (5)].

In practice, one will often be interested in generating all an,s from n= 0, s = 1 up to some pair of maximum indices.
As an alternative to (11), one can generate the coefficients of (10), (17) and (18), and secure all coefficients in (8) for a
particular z with the forward recurrence (19):

Lemma 3. The coefficient at n = 0 for general multiplicity is

a0,s+1(z) = 22−s

�s/2�∑
l=0

(−1)l
(

s − l

l

)(
2s − 2l − 1

s − l − 1

)
zs−2l

(z2 − 1)s−l+1/2 , s�0. (17)

Lemma 4. The recurrence from n = 0 to n = 1 is

a1,s+1(z) = −a0,s(z) + za0,s+1(z). (18)

Lemma 5. A mixed index recurrence for the expansion coefficients is

an+1,s(z) = an−1,s(z) − 2n

s − 1
an,s−1(z), n�1, s�2. (19)

Proof. Higher second indices s of the an,s are obtained by repeated derivation of (8) w.r.t. z,

(−1)ss! 1

(z − x)s+1 =
∞∑′

n=0

ds

dzs
an,1(z)Tn(x). (20)

Considering only the term at n = 0 means with (10),

a0,s+1(z) = 2

s! (−1)s
ds

dzs

1

(z2 − 1)1/2 , (21)

which generates (17) using [14, 0.432.1]. Eq. (18) follows immediately from

a1,s+1(z) = 2

�

∫ 1

−1

T1(x)

(z − x)s+1

dx√
1 − x2

(22)

with the decomposition T1(x)=−(z−x)+ z plus the definition (8). (19) is the case �=− 1
2 in [19, (4)] post-processed

by [19, (22)]. �
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Fig. 1. Estimated a0,s (z) by projection of partial sums X−1
0 (x)

∑N
j=0 (−1)j Dj (x) of (23) on T0(x) for initial estimates X−1

0 (x) = 1/zs , s = 2

(left) or s = 1 (right). The exact curves 2/(z2 − 1)1/2 and 2z/(z2 − 1)3/2 are drawn, and the other lines are labeled with the successive numbers N
(pair-wise equal at the right).

Note 2. The Broucke algorithm [3, (13)] proposes to approximate (4) by a geometric series

1∑k
j=0 djxj

≈ X−1
0

(
1 − D + D2 − D3 + · · ·

)
, D ≡ X−1

0

⎛
⎝ k∑

j=0

djx
j

⎞
⎠− 1, (23)

for some initial estimate X−1
0 (x). One could generate a sequence of associated an by projection of the partial sums

onto Tn(x), but these do not well approach the analytic structure of the an,s(z) near the singularities z = ±1: There
is a problem with divergence for roots of multiplicity s > 1 (which are not matched by the geometric series), and for
roots of multiplicity s = 1 convergence becomes slow for z near ±1. These two aspects are illustrated in the left part
of Fig. 1 for

∑
j dj x

j = (z − x)2, and in the right part for
∑

j dj x
j = z − x. Obviously the cases of s > 1 must be

treated separately, which requires some form of partial fraction decomposition anyway: the apparent benefit of (23) of
handling the general polynomial without prior analysis is deceptive.

Note 3. Eq. (18) may be generalized to

2

�

∫ 1

−1

xl

(z − x)n
dx√

1 − x2
=

l∑
m=0

(−1)m
(

l

m

)
zl−ma0,n−m, l < n, (24)

and with (2) and (6) to

2

�

∫ 1

−1

xl

(z − x)n
Ts(x)√
1 − x2

dx = 1

2l

l∑′

i=0
l−i even

⎛
⎝ l

l − i

2

⎞
⎠ [a|i−s|,n + ai+s,n]. (25)

The Chebyshev expansion of a polynomial quotient could therefore be based on “incomplete” partial fractions decom-
position (4) for numerator equal to one.

