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Learning with side information: PAC learning bounds
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Abstract

This paper considers a modification of a PAC learning theory problem in which each instance of the
training data is supplemented with side information. In this case, a transformation, given by a side-
information map, of the training instance is also classified. However, the learning algorithm needs only to
classify a new instance, not the instance and its value under the side information map. Side information can
improve general learning rates, but not always. This paper shows that side information leads to the
improvement of standard PAC learning theory rate bounds, under restrictions on the probable overlap
between concepts and their images under the side information map.
r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Probably Approximately Correct (PAC) learning theory studies algorithms that train on
randomly generated data sets with the goal of learning to classify new, randomly presented
instances with a small probability of error. Standard PAC theory assumes that the training sample
is a string of independent and identically distributed (i.i.d.) random variables and that the training
data and the instances to be classified both come from the same probability distribution. In this
paper we study a variation of the standard problem in which the training data include extra
information, called side information, which does not need to be classified. The side information
learning model can be stated quite generally, but we focus on side information generated by
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classification of the output of a fixed, known transformation acting on the data. Such a problem
occurs for example in simple learning theory formulations of classification by linear systems.
In the companion paper [12], we studied improvement of learning rates for the simple, concrete

problem of learning an interval on a circle, when the antipodal point of each sample is provided as
side information. In this problem, one is able to calculate exact learning rates for particular
classification algorithms and compare them to the learning rates without side information. The
analysis shows that, in general, one expects exponential improvement of rates, but that the degree
of improvement depends delicately on the concept class and the distribution or class of
distributions P from which samples are drawn. In some cases, the exponential improvement
vanishes. The main factor affecting the improvement rate is the overlap between the concept to be
learned and its transformation by the side information map.
In the present paper, we consider a general learning model with a side information map and

incorporate side information into the PAC learning-theoretic setting. The objective is to show
improvement in the learning rate bounds of classical learning theory when side information is
present. We show that the quantitative rate improvements in the special case studied in [12] carry
over qualitatively to the PAC framework; there is an improvement in learning rate bounds that
depends on the amount of overlap in concepts introduced by the side information mapping. After
formulating the problem precisely in Section 2, we present the main results in Sections 3 and 4.
Section 3 gives rate bounds of the form C1e

�c2me; while Section 4 treats bounds of the form

C1e
�c2me2 in the large deviations setting. In these sections we make the simplifying assumption that

the side information map preserves the probability measure governing the sampling of training
data, as in the example treated in [12]. We show in Section 5 how this can be relaxed.
Similar side information learning problems have not (to the knowledge of the authors) been

considered before, but there are some papers that are close to some aspects of the side information
problem. In the presence of side information the training phase utilizes non-i.i.d. data. Meir [13]
has studied a learning problem with dependent data. Due to the dependency in the data learning is
slower than with an i.i.d. sample. In our case the aim is to show that side information speeds
learning. For dependent data see also the paper by Campi and Kumar [5]. For related learning
problems see also Blum and Mitchell [4] and learning with hints by Abu-Mostafa [1–3] as well as
more theoretical work by Ratsaby and Maiorov [15]. As the focus of this paper is the exponential
term in the uniform convergence rate we share similar aims with Vayatis [18] and Vayatis and
Azencott [20], who has studied distribution dependent Vapnik–Chervonenkis bounds.

2. Preliminary definitions

We shall use the formulation of PAC learning and the notation found in [21]. Let C be a
concept class, a class of subsets of a space X ; and let TAC be an unknown target concept to be
learned. An i.i.d. sample x1;y; xm is drawn according to a probability distribution P (known or
unknown) on X and an oracle returns ITðx1Þ;y; ITðxmÞ; where IT is the characteristic function of
T : Based on the multi-sample fðx1; ITðx1ÞÞ;y; ðxm; ITðxmÞÞg an algorithm forms an estimate
hm for the unknown T : The classification error of hm is the probability dPðT ; hmÞ ¼ PðTDhmÞ
that hm will misclassify a future random sample drawn from P: The PAC learning error is
Err hm ¼ Pmf %xAX m; dPðT ; hmÞ4eg; the probability that hm misclassifies with probability greater
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than e: The quality of hm is evaluated by the learning rate lrðm; eÞ ¼ supTAC Err hm; and PAC
learning theory provides upper bounds on the size of Errðh;mÞ; often independent of P; thus
allowing one to calculate the training sample size needed to achieve an error rate e with a specified
confidence level.
We introduce next the formal model of learning with side information. Assume that

there is a known mapping s : X-X and that the oracle classifies both x and sðxÞ: We refer
to the sample value sðxÞ as the side information. The problem again is to derive bounds on
the training sample size needed to achieve a given error rate. The learner can now use the

observation fðx1; ITðx1Þ; ITðsðx1ÞÞÞ;y; ðxm; ITðxmÞ; ITðsðxmÞÞÞg to form an estimate h̃m for the
target T ; but only needs to classify correctly a future unseen x-sample (not sðxÞ). Clearly,
when side information is available, the algorithm chooses from a smaller and more probably
accurate set of concepts, and hence it should operate more efficiently. The question is, how
much better and how does the improvement of efficiency depend on the particular learning
problem?
An example of such a situation arises naturally in PAC learning formulations of linear systems

identification. Here one is interested in training a linear system to map a sequence of inputs to an
output at a final time. However the training data may contain the outputs at all intermediate
times; these supply additional information, but the map from the input sequence to the full output
sequence need not be classified.

