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Abstract

This paper considers a modification of a PAC learning theory problem in which each instance of the
training data is supplemented with side information. In this case, a transformation, given by a side-
information map, of the training instance is also classified. However, the learning algorithm needs only to
classify a new instance, not the instance and its value under the side information map. Side information can
improve general learning rates, but not always. This paper shows that side information leads to the
improvement of standard PAC learning theory rate bounds, under restrictions on the probable overlap
between concepts and their images under the side information map.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Probably Approximately Correct (PAC) learning theory studies algorithms that train on
randomly generated data sets with the goal of learning to classify new, randomly presented
instances with a small probability of error. Standard PAC theory assumes that the training sample
is a string of independent and identically distributed (i.i.d.) random variables and that the training
data and the instances to be classified both come from the same probability distribution. In this
paper we study a variation of the standard problem in which the training data include extra
information, called side information, which does not need to be classified. The side information
learning model can be stated quite generally, but we focus on side information generated by
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classification of the output of a fixed, known transformation acting on the data. Such a problem
occurs for example in simple learning theory formulations of classification by linear systems.

In the companion paper [12], we studied improvement of learning rates for the simple, concrete
problem of learning an interval on a circle, when the antipodal point of each sample is provided as
side information. In this problem, one is able to calculate exact learning rates for particular
classification algorithms and compare them to the learning rates without side information. The
analysis shows that, in general, one expects exponential improvement of rates, but that the degree
of improvement depends delicately on the concept class and the distribution or class of
distributions P from which samples are drawn. In some cases, the exponential improvement
vanishes. The main factor affecting the improvement rate is the overlap between the concept to be
learned and its transformation by the side information map.

In the present paper, we consider a general learning model with a side information map and
incorporate side information into the PAC learning-theoretic setting. The objective is to show
improvement in the learning rate bounds of classical learning theory when side information is
present. We show that the quantitative rate improvements in the special case studied in [12] carry
over qualitatively to the PAC framework; there is an improvement in learning rate bounds that
depends on the amount of overlap in concepts introduced by the side information mapping. After
formulating the problem precisely in Section 2, we present the main results in Sections 3 and 4.
Section 3 gives rate bounds of the form Cje " while Section 4 treats bounds of the form

Cie™ in the large deviations setting. In these sections we make the simplifying assumption that
the side information map preserves the probability measure governing the sampling of training
data, as in the example treated in [12]. We show in Section 5 how this can be relaxed.

Similar side information learning problems have not (to the knowledge of the authors) been
considered before, but there are some papers that are close to some aspects of the side information
problem. In the presence of side information the training phase utilizes non-i.i.d. data. Meir [13]
has studied a learning problem with dependent data. Due to the dependency in the data learning is
slower than with an i.i.d. sample. In our case the aim is to show that side information speeds
learning. For dependent data see also the paper by Campi and Kumar [5]. For related learning
problems see also Blum and Mitchell [4] and learning with hints by Abu-Mostafa [1-3] as well as
more theoretical work by Ratsaby and Maiorov [15]. As the focus of this paper is the exponential
term in the uniform convergence rate we share similar aims with Vayatis [18] and Vayatis and
Azencott [20], who has studied distribution dependent Vapnik—Chervonenkis bounds.

2. Preliminary definitions

We shall use the formulation of PAC learning and the notation found in [21]. Let € be a
concept class, a class of subsets of a space X, and let 7 €% be an unknown target concept to be

learned. An i.i.d. sample xi, ..., X, is drawn according to a probability distribution P (known or
unknown) on X and an oracle returns I7(xy), ..., Ir(x,), where I is the characteristic function of
T. Based on the multi-sample {(x, I7(x1)), ..., (X, I7(xm))} an algorithm forms an estimate

hy for the unknown 7. The classification error of 4, is the probability dp(T,h,,) = P(TAhy,)
that 4, will misclassify a future random sample drawn from P. The PAC learning error is
Err b, = P"{xe X";dp(T, h,,) > ¢}, the probability that 4, misclassifies with probability greater
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than ¢. The quality of /4, is evaluated by the learning rate lr(m,¢) = supp.4 Err A, and PAC
learning theory provides upper bounds on the size of Err(h,m), often independent of P, thus
allowing one to calculate the training sample size needed to achieve an error rate ¢ with a specified
confidence level.

We introduce next the formal model of learning with side information. Assume that
there is a known mapping s: X - X and that the oracle classifies both x and s(x). We refer
to the sample value s(x) as the side information. The problem again is to derive bounds on
the training sample size needed to achieve a given error rate. The learner can now use the
observation {(xy,Ir(x1), I7(s(x1)))s .-y (Xm, I7(Xm), I7(s(xm)))} to form an estimate h,, for the
target T, but only needs to classify correctly a future unseen x-sample (not s(x)). Clearly,
when side information is available, the algorithm chooses from a smaller and more probably
accurate set of concepts, and hence it should operate more efficiently. The question is, how
much better and how does the improvement of efficiency depend on the particular learning
problem?

An example of such a situation arises naturally in PAC learning formulations of linear systems
identification. Here one is interested in training a linear system to map a sequence of inputs to an
output at a final time. However the training data may contain the outputs at all intermediate
times; these supply additional information, but the map from the input sequence to the full output
sequence need not be classified.

Let A = h,AT € ¢AT, the symmetric difference of the concept T to be learned and the estimate

J,,. The analysis of an example in [12] demonstrated that there are two important factors for
improvement of the learning rate when side information is present:

(i) the overlap of A4 and s~'(4)
P(s"'(4))

(i) uniform upper and lower bounds on —pray - for Aeo/, where .o/ = CAT.

The results in this paper state improvement theorems for general learning spaces and algorithms

under assumptions concerning (i) and (ii). Our methods follow PAC learning methodology, as
treated in Vidyasagar. The learning rates for consistent algorithms are connected to the uniform
convergence of empirical probabilities by the following inequality:

P"{xe X™;3A consistent, dp(4)>¢}

>¢
Aed

ZIA (x,-)=0 =

Similarly, for learning problems in which zero empirical errors (i.e., consistency) cannot be
assumed, the error of the best classifier is bounded by the uniform convergence of empirical
probabilities and we study (see Section 4)

>8/2}.