Note 4. From (10)

�an,1(z)

�z
= −an,1

[
z

z2 − 1
+ n

(z2 − 1)1/2

]
, (26)
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so the (linear) propagation of the absolute relative error in the root z to the error in the coefficient an,1 is

∣∣∣∣�an,1

an,1

∣∣∣∣ ≈
∣∣∣∣�z

z

∣∣∣∣ ·
∣∣∣∣ z2

z2 − 1
+ nz

(z2 − 1)1/2

∣∣∣∣ . (27)

2.2. Recurrence of expansion coefficients

The Tn in (5) may be decomposed into a unique product of a polynomial by the denominator plus a remainder of
polynomial degree less than k. [The argument x is omitted at all Tn(x) for brevity.]

Tn = (d
(n)
0 T0 + d

(n)
1 T1 + · · · + d

(n)
n−kTn−k)(b0T0 + b1T1 + · · · + bkTk)

+ c
(n)
0

2
T0 + c

(n)
1 T1 + c

(n)
2 T2 + · · · + c

(n)
k−1Tk−1. (28)

Expansion with (6) yields a system of linear equations for the vector of the unknowns d
(n)
j and c

(n)
j :

(29)

The (n + 1) × (n + 1) coefficient matrix Ar,c (row index r and column index c from 0 to n) is an upper triangular
matrix. It hosts a k × k unit matrix in the upper left corner, and is symmetric w.r.t. the minor diagonal that stretches
from A0,k to An−k,n:

Ar,c = �r,c, 0�c�k − 1. (30)

Ar,k+c = Ac,k+r =

⎧⎪⎨
⎪⎩

2b0, r = c = 0,

bc, r = 0, 1�c�k,
1
2 (b|r−c| + br+c), r 
= c,

b0 + b2c/2, r = c = 1, 2, . . . , n − k.

(31)

This works with the auxiliary definition

bi = 0, i > k or i < 0. (32)

Insertion of (28) into (5) yields the format

an = 2d
(n)
0 +

k−1∑′

i=0

c
(n)
i ai, n�k, (33)

which means that entire sequence an can be generated recursively from its first k terms, if the d
(n)
0 and c

(n)
i are

generated at the same time via (29) or an equivalent method. Iterated full solution of (29) can be avoided through
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recursive generation of the set {d
(n+1)
i , c

(n+1)
i } from {d

(n)
i , c

(n)
i } and {d

(n−1)
i , c

(n−1)
i } as follows:

Proposition 6. The set of coefficients in (33) obeys

d
(n+1)
0 = d

(n)
1 + c

(n)
k−1

bk

− d
(n−1)
0 , (34)

d
(n+1)
1 = 2d

(n)
0 + d

(n)
2 − d

(n−1)
1 , (35)

d
(n+1)
j = d

(n)
j−1 + d

(n)
j+1 − d

(n−1)
j , j = 2, 3, . . . , n − k + 1. (36)

c
(n+1)
0

2
= c

(n)
1 − b0c

(n)
k−1

bk

− c
(n−1)
0

2
, (37)

c
(n+1)
j = c

(n)
j−1 + c

(n)
j+1 − bj c

(n)
k−1

bk

− c
(n−1)
j , j = 1, 2, . . . , k − 1, (38)

where the auxiliary definitions

c
(n)
j = 0, j �k or j < 0, (39)

d
(n)
j = 0, j > n − k or j < 0, (40)

are made to condense the notation.

Proof. Multiplying (28) by 2T1 and using (6) we have

2T1

n−k∑
j=0

d
(n)
j Tj = d

(n)
1 T0 + (2d

(n)
0 + d

(n)
2 )T1 +

n−k−1∑
j=2

(d
(n)
j−1 + d

(n)
j+1)Tj + d

(n)
n−k−1Tn−k + d

(n)
n−kTn−k+1, (41)

2T1

k−1∑′

j=0

c
(n)
j Tj = c

(n)
1 T0 +

k−2∑
j=1

(c
(n)
j−1 + c

(n)
j+1)Tj + c

(n)
k−2Tk−1 + c

(n)
k−1Tk . (42)

The last term in the previous equation is rewritten

c
(n)
k−1Tk = c

(n)
k−1

bk

k∑
j=0

bjTj − c
(n)
k−1

bk

b0T0 − · · · − c
(n)
k−1

bk

bk−1Tk−1. (43)