Let A ¼ h̃mDTACDT ; the symmetric difference of the concept T to be learned and the estimate

h̃m: The analysis of an example in [12] demonstrated that there are two important factors for
improvement of the learning rate when side information is present:

(i) the overlap of A and s�1ðAÞ
(ii) uniform upper and lower bounds on Pðs�1ðAÞÞ

PðAÞ for AAA; where A ¼ CDT :

The results in this paper state improvement theorems for general learning spaces and algorithms
under assumptions concerning (i) and (ii). Our methods follow PAC learning methodology, as
treated in Vidyasagar. The learning rates for consistent algorithms are connected to the uniform
convergence of empirical probabilities by the following inequality:

Pmf %xAX m; (A consistent; dPðAÞ4eg

pPm
%xAX m; sup

AAAP
1AðxiÞ¼0

1

m

Xm

i¼1
1AðxiÞ � PðAÞ

�����
�����4e

8>><
>>:

9>>=
>>;:

Similarly, for learning problems in which zero empirical errors (i.e., consistency) cannot be
assumed, the error of the best classifier is bounded by the uniform convergence of empirical
probabilities and we study (see Section 4)

Pm
%xAX m; sup

AAA

1

m

Xm

i¼1
1AðxiÞ � PðAÞ

�����
�����4e=2

( )
:
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In general, in concept learning bounds of the form

Pm
%xAX m; sup

AAA;
P

1AðxiÞ¼0

1

m

Xm

i¼1
1AðxiÞ � PðAÞ

�����
�����Xe

8<
:

9=
;pC1e

�c2me; ð2:1Þ

or

Pm
%xAX m; sup

AAA

1

m

Xm

i¼1
1AðxiÞ � PðAÞ

�����
�����Xe

( )
pC1e

�c2me2 ; ð2:2Þ

the exponential term comes from a permutation argument or Hoeffding’s inequality, and the
constant C1 is usually a combinatorial term describing the richness of the class A:
Note: Throughout the paper, jyj means the absolute value of y; if y is a real number, but the

cardinality of y; if y is a set. It should always be apparent which interpretation is meant.

3. Bounds of type C1e
�c2me

In this section we study convergence bounds for consistent algorithms, i.e., those that agree
with the observed data. The proof follows the technique by Vapnik and Chervonenkis [17]. The
best convergence rate without side information was achieved by Shawe-Taylor et al. [16]:

Pr sup
AAA;

P
1AðXiÞ¼0

1

m

Xm

i¼1
1AðXiÞ � PðAÞ

�����
�����4e

8<
:

9=
;p2

em

2d

 �d

ede2
ffiffiffiffi
2d

p
e�me;

where mX4d=e and d ¼ VCðAÞ; the Vapnik–Chervonenkis dimension of the class A describing
the richness of the class. However, our reference point will be the bound

Pr sup
AAA;

P
1AðXiÞ¼0

1

m

Xm

i¼1
1AðXiÞ � PðAÞ

�����
�����4e

8<
:

9=
;p2SðA;m2Þe�me;

where

SðA;mÞ ¼ max
x1;y;xm

1Aðx1Þ;y; 1AðxmÞ;AAAf gj j

with the same exponential term as the above. This bound allows a more uniform treatment of the
two types of convergence bounds analyzed.
Let XiAX and let s : X-X be measure preserving. For a given AAA we form

ZA
i ¼ 1AðxÞ þ 1AðsðxÞÞ ¼

0; with probability p0;

1; with probability p1;

2; with probability p2:

8><
>:

The following random quantity is essential to the bounds:

ÑAðX1;y;Xm2Þ ¼ jfðZA
1 ;y;ZA

m2Þ;AAAgj:
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The first result shows when side information can effectively double the sample size in the

exponential term, improving the best exponent e�me to e�2me:

Theorem 3.1. If 1AðXiÞ þ 1AðsðXiÞÞAf0; 1g for all i and s : X-X is measure preserving then for mX2

Pr sup
AAAPm

i¼1 ZA
i
¼0

1

2m

Xm

i¼1
ZA

i � PðAÞ
�����

�����4e

8>><
>>:

9>>=
>>;

p2e2ð1þeÞe�2meE½ÑAðX1;y;Xm2Þ�p2SðA; 2m2Þe2ð1þeÞe�2me:

The main term in the next result is also an improved exponential convergence rate but there is
also a fast decaying correction term present.

Each AAA gives rise to %pA ¼ ðp0; p1; p2Þ such that ZAðxÞ ¼ 1AðxÞ þ 1AðsðxÞÞ ¼ j with
probability pj for j ¼ 0; 1; 2 and let PA ¼ f %pA;AAAg:

Theorem 3.2. Assume that s : X-X is measure preserving. If PA ¼ fðp0; p1; p2Þ; p0 þ p1 þ p2 ¼
1; p2pgg and goe then

Pr sup
AAAPm

i¼1 ZA
i
¼0

1

2m

Xm

i¼1
ZA

i � PðAÞ
�����

�����4e

8>><
>>:

9>>=
>>;

p2E½ÑAðX1;y;Xm2Þ�ðe�mf ðm2rÞ þ Cðd;m2Þe1þee�meÞ
p2SðA; 2m2Þe�mf ðm2rÞ þ Cðd;m2Þe1þee�me;

where

f ðkÞ ¼ k

m2
þ 2ððme� 1Þðm � 1Þ � kÞ

m2 � k
;

Cðd;mÞ ¼ 4e4d2þ4dSðA; 2m2Þe�2d2m;

mX2; r ¼ gþ d and m2rpðme� 1Þðm � 1Þ:

We emphasize that the sample size in the ‘‘correction term’’ Cðd;m2Þ ¼ 4e4d2þ4dSðA; 2m4Þe�2d2m2

is m2 and hence that term becomes negligible very quickly and the exponential term e�mf ðm2rÞ

dominates the bound.
One cannot derive exponential improvement when p2 is of size e or larger, as we shall explain later.