1 m
<P xeX™ sup EZ 14(x;) — P(A)
i=1

m

1
P"xeX™; sup |— 14(x;) — P(A4
{rexsnll 3= 1,05 - i
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In general, in concept learning bounds of the form

P xeX"™; sup — > " 14(x;) — P(A)|>e p < Cre ™, (2.1)
ety 1a(x)=0" =1
or
1 2
P"xeX™; sup |— 14(x;)) — P(A)|=¢ p < Cie ", 2.2
{ Aegm;/m)()}l 22

the exponential term comes from a permutation argument or Hoeffding’s inequality, and the
constant C; is usually a combinatorial term describing the richness of the class .o7.

Note: Throughout the paper, |y| means the absolute value of y, if y is a real number, but the
cardinality of y, if y is a set. It should always be apparent which interpretation is meant.

3. Bounds of type Cje 2"

In this section we study convergence bounds for consistent algorithms, i.e., those that agree
with the observed data. The proof follows the technique by Vapnik and Chervonenkis [17]. The
best convergence rate without side information was achieved by Shawe-Taylor et al. [16]:

d
Pr sup >¢ <2<@> sdezme’ms,
Aet;y 14(Xi)=0 2d

LS 1,00) - Py
i=1

where m>4d /e and d = VC(.«/), the Vapnik—Chervonenkis dimension of the class .«/ describing
the richness of the class. However, our reference point will be the bound

1 m
Pr sup — Z 14(X;) — P(A)|>e p <2S(A, m*)e™™,
Aesti3 Li(x)=0[" =T
where
S(of,m) = max |[{14(x1),...,14(x); A€o/}

X1yeeesXm

with the same exponential term as the above. This bound allows a more uniform treatment of the
two types of convergence bounds analyzed.
Let X;eX and let s : X —» X be measure preserving. For a given 4 €.« we form

0, with probability py,

Z& = 14(x) + 14(s(x)) = ¢ 1, with probability py,

2, with probability p;.

The following random quantity is essential to the bounds:
Ny (X1, .., X)) = {(ZF, ..., Z4); Ae o}
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The first result shows when side information can effectively double the sample size in the
exponential term, improving the best exponent e~ to e~ 2",

Theorem 3.1. If'1,4(X:) + 14(s(X;))€{0, 1} for all i and s : X — X is measure preserving then for m=2

1
Pr su — 74— P(A)|>e
sup |7 ; !~ P(4)
271121/1:0
<262 E(N (X, .y X )| <28 (ot 2m7) o) e,

The main term in the next result is also an improved exponential convergence rate but there is
also a fast decaying correction term present.

Each Ae./ gives rise to p4 = (po,p1,p2) such that Z4(x) = 1,4(x) + 14(s(x)) =/ with
probability p; for j =0,1,2 and let P, = {p4; A€o/ }.

Theorem 3.2. Assume that s: X - X is measure preserving. If P, = {(po,p1,02);p0o +P1 +p2 =
1,p2<y} and y<e then

Pr sup
Ae.df

SO, zi=0
<2E[1\79{(X1, ceny sz)](efmf(mzp) + C(d7 m2)el+ceﬂm)
<2S(A, 2mP)e ™ 0 4 C(d, mP)e e,

where
1k = %_’_2((1718 —1)(m-1)— k)7

m? —k
C(d,m) = 4* S (o 2mP)e =2,

m=2,p=y+dand m*p<(me—1)(m—1).

We emphasize that the sample size in the “correction term” C(d, m?) = 4¢*' S (of  2m*)e 24

is m?> and hence that term becomes negligible very quickly and the exponential term e~ (m*p)
dominates the bound.

One cannot derive exponential improvement when p, is of size ¢ or larger, as we shall explain later.
Indeed, an example in [12] shows that exponential improvement may not occur. In this example, we
want to learn a target interval (a, b) in (0, 1) when the side information map is s(x) = (x + 1/2) mod 1.
When the length of the target interval T = (a,b) isb — a = 1/2 + ¢/2 and the learning algorithm is the
smallest interval containing positive samples, then for each estimate /,, the p, corresponding to 4, AT
satisfies p, >¢. However, the exact learning rate is asymptotically of the form e,

We begin by proving a fundamental lemma setting up the problem, and then separately we
prove the main theorems.
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The bounds on a training sample of size m are obtained by analyzing a larger sample

(X1, ..., X,2) of length m?. Informally, one thinks of the additional m?> — m training samples
beyond m as a ““ghost”” sample. Throughout, we denote 7'= X1, ..., X,y and V = X1, ooy X
where m>2 and m’' = m*> — m. Now zi ...,quz are i.i.d. random variables and let

., 1 m 1 &

Pr(4) = %Zizl La(Xi) + La(s(Xi)) = 7 2—1: zf
and

.  J— ] &
PV(A> = %Ziil 1A (Xm"l‘i) + lA (S(XWH‘Z)) = 2m/ Z Z}’I:l’l-‘rl
i=1
The probability laws of (7, V)e X m TeX™ and VeX™ will be denoted by P, Py and Py,
respectively.

Lemma 3.3. For me>1

Pr{ sup |Pp(4)—P(A)|=¢cp<2Pr{ sup |Pp(4)—Py(4)|=(1—a)e
Aed Aed
Pr(a4)=0 Pr(4)=0
N —kt _—mi! . =kt _—mlt
<S2E|Ny (X1, ..., X,p)e m em™—k7 11)] <28(of ,m*)E [e m emZkAlD],

where
' = number of 1’s in zf, ...,Zr/:,z,
k* =number of 2’s in zfl, ...,zﬁz,
D ={m* —m=/"+k1>2m* —m)(1 — a)e — k'},
a=1/(me),
Ny(Xi, .0, X,2) ={(Z, ..., Z2); Ae 4}
and

S(of,m) = ( max [{(14(x1) + 14(s(x1)), ..o g () + 1a(s(xm))); A€ A}
Proof. Let p, = |Py(A) — Pr(4)| and denote p = SUP ¢ oy pp(a)—0 P4 AN 0 = supAetQ/;};T(A)zol
P(A) — Pr(A)|. Throughout the proof we assume that

sup |55 1(X) + Li(s(X) — P(4)

1 m
— 14(X; 1 X;
sup 53 LX) 4 La(s(X)

sup |Pr(4) — Py(4)|
Ae .o
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are measurable and ¢ > ¢ implies that there exists a random 4* €./ such that |P(4*) — Pr(4*)|>e.
This happens if the class is permissible, for details see the appendix in [14], which in turn relies on
[6] for proofs.