We construct

2T1Tn =
[(

d
(n)
1 + c

(n)
k−1

bk

)
T0 + (2d

(n)
0 + d

(n)
2 )T1

+
n−k−1∑
j=2

(d
(n)
j−1 + d

(n)
j+1)Tj + d

(n)
n−k−1Tn−k + d

(n)
n−kTn−k+1

⎤
⎦ ·

⎡
⎣ k∑

j=0

bjTj

⎤
⎦

+
(

c
(n)
1 − c

(n)
k−1

bk

b0

)
T0 +

k−2∑
j=1

(
c
(n)
j−1 + c

(n)
j+1 − c

(n)
k−1

bk

bj

)
Tj

+
(

c
(n)
k−2 − c

(n)
k−1

bk

bk−1

)
Tk−1, (44)
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and subtract Tn−1 for identification of the d
(n+1)
j and c

(n+1)
j ,

Tn+1 = 2T1Tn − Tn−1 =
⎛
⎝n−k+1∑

j=0

d
(n+1)
j Tj

⎞
⎠
⎛
⎝ k∑

j=0

bjTj

⎞
⎠+

k−1∑′

j=0

c
(n+1)
j Tj . � (45)

2.3. Approximation by the truncated Chebyshev series

Approximations ân to the an of (4) may be calculated assuming that the an beyond some index N are negligible:

1∑k
j=0 bjTj (x)

≈
N∑′

n=0

ânTn(x). (46)

This approach is obvious [10] and summarized here to prepare the notation for Section 3. The ansatz is multiplied by
2
∑

bjTj ,

2 ≈
N∑′

n=0

ân

⎛
⎝k+n∑

l=n

bl−nTl(x) +
n∑

l=max(n−k,0)

bn−lTl(x) +
k−n∑
l=1

bl+nTl(x)

⎞
⎠ . (47)

The coefficients in front of T0 to TN are set equal on both sides, and a system of linear equations for the ân ensues:

⎛
⎜⎜⎜⎜⎝

b0 b1 b2 b3 . . .

b1 2b0 + b2 b1 + b3 b2 + b4 . . .

b2 b1 + b3 2b0 + b4 b1 + b5 . . .

b3 b2 + b4 b1 + b5 2b0 + b6 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

â0
â1
...
...

âN

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

2
0
...
...

0

⎞
⎟⎟⎟⎟⎠ , (48)

where the symmetric coefficient matrix Br,c has a band width of 2k + 1:

Br,c =

⎧⎪⎨
⎪⎩

bc, r = 0,

br , c = 0,

2b0 + b2r , r = c 
= 0,

b|r−c| + br+c, r 
= c, c > 0, r > 0.

(49)

This gives access to a set of approximate, low-indexed an with no need to evaluate integrals nor with reference to the
roots of

∑
bjTj . The extended division problem of finding the ân from given fn in

f (x)∑k
j=0 bjTj (x)

≈
N∑′

n=0

ânTn(x), f (x) ≡
∞∑′

n=0

fnTn(x), (50)

has the right-hand side in (48) modified as follows:

N∑
c=0

Br,câc =
{

fr, r = 0,

2fr, r = 1, 2, 3, . . . .
(51)

Note 5. The shifted Chebyshev polynomials T ∗(x) ≡ T (2x − 1) are orthogonal over [0, 1] with weight 1/
√

x(1 − x)

[1, (22.2.8)] [29]. From (8) we get

1

(z − x)s
= 2s

∞∑′

n=0

an,s(2z − 1)T ∗
n (x). (52)

The relations (50) hold for the shifted polynomials as well, if all three T are substituted by T ∗.
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3. Chebyshev approximation for the relative error

The maximum absolute error in f (x) of its truncated Chebyshev series in (50) is estimated at
∑N

n=k |fn| if terms up

to k were retained; the maximum relative error of the polynomial approximation
∑

bjTj is estimated at
∑′N

n=0 |ân|−1.
To optimize the approximation of f (x) for the relative error

R(x) ≡ f (x)∑k
j=0 bjTj (x)