Indeed, an example in [12] shows that exponential improvement may not occur. In this example, we
want to learn a target interval ða; bÞ in ð0; 1Þ when the side information map is sðxÞ ¼ ðx þ 1=2Þmod 1:
When the length of the target interval T ¼ ða; bÞ is b � a ¼ 1=2þ e=2 and the learning algorithm is the
smallest interval containing positive samples, then for each estimate h̃m the p2 corresponding to h̃mDT

satisfies p2Xe: However, the exact learning rate is asymptotically of the form e�me:
We begin by proving a fundamental lemma setting up the problem, and then separately we

prove the main theorems.
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The bounds on a training sample of size m are obtained by analyzing a larger sample

ðX1;y;Xm2Þ of length m2: Informally, one thinks of the additional m2 � m training samples
beyond m as a ‘‘ghost’’ sample. Throughout, we denote T ¼ X1;y;Xm and V ¼ Xmþ1;y;Xmþm0 ;

where mX2 and m0 ¼ m2 � m: Now ZA
1 ;y;ZA

m2 are i.i.d. random variables and let

P̂TðAÞ ¼ 1

2m

Xm

i¼1 1AðXiÞ þ 1AðsðXiÞÞ ¼
1

2m

Xm

i¼1
ZA

i

and

P̂V ðAÞ ¼ 1

2m0

Xm0

i¼1 1AðXmþiÞ þ 1AðsðXmþiÞÞ ¼
1

2m0

Xm0

i¼1
ZA

mþi:

The probability laws of ðT ;VÞAX m2

; TAX m and VAX m0
will be denoted by P; PT and PV ;

respectively.

Lemma 3.3. For me41

Pr sup
AAA

P̂T ðAÞ¼0

jP̂TðAÞ � PðAÞjXe

8><
>:

9>=
>;p2 Pr sup

AAA
P̂T ðAÞ¼0

jP̂TðAÞ � P̂V ðAÞjXð1� aÞe

8><
>:

9>=
>;

p2E ÑAðX1;y;Xm2Þe
�kA

m e
�mlA

m2�kA 1D

� �
p2S̃ðA;m2ÞE e

�kA

m e
�mlA

m2�kA1D

� �
;

where

lA ¼ number of 1’s in zA
1 ;y; zA

m2 ;

kA ¼ number of 2’s in zA
1 ;y; zA

m2 ;

D ¼fm2 � mXcA þ kA42ðm2 � mÞð1� aÞe� kAg;
a ¼ 1=ðmeÞ;

ÑAðX1;y;Xm2Þ ¼ jfðZA
1 ;y;ZA

m2Þ;AAAgj
and

S̃ðA;mÞ ¼ max
ðx1;y;xmÞ

jfð1Aðx1Þ þ 1Aðsðx1ÞÞ;y; 1AðxmÞ þ 1AðsðxmÞÞÞ;AAAgj:

Proof. Let rA ¼ jP̂V ðAÞ � P̂TðAÞj and denote r ¼ supAAA;P̂T ðAÞ¼0 rA and s ¼ supAAA;P̂T ðAÞ¼0j
PðAÞ � P̂TðAÞj: Throughout the proof we assume that

sup
AAA

1

2m

Xm

i¼1 1AðXiÞ þ 1AðsðXiÞÞ � PðAÞ
����

����
sup
AAA

1

2m

Xm

i¼1 1AðXiÞ þ 1AðsðXiÞÞ

sup
AAA

jP̂TðAÞ � P̂V ðAÞj
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are measurable and s4e implies that there exists a random A�AA such that jPðA�Þ � P̂TðA�Þj4e:
This happens if the class is permissible, for details see the appendix in [14], which in turn relies on
[6] for proofs.

Step 1: In this step we link the uniform convergence of empirical probabilities in the m sample
to the difference in empirical probabilities between the original sample and the ghost sample of
size m0: This link is the following result taken from Devroye [8].

Proposition 3.4. For all 0oao1 and e40;

Prfr4ð1� aÞegX 1� 1

4a2e2m0

� �
Prfs4eg:

Proof. The proof is in Devroye [8]. We recall the essentials. The event fs4eg implies the existence
of A�AA such that jPðA�Þ � P̂TðA�Þj4e and on fs4eg; the following holds: fjP̂V ðA�Þ �
PðA�ÞjpaegDfrA�4ð1� aÞegDfr4ð1� aÞeg:
Thus following Devroye

Prfr4ð1� aÞegX
Z

X m2
1fr4ð1�aÞegdP ¼

Z
X m

Z
X m0

1fr4ð1�aÞegdPV dPT

X

Z
X m

1fs4eg

Z
X m0

1fr4ð1�aÞegdPV dPT

XPTfs4eg inf
AAA

PVfjP̂V ðAÞ � PðAÞjpaeg 1� 1
4a2e2m0

� �
:

Remark 3.5.

PVfjP̂V ðAÞ � PðAÞj4aeg ¼PV

1

2m0

Xm0

i¼1
ZA

mþi � PðAÞ
�����

�����4ae

( )

¼PV

1

m0

Xm0

i¼1
ZA

mþi � 2PðAÞ
�����

�����42ae
( )

p
VarZA

mþi

m0ð2aeÞ2
p

1

4a2e2m0;

where the first inequality follows from Chebychev’s inequality and the last from the fact that
VarðZÞp1:

Step 2: Symmetrization by permuting. The distribution of supA;P̂T ðAÞ¼0 jP̂TðAÞ � P̂V ðAÞj is the
same as the distribution of

bðpÞ :¼ sup
A;
Pm

i¼1 ZA
pðiÞ¼0

1

2m

Xm

i¼1
ZA

pðiÞ �
1

2m0

Xm0

i¼1
ZA

pðmþiÞ

�����
�����;

where p is a permutation of the indices from 1 to m2:
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There are m2! possible permutations p1;y; pm2!: Thus

Pr sup
A;
Pm

i¼1 ðpZiÞA¼0
jP̂TðAÞ � P̂V ðAÞj4ð1� aÞe

8<
:

9=
; ¼ E

1

m2!