Step 1: In this step we link the uniform convergence of empirical probabilities in the m sample
to the difference in empirical probabilities between the original sample and the ghost sample of
size m’. This link is the following result taken from Devroye [8].

Proposition 3.4. For all 0<a<1 and ¢>0,

Pr{p>(1—0a)e} > <1 - m>Pr{a>g}.

Proof. The proof'is in Devroye [8]. We recall the essentials. The event {¢ > ¢} implies the existence
of A*e.o/ such that |P(4*) — Pr(4*)|>¢ and on {o>¢}, the following holds: {|Py(4*) —
P(A)|<act={py >0 —a)ef={p>(1 — a)e}.

Thus following Devroye

Pr{p>(1 —a)e} > / 21{/)>(1—a)s}dP:/ //l{p>(1—a)s}dPVdPT
Xﬂl m m
>/ 1{0’>s}/ o> (1) dPydPr
m X’ﬂ

> Pr{o>¢} Airele/PV{]pV(A) — P(A)|<oe} (1 — ).

4oe2m!

Remark 3.5.

Py{|Py(A) — P(A)|>as} :PV{ %m/ Z zZ2 . —P(A) >oc8}

m/(2a8)2 Sd02e2m”’

1 & Var Z4 1
:PV{— 74 2P(4) >2o<g}< W Emi

where the first inequality follows from Chebychev’s inequality and the last from the fact that
Var(Z2)<1.

Step 2: Symmetrization by permuting. The distribution of SUP 4.5 (4)=0 |Pr(A) — Py(A4)] is the
same as the distribution of

m 1 m

1
5 2= 2oty = 5y 2 Zatonri

i=1 i=1

p(r) =

)

sup
NV g4 _
A’Zi:l Zn(f)*o

where 7 is a permutation of the indices from 1 to m?.
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There are m?! possible permutations 7, ..., 7,,. Thus
m?!
. . 1
Pr sup Pr(4) = Py(A)|> (1 —a)e o = E|— > Lipim)> (1003 | -
A" (z)'=0 S

The last expression is equivalent to an expectation of 1(()> (1-4);; Where first a random sample
X1, ..., X,z is drawn and then, independently, a permutation n is drawn from the uniform
distribution on permutations of m? letters.

Step 3: Conditioning. In this step, the average over the permutations is analyzed, the sample
X1, ..., X, being fixed. To emphasize that the sample is fixed, it will be denoted by lower case

letters. FiX X1, ..., Xpm, Xma1, ..., Xmine and let o7 = o/ be a collection of sets such that any two sets
in o/ give rise to different vectors (z{, ...,z z4 ., ..., z2 ). Now we can take the supremum

over ./ instead of over .</. To ease the notation for a moment let P(m, j) = 1/(2m) > ", (njz,-)A
and P(m, j) =1/(2m’) Z, ] (njzm+,) . Then we can bound

m2' 2_: APSE%_ L\ p(m, j)— P, )| > (1-2)e}

m?
= 5 . sup 1 P, j)>(1-a)e
pwor Z,_l retp Lirrp> -

mmz, IZAEQK/Pm/ Lip(r, j)> (1-002)
m2| Z > Yptn =0y Lipor. > (1-2))

J=1 ded

=2 2! Z Lpon, =0y VP, jy>(1-2)e}-

Aeod

Step 4: Counting. Fix a set Ae.o/ and observe that

2|

3

1

oy 2 e p=orLipor. > (1-2)2)

1

J
is the fraction of permutations satisfying
Lipon, =0y Lo, jy>(1-oep = 1. (3.1)

Let /4 and k? denote the number of 1's and 2’s, respectively, in the sequence

A

A A A / . 2 . . . . . .
20y oo 2oy Ty oo > Zopy» Where m+m’ = m~. We call a permutation admissible if it satisfies

(3.1). There are no admissible permutations if /4 + k4 >m’ or (11 + 2k*)/(2m") < (1 — «)e. Hence
we require that m' =11 + k4 >2m'(1 — «)e — k™.
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The fraction of permutations satisfying the above condition is bounded by
m'\ [ m' — k4
<kA > I m \* m — k4 a
<
(m—l—m’)(m—i—m’—k“‘) m+m' m+m — kA

kA 4
m \" m :
— (1= -
< m+m’> < m—i—m’—kA)
m 4 m A
< - S
exp< m+m,k >exp< m+m’—kAl>

—kA —mlA
TP T )P kA )

where in the last line we have substituted m’ = m?* — m.

Now we can collect all the steps together. Note that the cardinality of .o/ is given by
N.(X1, ..., X,2) which is in turn bounded by S(.«7, m?), see Proposition 3.6 below. We get

Pr{ sup |Pr(4)— P(4)|>ep<2Pr{ sup |Pr(4)— Pyp(4)|>( —a)e
Aed Aedd
Pr(4)=0 Pr(4)=0

~ =k —mi*
<2FE [NM(Xl, ey X2 )e m emzk/‘lp]
- —k4 —ml!
< 2S(&/,m2)E[e m e—mzkAlD}, (3.2)
where D = {m?> —m>11 + k4 >2(m?> —m)(1 —a)e —k1}. O

Proposition 3.6.
No(X1, ..., X)) <S(,m)<S(A, 2m),
where
Ja(x) = 14(x) + 14(s(x)),
St m) = max [{(faler) o Sam)): A€ S},

(x17-"3x117
S(of,m) =, max : H(1a(x1), ooy 1a(x)); A€ LY.
XlyeeesXm

Proof. Fix (xi,...,x,,). Each A€.o/ gives rise to
(La(x1), La(s(x1)); s La(ovm), La(s(xm)))
and if

(fa(xr), oo fa (o)) # (far(x1)5 oo S (X))
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for some A, A’ €.o/, then also
(La(ox1), La(s(x1)), ooy La(xm), La(s(xm)))
#(1,4/()61), IA/(S(Xl)), ...,IA/(Xm), IA/(S(Xm))).
Thus
{(fa(x1), oo fa(om)); A€/}
SHMaGrer), La(s (), ooy La(ovm), La(s(xim))); A € 7 }|
< max ]{(IA(xl),lA(xz), ...,lA(XQm,l),lA(XQm));AE,Qf}‘

(X[ 3X25 e e 5 X2m—1,X2m

= S(.eZ,2m).
Hence S(.o/,m)<S(,2m). O

Proof (of Theorem 3.1). If p, =0 then k? =0 and to obtain admissible permutations in the
counting step of Lemma 3.3, /4>2m'(1 — «)e. By substituting o = 1/(me) and m’' = m* —m to
(3.2) and simplifying we obtain the result. [

The remainder of this section gives the proof of Theorem 3.2, which indicates improvement when p,
is small. It turns out that we need to apply various uniform convergence results at different “levels”.

