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1. INTRODUCTION 

Let X be a topological vector space over the reals R. Let Y be a 
topological group, and let (., .): X x Y--f R be a “bilinear form” in the 
sense: for each fixed y, (., y) maps X linearly into R, and for each fixed x, 
(x, .) is a homomorphism of Y into the additive reals. We denote the group- 
operation by (+), though it is not really necessary that the group be Abelian. 
(To fix the ideas, think of Y as a Banach space taken with the norm topology, 
X as its adjoint space with the weak-star topology, and (x, y} = x(y).) 

Let Y” be the set Y taken with the weakest topology in which all the func- 
tions <x, .) are continuous. Let C be a subset of X (in applications, often 
closed and convex) and think of F as being a function mapping C into Y. Let 
D C C be convex and compact, and let the restriction of (,, .) to (D - D) x Y 
be continuous. 

We are interested in finding a solution in D for the (infinite) system of 
“variational inequalities” 

(x’ - x, F(x)) 3 0 (x’ E C). (1) 

This problem has (in essence) been treated in the literature under the assump- 
tion that F is a “pseudomonotone” operator in the sense of H. BrCzis, using a 
Galerkin-approximation method due essentially to F. E. Browder. One first 
solves the problem with C = D and then imposes a “coercivity condition” 
to treat larger sets C. The prototype of a “pseudomonotone operator” is 
F(x) = f(x, x), where f depends in one way on first argument and in a different 
way on second argument (we need not go into details here, since it is precisely 
this prototype-operator which we shall treat in this paper). A definitive (to 
date) treatment of the problem (with C = D) is essentially a special case of the 
variant by BrCzis et al. [l] on Ky Fan’s minimax theorem. 
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The purpose of this paper is threefold. We shall first of all give a treatment 
of the prototype-problem, with F(x) = f(~, x), based on quite different 
principles-the argument is very simple and does not use the Galerkin method. 
(Thus our results are sufficient for most known applications, and the argument 
may lead to a different class of generalizations.) Secondly, we make an inquiry 
into the fundamental nature of “coercivity conditions.” Third, we apply our 
results to the solution of a version of Hammerstein’s nonlinear integral equation 
x + KFx = 0. In virtually all formulations of this problem to date, K is taken 
as a linear integral operator, but in our treatment K (as well as F) may be taken 
as a nonlinear operator. Our present treatment is essentially a radical improve- 
ment on the treatment given by Vainberg in [6] (which was based on the 
treatment by Dolph and Minty in [3]). 

2. THE SOLUTION OF VARIATIONAL INEQUALITIES OVER A COMPACT SET 

In this section, f(xr , xa) is a mapping from D x D into Y satisfying certain 
conditions, as follows: 

(A) For each fixed x2 , f(., x2): D -+ Yw is a monotone (relative to (., .)) 
function whose restriction to any line segment in D is continuous, i.e., a 
“hemicontinuous” monotone function. “Monotone,” in this context, means: 
for any x’, x E D, (x’ - x,f(d) -f(x)) > 0. 

(B) For each fixed x1, f(xl , .): D + Y is continuous. (In the Banach- 
space context mentioned above, this hypothesis corresponds to “continuous 
from the weak-star topology in X to the norm-topology in Y.” On the other 
hand, if no second argument is present in f, it is convenient to take Y with 
the discrete topology, and the hypothesis is vacuous.) 

This section is devoted to the proof of 

THEOREM 1. The subsystem of inequalities (1) for which x’ E D, namely, 

<x’ - x, f(x, 4) > 0 (x’ E D>, 
has a solution in D. 

LEMMA 1. Any solution of the “auxiliary inequalities,” 

(x’ - %f(X’, 4) >, 0 (x’ E D), 

satis$es inequahties (2). 

Proof. Consider any x’ E D, and real t with 0 < t < 1. Substitute 
x + t(x’ - x) for the x’ of (3), then cancel x and t and let t tend to zero, 
invoking the hemicontinuity off. 
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Remark. The converse statement is true, and follows easily from the 
monotonicity off; we shall not, however, need this converse. It is useful for 
proving “the solution set is convex” in case no second argument appears in f. 