Xm2!

j¼1
1fbðpjÞ4ð1�aÞeg

" #
:

The last expression is equivalent to an expectation of 1fbðpjÞ4ð1�aÞeg where first a random sample

X1;y;Xm2 is drawn and then, independently, a permutation p is drawn from the uniform

distribution on permutations of m2 letters.
Step 3: Conditioning. In this step, the average over the permutations is analyzed, the sample

X1;y;Xm2 being fixed. To emphasize that the sample is fixed, it will be denoted by lower case

letters. Fix x1;y; xm; xmþ1;y;xmþm0 and let ĀCA be a collection of sets such that any two sets

in Ā give rise to different vectors ðzA
1 ;y; zA

m; zA
mþ1;y; zA

mþm0 Þ: Now we can take the supremum

over Ā instead of over A: To ease the notation for a moment let Pðm; jÞ ¼ 1=ð2mÞ
Pm

i¼1 ðpjziÞA

and Pðm0; jÞ ¼ 1=ð2m0Þ
Pm0

i¼1 ðpjzmþiÞA: Then we can bound

1

m2!

Xm2!

j¼1
sup

A;Pðm; jÞ¼0
1fjPðm; jÞ�Pðm0; jÞj4ð1�aÞeg

¼ 1

m2!

Xm2!

j¼1 sup
AAĀ;Pðm; jÞ¼0

1fPðm0; jÞ4ð1�aÞeg

p
1

m2!

Xm2!

j¼1

X
AAĀ;Pðm; jÞ¼0 1fPðm0; jÞ4ð1�aÞeg

¼ 1

m2!

Xm2!

j¼1

X
AAĀ

1fPðm; jÞ¼0g 1fPðm0; jÞ4ð1�aÞeg

¼
X
AAĀ

1

m2!

Xm2!

j¼1
1fPðm; jÞ¼0g1fPðm0; jÞ4ð1�aÞeg:

Step 4: Counting. Fix a set AAĀ and observe that

1

m2!

Xm2!

j¼1
1fPðm; jÞ¼0g1fPðm0; jÞ4ð1�aÞeg

is the fraction of permutations satisfying

1fPðm; jÞ¼0g1fPðm0; jÞ4ð1�aÞeg ¼ 1: ð3:1Þ

Let lA and kA denote the number of 1’s and 2’s, respectively, in the sequence

zA
1 ;y; zA

m; z
A
mþ1;y; zA

mþm0 ; where m þ m0 ¼ m2: We call a permutation admissible if it satisfies

(3.1). There are no admissible permutations if lA þ kA
Xm0 or ðlA þ 2kAÞ=ð2m0Þpð1� aÞe: Hence

we require that m0
XlA þ kA42m0ð1� aÞe� kA:
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The fraction of permutations satisfying the above condition is bounded by

m0

kA

� �
m0 � kA

lA

 !

m þ m0

kA

� �
m þ m0 � kA

lA

 !p m0

m þ m0

� �kA

m0 � kA

m þ m0 � kA

� �lA

¼ 1� m

m þ m0

� �kA

1� m

m þ m0 � kA

� �lA

p exp � m

m þ m0 kA

� �
exp � m

m þ m0 � kA
lA

� �

¼ exp �kA

m

� �
exp

�mlA

m2 � kA

� �
;

where in the last line we have substituted m0 ¼ m2 � m:

Now we can collect all the steps together. Note that the cardinality of Ā is given by

ÑAðX1;y;Xm2Þ which is in turn bounded by S̃ðA;m2Þ; see Proposition 3.6 below. We get

Pr sup
AAA

P̂T ðAÞ¼0

jP̂TðAÞ � PðAÞj4e

8><
>:

9>=
>;p 2 Pr sup

AAA
P̂T ðAÞ¼0

jP̂TðAÞ � P̂V ðAÞj4ð1� aÞe

8><
>:

9>=
>;

p 2E ÑAðX1;y;Xm2Þe
�kA

m e
�mlA

m2�kA1D

� �

p 2S̃ðA;m2ÞE e
�kA

m e
�mlA

m2�kA1D

� �
; ð3:2Þ

where D ¼ fm2 � mXlA þ kA42ðm2 � mÞð1� aÞe� kAg: &

Proposition 3.6.

ÑAðX1;y;XmÞpS̃ðA;mÞpSðA; 2mÞ;
where

fAðxÞ ¼ 1AðxÞ þ 1AðsðxÞÞ;
S̃ðA;mÞ ¼ max

ðx1;y;xmÞ
jfð fAðx1Þ;y; fAðxmÞÞ;AAAgj;

SðA;mÞ ¼ max
ðx1;y;xmÞ

jfð1Aðx1Þ;y; 1AðxmÞÞ;AAAgj:

Proof. Fix ðx1;y;xmÞ: Each AAA gives rise to

ð1Aðx1Þ; 1Aðsðx1ÞÞ;y; 1AðxmÞ; 1AðsðxmÞÞÞ
and if

ð fAðx1Þ;y; fAðxmÞÞað fA0 ðx1Þ;y; fA0 ðxmÞÞ
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for some A;A0AA; then also