− 1 (53)

in [−1, 1], one would rather like to find the k + 1 coefficients bj in (50) which force the relative error to be close to
zero in the sense of

â0 = 2, â1 = â2 = â3 = · · · = âk = 0. (54)

The rationale is that removal of the ripples of T1(x) to Tk(x) from the quotient expansion leaves a quotient with an
appropriate number of “critical” points required by the alternating maximum theorem [6,11,27,37]. The “dangling”
ân>k absorb these residuals similar to terms in the “�-method” [6, p. 414] and the “telescoping” procedure [23]. As an
inversion of the problem of Section 2.3, the matrix B in (51) is presumed unknown (up to some symmetry), and the first
k+1 elements of the vector âc and all elements of fr are known. Contrary to the task of finding rational approximations
to f (x) [12,13,25], f (x) is to be split into a product of a polynomial of degree k by a function close to unity.

Note 6. The case r = 0 in (51) in conjunction with (54) mandate

b0 = f0/2. (55)

Finding the constituents bj of B that solve the bi-linear (51) may proceed with a multivariate first-order Newton

method [17]. The familiar Newton step f (n) +f ′(n)
(x(n+1) −x(n))=f (n+1) which updates x(n) �→ x(n+1) in the scalar

case reads âl +∑
j

�âl

�bj
�j = 0 in our variables, and is executed in (59):

Algorithm 1. An iterative approach to solving (49) and (51) for known â0, â1, . . . , âk , known r.h.s. f0, f1, . . . , fN ,
but unknown b1, . . . , bk and unknown âk+1, âk+2, . . . , âN is:

(1) Choose a start solution bj , for example the obvious [10, p. 77]

bj =
{

f0/2, j = 0,

fj , j = 1, 2, . . . , k.
(56)

(2) Compute approximate ân (n=0, . . . , N) from bj by solving the linear system of equations (51). Terminate—taking
the current bj as the result—if the â0 to âk are sufficiently close to the desired (54).

(3) Compute an approximate (N + 1) × k Jacobi matrix

Jr,c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�â0

�b1

�â0

�b2
. . .

�â0

�bk

�â1

�b1

�â1

�b2
. . .

�â1

�bk

...
... . . .

...
�âN

�b1

�âN

�b2
. . .

�âN

�bk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(57)
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by partial derivation of the first N + 1 equations off (51) w.r.t. the bj , i.e., by solving the k systems of N + 1
linear equations

N∑
c=0

Br,cJc,j = −

⎛
⎜⎜⎜⎜⎝

â1 â2 â3 . . . âk−1 âk

â0 + â2 â1 + â3 â2 + â4 . . . . . . âk−1 + âk+1
â1 + â3 â0 + â4 â1 + â5 . . . . . . âk−2 + âk+2

...
...

... . . .
...

...

âN−1 âN−2 âN−3 . . . âN−k−1 âN−k

⎞
⎟⎟⎟⎟⎠ (58)

for r = 0, . . . , N and j = 0, . . . , k − 1. The column �âc/�b0 of the Jacobi matrix is not calculated, as b0 is
assumed fixed according to (55).

(4) Compute the next iterated solution bj �→ bj + �j (j = 1, 2, . . . , k) of the polynomial coefficients by solving the
system of k linear equations

k∑
j=1

k
�âl

�bj

�j = −âl , l = 1, . . . , k (59)

for the first-order differences �j . This equation is the first-order multivariate Taylor expansion of âl as a function
of the bj set to the desired zeros (54) for this update. The k × k coefficient matrix �âl/�bj is a square submatrix
of the Jacobi matrix J calculated in the previous step.

(5) Return to step (2) for the next cycle.

Criterion 7. The algorithm cannot find polynomials with a uniformly convergent Chebyshev expansion of the relative
error if f (x) has zeros in [−1, 1].