LEMMA 2. Colzsider a Jinite subsystem of (3): 

(xi - x, f (xi , s)) 3 0 (i = l,..., n). 

These inequalities have a solution in Ll. 

Proof. We shall show that the inequalities, 

(xi - &ljx; , f (xi ) &,x,xjJ) 3 0 (i = l,..., n), 

‘q& = 1, Ai > 0 (i = l,..., n), 

can be solved for A, ,..., A, . 

(4) 

(5) 

The solutions of (5) constitute a simplex 5’. Let Ci be the set of all 

(4 ,**.> A,) E S satisfying (4), for i = l,..., n. Our continuity hypotheses suffice 
to show each Ci is a closed subset of 5’. 

Now, by an easy computation 

= $qjAiAj(X; - x;. , f (xi ) .q&x;. -f (xi ) .zJ,x;)>. 

By the monotonicity off, the right side is nonnegative, hence so is the left 
side. From these considerations we see easily that S is contained in the union 
of c, )‘“) c, , and a little more thought (putting some of the Ai equal to zero) 
shows that each face of S is contained in the union of those Ci numbered 
the same as the vertices of that face. Thus all the hypotheses of the well-known 
Knaster-Kuratowski-Mazurkiewicz Lemma are satisfied, so the intersection 
of the Ci is nonempty. 

(The reader who is interested in the history-of-ideas of Lemma 2 can follow 
it through the papers [2, 4, 5, 71; the writer has also profited from discussions 
with W. Oettli.) 

(The Knaster-Kuratowski-Mazurkiewicz Lemma is an easy consequence 
of Sperner’s Lemma, a purely combinatorial fact. In case the second argument 
is missing, many proofs of Lemma 2 can be given which do not use Sperner’s 
Lemma-see the above papers, or the remark of Valentine [8] that the K-K-M 
Lemma can be proved by methods of convexity theory if the sets Ci are convex.) 

LEMMA 3. Inequalities (3) have a solution in D. 

Proof. The set of solutions of each inequality is a closed subset of D; the 
conclusion follows by the “finite intersection property” for the compact set D 
and Lemma 2. 

Theorem 1 now follows by Lemma 1. 
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3. COERCIVITY CONDITIONS 

At this point, our need to regard F(.rc) as f(~, x) has disappeared, and F(x): 
D -+ Y can be regarded in this section as any function for which the conclusion 
of Theorem 1 holds; if desired, one can think of the domain of F as being C. 

We now introduce a sort of “universal coercivity condition”: 

DEFINITION 1. Let D’ be a subset of D. We shall say that “Condition ‘C’ 
holds over D”’ provided: for each x E D’, the convex cone K, generated by the 
sets, 

and 
s, = {x’ - x: x’ E D} 

T, = (h: (h,F(x)) 2 01, 

contains the set {x’ - x: x’ E C \ D}. 

LEMMA 4. Let x be any solution of 

(x’ - x, F(x)) > 0 (x’ E D). (6) 

Then x satisfies inequalities (1) ;f and only if Condition “C” holds over the one- 
element set {x}. 

Proof. The necessity is obvious-note that S, can even be dispensed with. 
The sufficiency is trivial-note S, C T, . 

It is now clear that Theorem 1, together with the hypothesis “Condition ‘C’ 
holds over D,” suffices for a proof of existence of a solution of inequalities (1). 
But a weaker condition suffices: 

LEMMA 5. Necessary and su$icient for Condition “C” to hold over D is: 
Condition “C” holds over the set of noninternal points of D for which S, C T, . 

Proof. If x is an internal point of D, then S, = X, hence K, = X. Also, 
if S, is not a subset of T, , it is a routine matter to show K, = X. (A simple 
two-dimensional picture guides the proof.) 