ð1Aðx1Þ; 1Aðsðx1ÞÞ;y; 1AðxmÞ; 1AðsðxmÞÞÞ
að1A0 ðx1Þ; 1A0 ðsðx1ÞÞ;y; 1A0 ðxmÞ; 1A0 ðsðxmÞÞÞ:

Thus

jfð fAðx1Þ;y; fAðxmÞÞ;AAAgj
pjfð1Aðx1Þ; 1Aðsðx1ÞÞ;y; 1AðxmÞ; 1AðsðxmÞÞÞ;AAAgj
p max

ðx1;x2;y;x2m�1;x2mÞ
jfð1Aðx1Þ; 1Aðx2Þ;y; 1Aðx2m�1Þ; 1Aðx2mÞÞ;AAAgj

¼ SðA; 2mÞ:

Hence S̃ðA;mÞpSðA; 2mÞ: &

Proof (of Theorem 3.1). If p2 ¼ 0 then kA ¼ 0 and to obtain admissible permutations in the

counting step of Lemma 3.3, lA42m0ð1� aÞe: By substituting a ¼ 1=ðmeÞ and m0 ¼ m2 � m to
(3.2) and simplifying we obtain the result. &

The remainder of this section gives the proof of Theorem 3.2, which indicates improvement when p2
is small. It turns out that we need to apply various uniform convergence results at different ‘‘levels’’.

Proof (of Theorem 3.2). Let lA and kA denote the number of 1’s and 2’s in the sequence

zA
1 ;y; zA

m; z
A
mþ1;y; zA

mþm0 : By taking m0 ¼ m2 � m and a ¼ 1=ðmeÞ the condition for admissible
permutations in Step 4 of the proof of Lemma 3.3 translates to condition lA þ 2kA42ðme� 1Þ
ðm � 1Þ:
Then the upper bound for the fraction of admissible permutations becomes

e
�kA

m e
�mlA

m2�kApe
�kA

m e
�2m

m2�kAððme�1Þðm�1Þ�kAÞ ¼ e�mf ðkAÞ;

where

f ðkÞ ¼ k

m2
þ 2ððme� 1Þðm � 1Þ � kÞ

m2 � k

for 0pkpðme� 1Þðm � 1Þ: f ðkÞ40 and f is a decreasing function of k: Note that f ð0Þ gives the
bound of the previous theorem.

To proceed we need to solve a technical difficulty. Let p̂1 ¼ cA=m2; p̂2 ¼ kA=m2 and p̂0 ¼
1� p̂1 � p̂2: Unfortunately, the ðp̂0; p̂1; p̂2Þ obtained above is not guaranteed to be in PA although
ðp0; p1; p2Þ (or A) that generated the sequence z1;y; zm2 is in PA: However, note that p̂2-p2 in
probability and we get a bound:

Proposition 3.7

Pr sup
AAA

p̂2 � p24d

� �
p4e4d2þ4dSðA; 2m4Þe�2d2m2

:
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Proof. We use the bound by Devroye [16]:

Pr sup
ÂAB

1

n

Xn

i¼1
1ÂðXiÞ � PðÂÞ

�����
�����4e

( )
p4e4e

2þ4eSðB; n2Þe�2e2n2 :

Now p̂2 ¼ 1=m2
Pm2

i¼1 1fZA
i
¼2g and define W A

i ¼ W AðXiÞ ¼ 1; if ZA
i ¼ 2 and 0 otherwise. This give

rise to a new collection of sets A (namely sets Â ¼ A-s�1ðAÞ as A ranges through A). For any

ðx1;y;xm4Þ the number of vectors in fðW Aðx1Þ;y;W Aðxm4ÞÞ;AAAg is less than the number of
vectors in fðZAðx1Þ;y;ZAðxm4ÞÞ;AAAgpSðA; 2m4Þ; where there the last bound follows from
Proposition 3.6. Hence we can apply Devroye’s result with B ¼ Â; n ¼ m2 and SðÂ; n2Þp
SðA; 2m4Þ: &

To solve the technical difficulty the idea is to relax PA to PA;d ¼ fðp0; p1; p2Þ; p0 þ p1 þ p2 ¼ 1;

p2pgþ dg and because PrfsupAAA p̂2pgþ dgX1� 4e4d2þ4dSðA; 2m4Þe�2d2m2

this occurs with
high probability. In the remaining part we have no control over p̂2 and we apply the existing
bounding technique for general f0; 1; 2g-valued random variable.
Therefore, if p2pg; then for d40 such that r ¼ gþ doe; Proposition 3.7 gives that

PrfsupAAA kA=m2 � g4dgp4e4d2þ4dSðA; 2m4Þe�2d2m2

:
Thus

E e
�kA

m e
�mlA

m2�kA

� �
pe�mf ðm2rÞ þ Cðd;m2Þe1þee�me:

This with Lemma 3.3 implies the result. &

4. Bounds of the form C1e
�c2e

2

In this section we study the bound

Pm
%xAX m; sup

AAA

1

m

Xm

i¼1
1AðxiÞ � PðAÞ

�����
�����Xe

( )
pC1e

�c2me2

in the large deviations setting and we indicate how side information can improve the exponential
term. The main results are stated and proved in Section 4.2.

4.1. Preliminaries

Our derivation of convergence bounds in the presence of side information will use the upper
bound from Cramér’s Large Deviation Theorem in conjunction with a bound on uniform
convergence. The Cramér upper bound states that if Y is a random variable and F is a closed set,
then

PrðFÞp2 exp � inf
yAF

sup
lAR

ðly � ln E½elY �Þ
� �

:
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See the proof of Cramér’s large deviation theorem in any text on large deviations, for example [7].
If Y1;y;Yn are i.i.d., mean zero, and PðapYpbÞ ¼ 1; then an application of the Cramér bound,
together with simple bounding, yields Hoeffding’s inequality:

P ð1=nÞ
Xn

1

YiXe

 !
pe�2ne2=ðb�aÞ2 : ð4:1Þ

The following lemma of Hoeffding will also be useful.