Proof (of Theorem 3.2). Let /4 and k? denote the number of 1's and 2’s in the sequence
A z4 . By taking m' = m*> —m and o = 1/(me) the condition for admissible

Zl,--.7Z;El’Z;31+]’...7 n1+}n/.
permutations in Step 4 of the proof of Lemma 3.3 translates to condition /4 + 2k4>2(me — 1)
(m—1).

Then the upper bound for the fraction of admissible permutations becomes

k1t —ml! k1 —2m
e m em—kA<Le m em?—kA

((me=1)(m=1)=k") _ e—mf(kA)

where

k  2((me—1)(m—1)—k)
f(k) - le + m2 _ k

for 0<k<(me—1)(m—1). f(k)>0 and f is a decreasing function of k. Note that /(0) gives the
bound of the previous theorem.

To proceed we need to solve a technical difficulty. Let gy = /4 /m?, p, = k*/m? and py =
1 — p1 — p>. Unfortunately, the (po, pi, p2) obtained above is not guaranteed to be in P, although
(po,p1,p2) (or A) that generated the sequence zy, ..., z,. is in P,,. However, note that p, —p, in
probability and we get a bound:

Proposition 3.7

Pr{ sup pr — pa >d} <4 (o 2m*)e 2
Aesd
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Proof. We use the bound by Devroye [16]:
Pr{sup Z 1; (A)
Ae#

Now p, = 1/m? Zl 1 1215y and define W' = W*(X;) = 1, if Z{! = 2 and 0 otherwise. This give

rise to a new collection of sets .o/ (namely sets 4 = Ans™ '(4) as A4 ranges through .«7). For any
(X1, ..., X,) the number of vectors in {(W4(xy), ..., WA(x,4)); A€o/} is less than the number of
vectors in {(Z4(x1), ..., Z4(x,4)); A€/} <S(/,2m*), where there the last bound follows from
Proposition 3.6. Hence we can apply Devroye’s result with 4 = .o/, n = m* and S(&/ ,n?) <
S(eZ,2m*). O

2 92,2
>8}<4€48 +48S(£’n2)e 2en )

To solve the technical difficulty the idea is to relax P, to P4 = {(po,p1,p2);p0 +p1 +p2 =1,

pr<y+d} and because Pr{sup .., pr<y+d}=1—4e*" S/, 2m*)e 2" this occurs with
high probability. In the remaining part we have no control over p, and we apply the existing
bounding technique for general {0, 1,2}-valued random variable.

Therefore, if p, <7y, then for d>0 such that p =179+ d<e, Proposition 3.7 gives that

Pr{sup,.., k/m? — y>d} <4 44§ (of  2m*) e~ 24"
Thus
K —mi!
E|:e m em?— kA:| <e—mf(m p) + C(d m ) l+se—ms.

This with Lemma 3.3 implies the result. [

4. Bounds of the form C 1e‘0232

In this section we study the bound

% Z 14(x;) — P(A)
i=1

in the large deviations setting and we indicate how side information can improve the exponential
term. The main results are stated and proved in Section 4.2.

P"{xeX™; sup
Ae o

. 2
28} < Cle cyme

4.1. Preliminaries

Our derivation of convergence bounds in the presence of side information will use the upper
bound from Cramér’s Large Deviation Theorem in conjunction with a bound on uniform
convergence. The Cramér upper bound states that if Y is a random variable and F is a closed set,
then

YeF ;eRr

Pr(F)<2exp{ mf sup (Ay — lnE[e)‘Y])}.
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See the proof of Cramér’s large deviation theorem in any text on large deviations, for example [7].

If Y, ..., Y, areii.d., mean zero, and P(a< Y <b) = 1, then an application of the Cramér bound,
together with simple bounding, yields Hoeffding’s inequality:

n
P<(1 /> Y,~>s> e/ (b=a)’, (4.1)
1

The following lemma of Hoeffding will also be useful.

Lemma 4.1 (Hoeffding’s lemma [9]). Let W1, ..., W, denote a random sample without replacement
and let Y1, ..., Y, be a sample with replacement (and hence i.i.d.) from a finite population of real
values.

If f is continuous and convex then

Recall the learning setup. The random variables X1, ..., X}, are i.i.d. with probability law P, the
transformation s: X ->X is a measure preserving, and Z# =1,4(X;) + 14(s(X;)). Let p=
(po,p1,p2), where p; = P(Z4 = j), represent the probability distribution of Z;! and let

Ai(2) = sup (Az — In E[¢**"]) (4.2)
AeR

E <FE

P

denote the corresponding rate function. Then, letting S, = Z# + --- + Z4, one finds from

applying the Cramér theorem upper bound to Y = S, and using independence that

1
Prq =S, — P(4

28} :Pr{% Sme(—00,2P(A) — 2e]U[2P(A) + 2, oo)}

< 2exp< m zel%r(lif(A)) Aﬁ(z)>, (4.3)
where F,(P(A)) = (—o0,2P(A) — 2¢]U[2P(A) + 2¢, o). Note here that 2mP(A) = E[S,,).

The ultimate goal is to obtain a bound similar to (4.3), uniformly over the concept class, in
order to obtain an upper bound on the learning rate. This section presents a preliminary bound,
from which the learning rate bounds will follow easily. The derivation of this preliminary bound
follows standard procedure; the particular choices of parameter values used here are similar to
those of Devroye [8]. There are two tricks. First, extend the training sample by adding m' =
m? — m “ghost”” samples to get a random sample X, ..., X,» of m? observations. Second, reorder
these m? observations according to an independent random permutation. If the permutations are
chosen from the uniform distribution, the final distribution of the re-ordered sample will be the
same as that of the un-permuted sample. The bound is obtained by conditioning on the original
sample and then applying the Hoeffding lemma and the Cramér bound to its random
permutations.