LEMMA 6. Let CC X be arbitrary and suppose D has the property: for each 
noninternal x E D, there is a unique “half-space of support” to D, or ntore precisely, 
that there is a unique (up to a multiplicative positive constant) y E Y such that 
for all x’ E D, (x’ - x, y) > 0 but (., y) is not identically zero. Then sufficient 
for Condition “C” to hold over D is: for each noninternal x E D, F(x) is not 
proportional to y by a positive proportionality-constant. 

Lemma 5 makes Lemma 6 obvious. (Note that the “uniqueness” of y implies 
a certain nondegeneracy of (., .). In order to give Lemma 6 a more familiar 
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appearance, think of X as a Banach space in which the norm is FrCchet dif- 
ferentiable, Y as its adjoint space, and D as the unit ball.) 

LEMMA 7. Let CC X be arbitrary. Then su$icient for Condition “C” to 
hold over D is: 0 is an internal point of D and, for each noninternal x E D, 

<x,w> > 0. 

Proof. Under the hypotheses, for noninternal x E D: either (*,F(x)) is 
identically zero and K, = T, = -X, or there exists an x’ E D “close to 0” 
such that (x’,F(x)j < 0, whence (x’ - x,5’(x)) < 0 and S, is not a subset 
of T, . 

In the early literature of monotone operator theory, one saw over-strong 
coercivity conditions; for example: X = Y = Hilbert space, D a ball of radius 
M > 0 about the origin as center, and (x, F(x)) > 0 for all x with 11 x /j = M. 
Under these hypotheses, one could apply either Lemma 6 or Lemma 7. Lemma 6 
resembles coercivity conditions invoked by F. E. Browder in the context of 
“reflexive Banach spaces,” while Lemma 7 appears to be a new type of 
coercivity condition. 

In Lemma 6 the set D occupies a salient position which is occupied in 
Lemma 7 by (0); we leave to the reader the formulation and proof of a lemma 
in which an arbitrary set intermediate between (0) and D occupies that position. 

One is tempted to think that Lemmas 4 and 5 are “sufficient for all purposes 
in coercivity theory”; in the next section we shall see an example in which 
somewhat more ingenuity is required. 

4. ON HAMMERSTEIN'S INTEGRAL EQUATION WITH NONLINEAR K 

Let X, , X2 be two topological vector spaces over the reals. Let Xi , Xi be the 
additive groups of these spaces, endowed with structures of “topological group.” 
Let (., .): X, x X2 + R be a bilinear form continuous on (Dl - DJ x XL 
and on Xi x (D, - D,), where D, , D, are compact convex sets in X1 , X2 , 
respectively. (To fix the ideas, take X, and X2 as a pair of mutually dual 
reflexive Banach spaces taken with their weak topologies, take (., .) as the 
usual pairing, and take Xi , Xi as the same spaces with their norm-topologies 
-or possibly, one or the other or both could be taken with the discrete topology.) 

LetF: D, + Xi and K: D, + Xi be f  (x, x) and K(x, x), where f :  Dl x D, --f Xl 
and k: D, x D, + X’; , these functions being monotone (with respect to (., .)) 
and hemicontinuous in their first arguments (recall that Xrw and X,w are 
introduced in the definition of “hemicontinuous”) and continuous in their 
second arguments. 

We wish to find (x1 , x2) E D, x D, such that 

jK(4 + x1 = 0 
IF(x,) - x2 = 0. (7) 
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(An “equation of Hammerstein type” x + KFx = 0 appears on elimination 
of xs *) 

All hypotheses on D, , D, , K, F have so far been essentially “translation 
invariant.” We now hypothesize: 

(1”) 0 E X1 is an internal point of D, , and 0 E X, is an internal point 
ofD,. 

(2”) (K(x,), xs) 2 0 for all xs ED, . 

(3”) For each noninternal point x, of D, , (xl , F(x,)) > 0. 

(4”) The image under F of the set of internal points of D, consists entirely 
of internal points of D, . 

(5”) The bilinear form (., .) is “nondegenerate”: if (x, y) > 0 for all y 
then x = 0, and vice versa. 