Lemma 4.1 (Hoeffding’s lemma [9]). Let W1;y;Wm denote a random sample without replacement
and let Y1;y;Ym be a sample with replacement (and hence i.i.d.) from a finite population of real

values.
If f is continuous and convex then

E f
Xm

i¼1
Wi

 !" #
pE f

Xm

i¼1
Yi

 !" #
:

Recall the learning setup. The random variables X1;y;Xm are i.i.d. with probability law P; the

transformation s : X-X is a measure preserving, and ZA
i ¼ 1AðXiÞ þ 1AðsðXiÞÞ: Let %p ¼

ðp0; p1; p2Þ; where pj ¼ PðZA
i ¼ jÞ; represent the probability distribution of ZA

i and let

L�
%pðzÞ ¼ sup

lAR

ðlz � ln E½elZA �Þ ð4:2Þ

denote the corresponding rate function. Then, letting Sm ¼ ZA
1 þ?þ ZA

m; one finds from
applying the Cramér theorem upper bound to Y ¼ Sm and using independence that

Pr
1

2m
Sm � PðAÞ

����
����Xe

� �
¼Pr 1

m
SmAð�N; 2PðAÞ � 2e�,½2PðAÞ þ 2e;NÞ

� �

p 2 exp �m inf
zAFeðPðAÞÞ

L�
%pðzÞ

� �
; ð4:3Þ

where FeðPðAÞÞ ¼ ð�N; 2PðAÞ � 2e�,½2PðAÞ þ 2e;NÞ: Note here that 2mPðAÞ ¼ E½Sm�:
The ultimate goal is to obtain a bound similar to (4.3), uniformly over the concept class, in

order to obtain an upper bound on the learning rate. This section presents a preliminary bound,
from which the learning rate bounds will follow easily. The derivation of this preliminary bound
follows standard procedure; the particular choices of parameter values used here are similar to

those of Devroye [8]. There are two tricks. First, extend the training sample by adding m0 ¼
m2 � m ‘‘ghost’’ samples to get a random sample X1;y;Xm2 of m2 observations. Second, reorder

these m2 observations according to an independent random permutation. If the permutations are
chosen from the uniform distribution, the final distribution of the re-ordered sample will be the
same as that of the un-permuted sample. The bound is obtained by conditioning on the original
sample and then applying the Hoeffding lemma and the Cramér bound to its random
permutations.

The following notation will be used for the extended sample of length m2: First, ZA
j ¼

1AðXjÞ þ 1AðsðXjÞÞ; for 1pjpm2; as usual. Then, we use p̂ðAÞ ¼ ð #p0ðAÞ; #p1ðAÞ; #p2ðAÞÞ to denote
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the empirical distribution of ðZA
1 ;y;ZA

m2Þ; that is

#pjðAÞ ¼ jfs; 1pspm2;ZA
s ¼ jgj

m2
; j ¼ 0; 1; 2:

Let P̂ðAÞ ¼ ð1=m2Þ
Pm2

i¼1 ZA
i ¼ #p1 þ 2 #p2 denote the corresponding empirical mean.

Next, consider two sets A and B in A: Given a sample ðX1;y;Xm2Þ; say that A and B are
equivalent if

A-fX1; sðX1Þ;y;Xm2 ; sðXm2Þg ¼ B-fX1; sðX1Þ;y;Xm2 ; sðXm2Þg;

and choose a finite subclass Â of A such that

(i) A;BAÂ ) A and B are not equivalent;
(ii) for every AAA there exists BAÂ that is equivalent to A:

Note that Â is random; we should really write ÂðX1;y;Xm2Þ; but we suppress the dependence
on the sample for notational simplicity.

Lemma 4.2. Let s : X-X be measure preserving. Then for mX2;

Pr sup
AAA

1

2m

Xm

i¼1
ZA

i � PðAÞ
�����

�����Xe

( )
p4E

X
AAÂ

e
�m inf

zAFe0 ðP̂ðAÞÞ L
�
p̂ðAÞ

2
4

3
5 ð4:4Þ

where e0 ¼ ðme� 1Þðm � 1Þ=m2:

As a consequence,

Corollary 4.3. Let s : X-X be measure preserving. Then for me41;

Pr sup
AAA

1

2m

Xm

i¼1
ZA

i � PðAÞ
�����

�����Xe

( )

p4E ÑAðX1;y;Xm2Þexp �m inf
AAA

inf
zAFe0

*L�
%p ðzÞ

� �� �

p4SðA; 2m2ÞE exp �m inf
AAA

inf
zAFe0

*L�
%p ðzÞ

� �� �
;

where

e0 ¼ ðme� 1Þðm � 1Þ=m2;

ÑAðX1;y;Xm2Þ ¼ jfðZA
1 ;y;ZA

m2Þ;AAAgj;
SðA;mÞ ¼ max

x1;y;xm

jf1Aðx1Þ;y; 1AðxmÞ;AAAgj;

and *L�
%p is the rate function (4.2).
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In the statement of Lemma 4.2, it is formally assumed that the integrand is a measurable
random variable. This is not actually necessary for passing to the bound in Corollary 4.3 or, later,
to the bounds in theorems, because these all arise by bounding inequality (4.8) below.