The following notation will be used for the extended sample of length m?. First, Zf =

14(X;) + 14(s(X;)), for 1<j<m?, as usual. Then, we use p(4) = (Fy(A),P1(A4),>(4)) to denote
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the empirical distribution of (Z{, ..., Z4,); that is

[{s; 1<s<m?, Z4 = j}|

ﬁJ(A): 2 ]:07172

Let P(A) = (1/m?) Z:”:Zl Z1 = B, + 2P, denote the corresponding empirical mean.
Next, consider two sets 4 and B in .«/. Given a sample (X, ..., X,), say that 4 and B are
equivalent if

Aﬁ{Xl,S(Xl), ...,sz,S(sz)} = Bﬂ{Xl,S(Xl), ...,sz,S(sz)},
and choose a finite subclass .7 of .7 such that

() A4, Be.o/ = A and B are not equivalent;
(i) for every A e .o/ there exists Be .o/ that is equivalent to A.

Note that .7 is random; we should really write .2/ (X, ..., X,), but we suppress the dependence
on the sample for notational simplicity.

Lemma 4.2. Let s : X > X be measure preserving. Then for m=2,

“u zi - Se\<dE o e r, i) Ay 4.4
{AEI&; 2m Z } Z ( )

Aecd
where ¢ = (me — 1)(m — 1) /m?

As a consequence,

Corollary 4.3. Let s : X - X be measure preserving. Then for me>1,

1
Prq sup |— =¢
Aed 2m

<4E{]\7,¢/(X1, ...,sz)exp<—m inf inf A% (z))]

m

>z - P4

i=1

Aed zeky P

<4S(ot,2m*)E [exp (—m inf inf A; (z)>] :

Aest zeFy
where
¢ = (me—1)(m—1)/m*,
Not(Xr, oo, X)) = H(Z0, oo, Zo)s At}
S(e/,m) = max H14(x1), ..oy La(xp); A€ AL},

and ;1;; is the rate function (4.2).
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In the statement of Lemma 4.2, it is formally assumed that the integrand is a measurable
random variable. This is not actually necessary for passing to the bound in Corollary 4.3 or, later,
to the bounds in theorems, because these all arise by bounding inequality (4.8) below.

Proof. Step 1: Divide the sample of size m?* into two parts T and V, where T = X1, ..., X}, and
V = Xpusts ..s Xpnomr, Where m' = m?> — m. Define the empirical probabilities associated to each
part:

1 & 1 &
()= g 2 M)+ L) =5, ) 2

and

PV(A) = 2_21711 IA(X'm-H) + IA( ( m+l Z m+i*

The event of interest, that is the event whose probability we are bounding in Lemma 4.2, is

Sup .., |P(4) — Pr(A4)|>e¢. As in Step 1 of Lemma 3.3, one can show that for all 0<a<1 and
e>0,

Pr{p> (1 —a)e}> (1 - m> Pr{jgg{ |P(A) — Pr(A)] >8}, (4.5)
where p = sup 4., |Py(4) — Pr(A4)|. We are now concerned with bounding the probability of the
left-hand side. For convenience of notation, take p , == |Py(A4) — Pr(4)|.

Step 2: Permutations. Let n denote a permutation of the indices from 1 to m?, and let
{m;; 1<i<m?!} be a list of all such permutation. Let (7%, V) denote the sample obtcuned from
(T, V) by permuting the indices using 7 (T, V'), and introduce p ,(n) = |Py. (4) — Pz (A)| and all
other notations similarly. Consider now the sample obtained first by choosing X, ..., X2 i.i.d..
according to P and then permuting them by a drawing = at random from the uniform measure on

the permutation group on m? letters. The result does not change the final distribution of the
sample. Thus

1 m?!
Prip> (1 —a)e} = Pr{ 'lel{m Wé}}. (4.6)

Now bound the fraction of permutations such that p(n) > (1 — )¢ as follows:

2|

| 1
—1 2 Vo> 1) =y Z SUP Ly, () > (1-22)

i=1
S m2! Z Z Ly, (mit) > (1=a)e}

i=1 Ades/(T,V)

- Z mz,Z Lp i(m)> (1-2)e}

AeA(T,V)
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Step 3: Condition on X, ..., X,,» and hence consider the corresponding sequence Z3! ...,quz as
fixed and given. For notational convenience we drop the superscript 4 for a moment. Observe
that the full empirical probability of 4,

; ! m u
P ) =500 (Zj—l Zn(j) + ; Zn<m+j>>

is invariant with respect to the permutation 7 and is equal to what we have defined as P(4). Thus,
Py (A) = 1,(2m2P( ) = 2001 Zn > As a result, we easily find that

2m
1 m
o 2

Let us denote & = (1 — a)em’/m?. If we choose the permutation 7 uniformly from the set of all
permutations of the letters 1, ..., m?, Z(1)s - Zn(m) Will be distributed as a random sample with
replacement of the m? values Zi, ..., Z,» according to the probability distribution p 4. By applying

the Cramér bound (4.3) and then bounding the exponent rate function using Hoeffding’s
lemma (4.7),

1 m2! m
—z{}{ it sup (i~ n B[ Wop}

{pa(m)> (1—“}_{

>(1— oc)s::ll;}. (4.7)

m?! YeF,(P(4)) ieR
<2expy—m inf A5 ,(y) o (4.8)
YEF,(P(4))

Step 4: The proof of Lemma 4.2 now follows by applying (4.7) in step 2 and (4.5) and taking
o= (me)"'. O

Remark. Application of Hoeffding’s inequality in (4.7) implies

! e 2 —2me?+4e+4e? 1
ﬁzz‘:l L) (n) > (1—a)e} S2 exp{—2me” } 27" when o = — (4.9)

This gives a general bound on the convergence rate, but does not capture any improvement due to
the expected magnitude of the overlap probability. Lemma 4.1 includes an explicit minimization
over the rate functions to obtain an improved bound.

4.2. Bounding the uniform convergence, exponential term
So far we have just assumed that the side information mapping s(x) is measure preserving.