(Again, to fix the ideas with the “reflexive Banach space” example: let D, 
be a ball containing the origin “so large” that (3”) holds, and then let D, be a 
ball containing the origin “so large” that (4”) holds. Note that (2”) is a vestigial 
form of the hypothesis “K is a positive semidefinite, but not necessarily self- 
adjoint, linear operator” and (4”) is a less-vestigial form of “F maps bounded 
sets into bounded sets,” since in applications one has freedom in choice of D, . 
Note that there is no hypothesis of the type “K maps D, into D1” which one 
would expect to see in arguments using fixpoint theorems.) 

THEOREM 2. Under the hypotheses listed above, equations (7) have a solution 
in D, x D, . 

Proof. We shall work with product spaces, all taken with the “usual” 
direct-sum (resp. direct-product) structures and topologies. 

Define the bilinear form ((*, .>>: (X1 x X,) x (X, x X,) -+ R by 

and 9: D, x D, + Xi x Xi by 

It is now routinely verifiable that F and D, x D, satisfy the hypotheses of 
Theorem 1; 9 is now to be interpreted as f ((x1 , x2), (x1 , x,)), where f: 
(Dl x D,) x (Dl x D,) -+ Xi x Xi is monotone (with respect to ((., .>>) 
and hemicontinuous in first argument and continuous in second argument. 
(Note that the “+x1” and “--x2” go with the first argument.) 

We conclude: there exists (x1 , xs) E D, x D, such that 
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or 

(for all (xl , xi) E D, X Da). 
For later reference, we point out that by putting xi = xa (resp. xi 

we obtain 

<x; - Xl , F(x,) - x2“ 3 0 (all xi E I&), 

W(4 + Xl ) x; - x*) 3 0 (all xh E Da). 

7 

(8) 

XI) 

(9) 

We shall now prove the assertion of the theorem “by contradiction.” Suppose 
one (or both) of (7) fail(s) to be satisfied. Then by (5”) and (1”) we can choose 

(4 3 x6) E D, x D, such that 

(4 3 md - x2> < 0, 

W(x,) A- Xl > 6’ < 0, 

where one or both of these is a strict inequality. By addition, 

<x; , @l) - %?i + <q%) + Xl ,4> < 0. 
But then from (8) we obtain 

Thus from (2”), (x1, F(x,)) < 0, and from (3”), x, is an internal point of D, . 
But then from (9), xa = F(x,) and f rom (4”), x2 is an internal point of D, . 
Thus from (9) and (SO), K(x,) + x1 = 0, and we have the desired contradiction. 

REFERENCES 

1. H. Br&zrs, L. NIRENBERG, AND G. STAMPACCHIA, A remark on Ky Fan’s minimax 
theorem, Boll. 2%. Mat. Ital. 6 (1972), 293-300. 

2. H. DEBRUNNER AND P. FLOR, Ein Erweiterungssatz fur monotone Mengen, Arch. 
Math. 15 (1964), 44447. 

3. C. L. DOLPH AND G. J. MINTY, On nonlinear integral equations of the Hammerstein 
type, in “Nonlinear Integral Equations” (P. Anselone, Ed.), Univ. of Wisconsin Press, 
Madison, Wise., 1964. 

4. G. J. MINTY, On the simultaneous solution of a certain system of linear inequalities, 
Proc. Amer. Math. Sot. 13 (1962), 11-12. 

5. G. J. MINTY, On the extension of Lipschitz, Lipschitz-HGlder continuous, and 
monotone functions, Bull. Amer. Math. Sot. 76 (1970), 334339. 

6. M. M. VAINBERG, “Variational Method and Method of Monotone Operators,” Wiley, 
New York, 1973; Russian edition Izd-vo “Nauka” (1972). 

7. F. A. VALENTINE, A Lipschits preserving extension for a vector function, Amer. j. 
Math. 67 (1945), 83-93. 

8. F. A. VALENTINE, “Convex Sets,” McGraw-Hill, New York, 1964. 