Proof. Step 1: Divide the sample of size m2 into two parts T and V ; where T ¼ X1;y;Xm and

V ¼ Xmþ1;y;Xmþm0 ; where m0 ¼ m2 � m: Define the empirical probabilities associated to each
part:

P̂TðAÞ :¼ 1

2m

Xm

i¼1
1AðXiÞ þ 1AðsðXiÞÞ ¼

1

2m

Xm

i¼1
ZA

i

and

P̂V ðAÞ :¼ 1

2m0

Xm0

i¼1 1AðXmþiÞ þ 1AðsðXmþiÞÞ ¼
1

2m0

Xm0

i¼1
ZA

mþi:

The event of interest, that is the event whose probability we are bounding in Lemma 4.2, is

supAAA jPðAÞ � P̂TðAÞjXe: As in Step 1 of Lemma 3.3, one can show that for all 0oao1 and
e40;

Prfr4ð1� aÞegX 1� 1

4a2e2m0

� �
Pr sup

AAA
jPðAÞ � P̂TðAÞj4e

� �
; ð4:5Þ

where r ¼ supAAA jP̂V ðAÞ � P̂TðAÞj:We are now concerned with bounding the probability of the
left-hand side. For convenience of notation, take rA :¼ jP̂VðAÞ � P̂TðAÞj:

Step 2: Permutations. Let p denote a permutation of the indices from 1 to m2; and let

fpi; 1pipm2!g be a list of all such permutation. Let ðTp;VpÞ denote the sample obtained from
ðT ;VÞ by permuting the indices using p ðT ;VÞ; and introduce rAðpÞ ¼ jP̂VpðAÞ � P̂TpðAÞj and all
other notations similarly. Consider now the sample obtained first by choosing X1;y;Xm2 i.i.d..
according to P and then permuting them by a drawing p at random from the uniform measure on

the permutation group on m2 letters. The result does not change the final distribution of the
sample. Thus

Prfr4ð1� aÞeg ¼ Pr
1

m2!

Xm2!

i¼1 1frðpiÞ4ð1�aÞeg

� �
: ð4:6Þ

Now bound the fraction of permutations such that rðpÞ4ð1� aÞe as follows:

1

m2!

Xm2!

i¼1
1frðpiÞ4ð1�aÞeg ¼

1

m2!

Xm2!

i¼1
sup
AAA

1frAðpiÞ4ð1�aÞeg

p
1

m2!

Xm2!

i¼1

X
AAAðT ;VÞ

1frAðpi iÞ4ð1�aÞeg

¼
X

AAAðT ;VÞ

1

m2!

Xm2!

i¼1 1frAðpiÞ4ð1�aÞeg;
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Step 3: Condition on X1;y;Xm2 and hence consider the corresponding sequence ZA
1 ;y;ZA

m2 as

fixed and given. For notational convenience we drop the superscript A for a moment. Observe
that the full empirical probability of A;

P̂ðTp;VpÞðAÞ ¼ 1

2ðm þ m0Þ
Xm

j¼1 Zpð jÞ þ
Xm0

j¼1
ZpðmþjÞ

 !

is invariant with respect to the permutation p and is equal to what we have defined as P̂ðAÞ: Thus,
P̂VpðAÞ ¼ 1

2m0 2m2P̂ðAÞ �
Pm

j¼1 Zpð jÞ

 �
: As a result, we easily find that

frAðpÞ4ð1� aÞeg ¼ 1

2m

Xm

j¼1
Zpð jÞ � P̂ðAÞ

�����
�����4ð1� aÞe m0

m2

( )
: ð4:7Þ

Let us denote e0 ¼ ð1� aÞem0=m2: If we choose the permutation p uniformly from the set of all

permutations of the letters 1;y;m2; Zpð1Þ;y;ZpðmÞ will be distributed as a random sample with

replacement of the m2 values Z1;y;Zm2 according to the probability distribution p̂A: By applying
the Cramér bound (4.3) and then bounding the exponent rate function using Hoeffding’s
lemma (4.7),

1

m2!

Xm2!

i¼1
1frAðpiÞ4ð1�aÞegp 2 exp � inf

yAFeðP̂ðAÞÞ
sup
lAR

ðlx � lnE el
Pm

i¼1 Wið Þ
h i

Þ
( )

p 2 exp �m inf
yAFeðP̂ðAÞÞ

L�
p̂ðAÞðyÞ

( )
: ð4:8Þ

Step 4: The proof of Lemma 4.2 now follows by applying (4.7) in step 2 and (4.5) and taking

a ¼ ðmeÞ�1: &

Remark. Application of Hoeffding’s inequality in (4.7) implies

1

m2!

Xm2!

i¼1 1frAðpiÞ4ð1�aÞegp2 expf�2me02gp2e�2me2þ4eþ4e2 when a ¼ 1

me
: ð4:9Þ

This gives a general bound on the convergence rate, but does not capture any improvement due to
the expected magnitude of the overlap probability. Lemma 4.1 includes an explicit minimization
over the rate functions to obtain an improved bound.