However, more has to be assumed for improved rates. In this case we illustrate cases in which we
can derive an improved bound.
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4.2.1. Case 1: “No overlap”
Assume that p4 = (p,1 — p,0) for each Ae.o/. This situation was studied (see [12]) in the
interval learning problem when the target 7<(0,1/2) and s(x) = (x + 1/2) mod 1.

Theorem 4.4. If 1,4(X;) + 14(s(X;))€{0,1} for all i and s: X - X is measure preserving then
for m=2

Pr{ sup
Aeod

<4 CTISEIN (X, .., Xe)]e 8

2 ) )
<4el6a +166S(<Qf, 2m2)e 8me .

2m i=1

izm Ly(X3) + 1a(s(X3)) — P(A)‘ >a}

Proof. In this case, g, = 0 always and for 0<p; <1

X 1 —x
. xIn—+4 (1 — x)ln — if xe€]0,1],
A3(x) = T () = {0y T it a0
0 otherwise.

When py =0 or py = 1, this rate function is infinite. Recall that Fy, = (—oo,p; — 2| U[p) +
2¢/, o0). By convexity,

inf I'; (x) = min{ls, (1 +2¢), [5, (P1 — 2¢')}.

xeFl./

It is well known from Chernoff’s bound that I';, (51 + 2¢') >8¢% and similarly for r(p—2¢).

Thus the exponential term in the bound of Corollary 4.3 is less than e 8me? < o167 +16ep—8ms? ]

In comparison to the best exponent by Devroye [§]

1 m n . .
=37 14(Xi) - P(A)‘ >s} <4 (ot mP)e (4.10)

Pr{ sup 1
m —

Ae.of

we see that we have been able to improve the exponent by the factor of 4. Although the
combinatorial term is worse, that term grows only polynomially in the sample size and the
improvement in the exponential term gives a better bound unless m is small.

4.2.2. Case 2: “Small overlap”
We assume that the overlap of 4 and s~!(4) is small and we consider

[pe% = {(P0>P17P2);Pi>07 E pi = 17p2<ﬁ}
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The rate function for p;>0, po + p1 + p>» = 1 and 0<x<2 is given by
A5(x) =4, 5, ()

= inf {610111—+6111n—+6121n@;6]1+2Q2=X,QO+91+Q2=1}
40,91,92 D V4 y %)

_ l—x+g x—2q q}
= inf l—x+¢gIn——+ (x—2g)In +gln—>3.
max(O,Xl)Sq{( 9 I —p1—p ( 9 D1 1 P2

<min(1,x/2)

We begin by showing that, as in the proof of Theorem 3.2, P, has to be relaxed to allow larger
values for p, and the convergence bound can be split into two parts: one occurring with high
probability in which we have control over p, and one with small probability, where we apply
existing bounding techniques.

Theorem 4.5. If s: X > X is measure preserving and P <{(po,p1,p2);p0o +p1+p2=1,p2 <}

then
{sup >8}
Ae.of

< 4E[N<;/(X1, ey Xpp)e " infpep,, infrer, Aﬁ(x)}
. e 4 AptAg2
S4S(&/, 2m2) —minfyep , , infrer, A5( _|_ C(d m ) 2me”+4e+4e 7

m

5 Z L4(X;) + 14(s(X;)) — P(A)

where m=2, P.q={(po,p1.p2)ipo+p1+p2=1,p2<p+d} and C(d,m)= 4"+ S(o,
2m2)e—2d2m.
Again we note that the sample size in the “correction term” C(d,m?) = 4e*® 4

S(.oZ,2m*)e 2" is m? and hence that term becomes negligible very quickly and the exponential
term from the rate function dominates.

Proof. We relax P, to P4 = {(po,p1,p2);p0 + p1 +p2 = 1,p2<f + d}. By the uniform bound

in Devroye, Pr{sup,.., pr=p + d} <4e*" S (o 2m*)e 2™ We employ the method of the
proof of Lemma 4.2. In case of the rare event {sup,.., p»=f + d} we apply the general bound
(4.8) from Hoeffding’s inequality in bounding the average over the permutations. Then on the
event {sup ., p» < + d} we use the bound of (4.7). Putting these two bounds together gives the
bound of Theorem 4.5. [

Next we illustrate that we can get the exponential term to be as close to e~8m a5 we wish by
taking the bound on p, to be small enough:

Theorem 4.6. For fixed ¢>0, given A>0 there exists a p° such that
min{A}(pi + 2ps + 2¢), Ajs(p1 + 2p> — 26)} > (8 — A)&”

whenever 0<py<p°, p1 >0 and py + p2<1.
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Corollary 4.7. Using Theorem 4.5 if m> M such that ¢ = (me — 1)(m — 1)/m*>> ey and p+ d < p°

then
{sup >8}
Ae.of

<4S(&/, 2m )e7(8flu me3, + C(d, m2)672n182+48+4827

5 Z L4(X;) + 14(s(X;)) — P(A)

where the “correction term” C(d,m?) = 4’4 S(.of , 2m*)e= 24"
Proof. The proof can be found in Appendix A. [

Remark 4.8. In general, finding
min  min{A5(p; + 2p2 + 2¢'), A5(p1 + 2p2 — 2¢')} (4.11)

0<p2<p
0spi<l1
0<p1+p2<1

analytically is very difficult. However, numerical experiments suggest that if we have a bound
p2<pel0.032,1/4] then R(p,e)e*, where
8 8 192p8
R(p7 ) -7 3

may serve as a lower bound for (4.11).

4.2.3. Case 3: “Complete covering”

The case of “complete covering” in which p4 = (0,1 — p,p) for each A€ .o/ parallels the case
p> = 0. Note, however, that the problem is not symmetric due to the relation p; + 2p> = x in the
relative entropy. Methods and ideas in the proofs correspond to ones in the case p, =0 or p;
small. We begin by showing an improvement in the rate function:

Theorem 4.9. If 1,(X;) + 14(s(X;))€{1,2} for all i and s : X - X is measure preserving then for

mz=2
{sup 28}
Aec/

1
<46160 +168E[ Q/(le‘“ sz)]efigmaz
(/

2
<4el6s +163S ’2 ) —8me .

m

D 14(X) + La(s(Xi) — P(A)

i=

Proof. In this case the p = (po,p1,p>) from the Step 3 in the proof of Lemma 4.2 satisfies
PePy = {pa= (po,p1,p2); A€o/} and

E[efm infxepﬂ, /Nll*,(x)] < e infrep, infxepg, A;-(x)

)
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where
292" 4 (r— I L i ve[1,2]
A5(x) = 4,(x) = P 1—p T
0 otherwise.
Because
1
A% = >4
p) -2+ 3x — x?

we conclude that

xiglgn’ Ax(x) = min{A;(p + 2¢"), A5 (p — 2¢)} = 8¢”.