Tests run for f (x) = sin(�x/2)/x, cos(�x/2)/(1 − x2), (1/x) arcsin(x/
√

2), exp(x), and J0(�x/2) started from
their estimates (56) show rapid convergence within the first update in the sense that |�j /bj | < 4 × 10−19 (j �k = 14;
N = 3k) for the second update of all five functions (The algorithm diverges for any of the five test functions started
from the “blind” estimate b0 = f0/2, bj = 0 (j = 1, 2, . . . , k). But initial estimates of comparable low quality are not
of practical importance, because the fr need anyway to be known for step (2) of the algorithm.).

Criterion 8. In the region of convergence, the Newton method converges linearly or quadratically [38]. A test against
a sufficient convergence criterion [17, Section 3.2] can be made after passing (59) by multiplying the norm of the
inverse of its matrix �âl/�bj by the norm of the vector �j and by the norm of the matrix of the second derivatives.
Since the second derivatives of B w.r.t. b are all zero, each �2al/(�bj�br) follows from a linear system of equations
similar to (58) with the r.h.s. replaced by sum of the derivative of the rth column w.r.t. bj plus the derivative of the jth
column w.r.t. br , both of which have already been computed via (59).

Note 7. This algorithm involves only f0 to fN , but no higher order approximants to f (x). It adapts a polynomial of
degree k to an order-N representation of f (x). The algorithm is “lossy” in the sense that it is only called to reduce
N > k inputs to k outputs (Otherwise, if N �k, the best and trivially exact adaptation that leads to zero absolute and
zero relative error is to copy the input to the output with (56), complemented by bN+1 = · · · = bk = 0.).

A set of bj found that way is also a starting point to calculate the solution with the minimax property of the relative
error. The Remez exchange algorithm [30] applied to R(x) could take advantage from the specific polynomial format
of R(x), which supports parallel updates of all nodes: (i) all extrema of R(x) are found by searching all roots of a
polynomial of degree k + N − 1, and (ii) adjusting the bj �→ bj + �j with a Newton method such that the absolute
values of the new alternating extrema equal the mean of the old ones ends up in a linear system of equations for the
�j . If the truncated representation (56) already provides a good set of coefficients to start the Remez iterations, the
Algorithm 1 as a pre-conditioner to find new bj might as well be skipped.
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4. Conclusion

The expansion coefficients of the Chebyshev series of inverse polynomials can be derived from the partial fraction
decomposition of the inverse polynomial. Unlike other iterative or sampling algorithms, this algorithm is exact—though
its incarnation in finite floating point arithmetic may be not. In the form presented here, the effort grows linearly with
the polynomial degree k and also linearly with the number of terms seeked in the expansion.

We have shown how expansion coefficients with indices larger than the polynomial degree are recursively linked
to those of lower order. This algorithm is complementary to the aforementioned one and again exact: it starts from
the low-indexed Chebyshev expansion coefficients which have to be known by any other means (optionally the partial
fraction method). Compared to the partial fractions method there is no direct access to a Chebyshev coefficient of
arbitrary index n: the expense grows proportional to the square k2 of the polynomial degree (one power to update the
vector of the recursion coefficients, and one power to apply it to the recursion) and proportional to n. In practice, one
is almost always interested in computing a contiguous series of Chebyshev coefficients indexed 0 to n, which reduces
the expense per coefficient from ∝ nk2 to ∝ k2. Another inherent disadvantage is the thread of loss of precision if high
indices n are obtained numerically.

An iterative algorithm has been presented which derives a polynomial of a given degree such that the first terms of the
Chebyshev expansion of the relative error of a given function represented by this polynomial vanish. Its key achievement
is to dissect known from unknown parameters in an efficient scheme solely based on solving linear equations. The
solutions economize the polynomial representation of functions such that the number of valid mantissa bits in an IEEE
representation is optimized over [−1, 1]. The output inherently differs from solutions that minimize the absolute error
over [−1, 1]—to which algorithms are known in the literature—if the function values are strongly fluctuating over the
interval. The disadvantage compared to a Remez algorithm is that the results provide a mere near-minimax solution by
construction, and that a Chebyshev representation of the functions must be at hand; the advantage is that no numerical
search for extrema is involved.
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