2 2 . 2
As e 8m" L 1087 +16eo=8me” the result follows from Lemma 4.2. O

Also it is possible to show improvement when pg is small as was done in Theorem 4.5.

5. Relaxing the measure preservability assumption

539

We illustrate how the measure preservability assumption on the side information mapping
s(x) : X > X can be relaxed. It turns out that in this case the analysis for both kinds of exponential

bounds can be repeated with a smaller value of e.

Assume that there exists a probability measure Q on X such that the side information mapping
s : X — X is measure preserving with respect to Q. Assume further that P is absolutely continuous
with respect to Q so that the Radon—Nikodym derivative dP/dQ = f satisfies, for some constants
c1,0, 0<c1 <f<c for all xeX. Thus Q is also absolutely continuous with respect to P and

dQ/dP =1/f.
Then

P ) = [ fi0<e0() < P
s71(4) €1
and similarly

Pty = [ f0za0M) 22 PUA)

N

Bounds for consistent algorithms. Assume that there exists a constant p >0 such that P(A4)

implies P(s~'(4))> pe, and then

sup
Aezl

1 m 1 m

— 1 — —2P(A)|>2
FDIRREORED DRN ()| >2
D LA (Xi)+14(s(X:)=0 B a

>é
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i1s contained in

A€o m i=1

1 m 1 m -
sup '%Zil 1A<AX1)+—Z lA(S(Xi))_P(A)—P(S I(A)) >e+ pe
DL (X)) +14(5(X)=0

Hence we can study

¢

 J——
Pr{ sup ’—Z._l Z4 — (P(4) + P(sl(A)))’ >e(1 4 p)
dess m =
\ZZ,,:O
in place of
1 m
Pr{ sup |— ZA—2P(A4)|>2¢ %,
sup [ 1577 2~ 20(a)
> z4=0

and the analysis of Cje™“"* bounds can be repeated with # ¢ in place of ¢. This means that the
improvement from side information is smaller if s(x) is not measure preserving. For example,
Theorem 3.1 translates to:

Theorem 5.1. If 1,4(X;) + 14(s(X;)) €{0, 1} for all i and s : X — X is such that for some p >0, for all
A€o/ P(A)>¢ implies P(s~'(A))> pe then

1 & I4p
Pr su — ZA — P(A)|>¢ » <28(,2m° 62(1+ 2 b)e_m(””)‘.
swp 5 2= ) (<t 207%)
Z:i] z{=0

General convergence bounds. For general convergence bounds assume that there is p <2¢ so that
P(A)<(1+p)P(s7'(A4)) and P(A)= (1 — p)P(s~'(A)) for all Ae.o/ (we can take p = (¢ — ¢1)/c1).
We claim that the event

{sup lz;_”:l 14(X;) +lzzl Ly(s(X7)) — 2P(A)' >2g}
Aeo/|M m
is contained in
{sup o577 1400 + L 377, 14G6000) — PUA) = P ()| 5206 p/2)

Assume that |1 3714 (X;) + L 314 (s(X7)) — 2P(A%)| > 2e. In this case L > 14 (X;) + L 314 (s(X;))
<2P(A%) —2e or L3 14 (X;) + L3514 (s(X;))>2P(A*) + 2e. Using P(4*)<(1 + p)P(s™'(4%))

m
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in the former and P(A4*)> (1 — p)P(s~'(4*)) in the latter case, we get

1 m
m Z[zl Ly (X3) +

2.
2.

Le(s(X) < P(A") + Ps™ (47) =2(e = &)

%Zil L (X3) + % " L (s(X0)> P(A") + P(s7M (A7) + 2(8 - g)
Thus
sup S L) i Li(s(X)) — P(4) — P~ ()| >2(2 7).

That is, we can repeat the analysis of Section 4 with & = ¢ — p/2 is place of ¢. Then, for example,
Theorem 4.4 translates to the following:

Theorem 5.2. If 1,4(X;) + 14(s(X;))€{0,1} for all i and s: X — X is such that for some p<2e,
(1= p)P(s7'(4))<P(A)<(1 4 p)P(s' (A)) for all A€ </, then

Ped sup |5 3 14X+ L6(X) ~ P4 >

2m
<4616(8_'0/2)2—"_16(8_[)/2)S(CQ{, 2m2)e—8m(s—p/2)2‘

6. Open problems and conclusions

In this paper we showed how to incorporate into the learning theoretic complexity bounds
improvements due to side information arising from the classification of a function, called the side
information map, of each new training sample. The essential approach was to use Y 1,4(x;) +
14(s(x;)), where s is the side information mapping, to approximate P(A4).

The analysis of this approximation then led to conditions under which the exponential terms in
the learning bounds are improved and by how much. The degree of improvement depends on the
overlap between target concepts and their images under the side information map. The case of no
overlap yields the strongest improvement. By comparing Theorem 3.1, in which the rate improves
from —me to —2me, to Theorem 4.4, in which the rate improves from —2me> to —8me?, one sees
that ¢ is effectively doubled when there is no overlap. On the other hand, without sufficient control
on overlap, no improvement may occur. This is not caused by a deficiency of technique, because
exact rates obtained earlier in [12] in the analysis of a concrete model problem of learning an
interval on a circle when the antipodal point is classified as side information, show the loss of
improvement. If there are several known side information maps the problem becomes
considerably harder as the overlap phenomenon will be even more complex, and require more
sophisticated overlap assumptions. However, in a simple toy problem? with two suitably taken

’In an interval problem take, say, 7' = (0,1/6),s1(x) = x + 1/3mod 1,s3(x) = x +2/3mod 1, and use the smallest
interval containing positive original samples or side information translates as an approximation of the target. Apply
similar reasoning as in [12] to the intervals T,s7!(T) = s2(T) and s3(T) = 51(T).



542 P. Kuusela, D. Ocone | Journal of Computer and System Sciences 68 (2004) 521-545

side information maps the best improvement from the standard exp(—me) bound is exp(—3me),
suggesting that further side information will increase the effective size of ¢ yet further.

Our analysis considered a restricted class of side information maps. In particular, we assumed
that the side information map was measure preserving or almost measure preserving. Inevitably
such an assumption translates into an assumption on the underlying measure. It would be
interesting to see how distribution dependent results, such as [20] and [19] compare.

In another direction, one can imagine side information of a very different type than that
generated by a side information map. For other problems, and even for the problems considered
here, one could consider instead refining analysis of the polynomially growing combinatorial term
in Learning Theory convergence bounds. The idea would be to use side information to restrict the
Vapnik—Chervonenkis (VC) dimension of the class. The dissertation [11] introduced a modified
VC-dimension where side information acted as a complexity constraint. However, in examples
considered it appeared that side information was not as restrictive as expected.

Incorporating side information into empirical VC-dimension analysis might be more promising.
A recent paper [10] introduced improved sample complexities through a stopping time which is
based on available data. One may ask if such an approach can also be applied to side information
problems. A data dependent approach could also be applied to the problem of empirically
determining a bound on the overlap probability p;, so as to apply the error bounds when sufficient
upper bounds on p, are not known a priori, because the data will restrict the set of possible
concepts. Clearly, the possibility of doing this is tied very closely to the geometry of the underlying
space X and the structure of the side information map, and requires a data dependent formulation
of the rates problem.

Appendix A. Proof of Theorem 4.6

Proof. First for p;>0, p»>0, min{A; , (p1 +2p>+2¢), A, , (p1 +2p> — 2¢)} is a continuous

function on p; and p,. We begin by studying the rate function as (p;, p,) approaches the corner
(0,0) or (1,0).
First let (p1,p2)—(0,0). Then

4, p7(p1 + 2py + 2e)

= inf {qolnp—Jrq 1np—+q21np—7q1+292 1+ 2py + 2, qu—l}

q0,91,92
and ¢; + 2¢2—2¢ as (p1,p2) — (0,0). There exists r<ry = &~ '2%/* such that p} + p3 < (2r)” implies

that g; >¢/2 or ¢g» >¢/4. Then by using xIn(x/p)>xInx> — 1/e for pe(0,1) and the fact that
qIn(q/p)>32 when ¢>¢/4 and p<2rp, we have

2
qoln—+q1 ln—+6121n—> ——+32
Po P1 P2

Hence 4, , (p1 +2p2 + 2¢)>16. Observe that as (p1,p2) —(0,0) we need not study 4, , (p1 +
2p> — 2¢) as by definition 4, , (x) = oo if x¢[0,2].
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Similarly, as (p1,p2)—(1,0), g1 + 292 = p1 +2p> +2¢—1 + 2¢. Because ¢; <1, there exists
r<ro such that (1 —p1)2 +pi< (21’)2 implies that ¢>>e¢/2. Then again ¢ an—g +q 1n!q)—i +
q 1nZ—§> — 2+ 32 and hence A, o (P1+2py + 28) > 16.

Finally, when ¢; 4+ 2¢» = p1 + p2 — 2e > 1 — 2¢ there exists r <ry such that (1 —pl)2 +pi< (2r)2
implies that ¢; <1 — &. Hence either ¢y >¢/2 or ¢, >¢/2 and by repeating the above argument we
conclude that A,  (p1 + 2p> — 2¢) > 16.

Now we take neighborhoods Voq) = {(p1,p2);p} +p3< (2r),p1 +pa<1,p1>0,p,>0} and
Vi = {(p1,p2); (1 —p1)2 +p%<(2r)2,p1 +p2<1,p1>0,p,>0}, where r is such that
(p1,p2) € V(0p) implies that min{A,  (p1 +2p2+2¢), 4, , (p1 +2p2 — 2¢)} > 16>8¢%, and V()
similarly.

Fix p; such that r<p;<1—r and assume that py>0 and p,>0. For x<2, 4, . (x) =
F(x,q(x)), where

l—x+g¢g X —2q

q
F(x,q)=(1—-x+¢g)n 4+ (x — 2¢g)In +¢gln— A.l
(x,q) = ( q) T —— (x —2q) 5 el (A.1)

and ¢(x) is the unique solution in (max{0,x —1},x/2) of 0F/dq(x,4) =0. OF/9q(x,q§) =0
implies that
Gx)(1 +4(x) = x) _ pop>
(x=24(x)" P

Fix p; >0 and as p, —0 either §(x)—0 or 1 4+ §(x) — x—0. The solution minimizing the relative
entropy is ¢(x)—0.

We claim that §(x) —0 uniformly in p, provided that p; €[r, 1 — r]. This can be seen by actually
solving for ¢(x) by using the quadratic formula. Thus

b+ VB~ dac
g(x) = o :

where p = popa/p3,a=1—4p, b =1 — x +4xp and ¢ = —px? and the correct sign is taken to give
the solution in (max{0,x — 1},x/2). Now 2a=7r* if p,<r?/8. For p1e[r,1 —r], p<p>/r* and as
p2—0, p—0 uniformly in p; and hence also |§(x)| -0 as p—0. Hence ¢(x)— 0 uniformly in p; as
p2>—0, provided that p;efr,1 —r].

Let x = p; +2p> +2¢. Then ¢(x) -0, 1 4+ g(x) —x—>1— (p1 +2¢) and x — §(x) >p; + 2¢ as
p>—0. Thus

1 — . .
Ay (%) = (1 —x+4(x))n #—I—_q(piz) + (x — 2¢(x))In > + é(x)ln%

1 - + 2¢ + 2¢
S(1=(p + 23))IHL + (pr + 2¢)In 2! = A _o(p1 + 2¢)

x —24(x)

uniformly in py and 4, , (p1 + 2p> — 2¢) similarly.
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We have previously shown that min{4, _o(p1 + 2¢), 4, _,(p1 — 2¢)} > 8¢? and thus by taking p,
small enough

min{A;  (p1 +2¢), 4, , (p1 —2e)}>(8 — 2)er.
prl = 0,

X 1 -2 X X
= 1——)1n 2 +>In-2
( 2 l—pz 2 p2
and
1 — + +
A;1:0(2p2 +2¢) = (1 - (P2 +8))]1’1#+ (pz +s)ln$—> o0
- 2

as p, —0 establishing the result for p; =0. O
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