4.2. Bounding the uniform convergence, exponential term

So far we have just assumed that the side information mapping sðxÞ is measure preserving.
However, more has to be assumed for improved rates. In this case we illustrate cases in which we
can derive an improved bound.
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4.2.1. Case 1: ‘‘No overlap’’

Assume that %pA ¼ ðp; 1� p; 0Þ for each AAA: This situation was studied (see [12]) in the
interval learning problem when the target TCð0; 1=2Þ and sðxÞ ¼ ðx þ 1=2Þmod 1:

Theorem 4.4. If 1AðXiÞ þ 1AðsðXiÞÞAf0; 1g for all i and s : X-X is measure preserving then
for mX2

Pr sup
AAA

1

2m

Xm

i¼1 1AðXiÞ þ 1AðsðXiÞÞ � PðAÞ
����

����Xe
� �

p4e16e
2þ16eE½ÑAðX1;y;Xm2Þ�e�8me2

p4e16e
2þ16eSðA; 2m2Þe�8me2 :

Proof. In this case, p̂2 ¼ 0 always and for 0op1o1

L�
p̂ðxÞ ¼ Gp̂1ðxÞ :¼

x ln
x

p̂1
þ ð1� xÞln 1� x

1� p̂1
if xA½0; 1�;

N otherwise:

8<
:

When p0 ¼ 0 or p0 ¼ 1; this rate function is infinite. Recall that Fe0 ¼ ð�N; p̂1 � 2e0�,½p̂1 þ
2e0;NÞ: By convexity,

inf
xAFe0

G�
p̂1
ðxÞ ¼ minfGp̂1ðp̂1 þ 2e0Þ;Gp̂1ðp̂1 � 2e0Þg:

It is well known from Chernoff’s bound that Gp̂1ðp̂1 þ 2e0ÞX8e02 and similarly for G�
pðp � 2e0Þ:

Thus the exponential term in the bound of Corollary 4.3 is less than e�8me02pe16e
2þ16ee�8me2 : &

In comparison to the best exponent by Devroye [8]

Pr sup
AAA

1

m

Xm

i¼1 1AðXiÞ � PðAÞ
����

����Xe
� �

p4e4eþ4e
2

SðA;m2Þe�2me2 ð4:10Þ

we see that we have been able to improve the exponent by the factor of 4. Although the
combinatorial term is worse, that term grows only polynomially in the sample size and the
improvement in the exponential term gives a better bound unless m is small.

4.2.2. Case 2: ‘‘Small overlap’’

We assume that the overlap of A and s�1ðAÞ is small and we consider

PA ¼ ðp0; p1; p2Þ; piX0;
X

pi ¼ 1; p2pb
n o

:
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The rate function for pi40; p0 þ p1 þ p2 ¼ 1 and 0pxp2 is given by
L�

%pðxÞ ¼L�
p1;p2

ðxÞ

¼ inf
q0;q1;q2

q0 ln
q0

p0
þ q1 ln

q1

p1
þ q2 ln

q2

p2
; q1 þ 2q2 ¼ x; q0 þ q1 þ q2 ¼ 1

� �

¼ inf
maxð0;x�1Þpq
pminð1;x=2Þ

ð1� x þ qÞln 1� x þ q

1� p1 � p2
þ ðx � 2qÞln x � 2q

p1
þ q ln

q

p2

� �
:

We begin by showing that, as in the proof of Theorem 3.2, PA has to be relaxed to allow larger
values for p2 and the convergence bound can be split into two parts: one occurring with high
probability in which we have control over p2 and one with small probability, where we apply
existing bounding techniques.

Theorem 4.5. If s : X-X is measure preserving and PACfðp0; p1; p2Þ; p0 þ p1 þ p2 ¼ 1; p2pbg
then

Pr sup
AAA

1

2m

Xm

i¼1
1AðXiÞ þ 1AðsðXiÞÞ � PðAÞ

�����
�����4e

( )

p4E½ÑAðX1;y;Xm2Þe�m infpAPA
infxAFe0L

�
%pðxÞ�

p4SðA; 2m2Þe�m infpAPA;d
infxAFe0 L

�
%pðxÞ þ Cðd;m2Þe�2me2þ4eþ4e2 ;

where mX2; PA;d ¼ fðp0; p1; p2Þ; p0 þ p1 þ p2 ¼ 1; p2pbþ dg and Cðd;mÞ ¼ 4e4d2þ4d SðA;

2m2Þe�2d2m:

Again we note that the sample size in the ‘‘correction term’’ Cðd;m2Þ ¼ 4e4d2þ4d

SðA; 2m4Þe�2d2m2

is m2 and hence that term becomes negligible very quickly and the exponential
term from the rate function dominates.

Proof. We relax PA to PA;d ¼ fðp0; p1; p2Þ; p0 þ p1 þ p2 ¼ 1; p2pbþ dg: By the uniform bound

in Devroye, PrfsupAAA p̂2Xbþ dgp4e4d2þ4dSðA; 2m4Þe�2d2m2

: We employ the method of the
proof of Lemma 4.2. In case of the rare event fsupAAA p̂2Xbþ dg we apply the general bound
(4.8) from Hoeffding’s inequality in bounding the average over the permutations. Then on the
event fsupAAA p̂2pbþ dg we use the bound of (4.7). Putting these two bounds together gives the
bound of Theorem 4.5. &

Next we illustrate that we can get the exponential term to be as close to e�8me2 as we wish by
taking the bound on p2 to be small enough:

Theorem 4.6. For fixed e40; given l40 there exists a r0 such that

minfL�
%pðp1 þ 2p2 þ 2eÞ;L�

%pðp1 þ 2p2 � 2eÞgXð8� lÞe2

whenever 0op2pr0; p1X0 and p1 þ p2p1:
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Corollary 4.7. Using Theorem 4.5 if m4M such that e0 ¼ ðme� 1Þðm � 1Þ=m24eM and bþ dor0

then

Pr sup
AAA

1

2m

Xm

i¼1
1AðXiÞ þ 1AðsðXiÞÞ � PðAÞ

�����
�����4e

( )

p4SðA; 2m2Þe�ð8�lÞme2
M þ Cðd;m2Þe�2me2þ4eþ4e2 ;

where the ‘‘correction term’’ Cðd;m2Þ ¼ 4e4d2þ4dSðA; 2m4Þe�2d2m2

:

Proof. The proof can be found in Appendix A. &

Remark 4.8. In general, finding

min
0pp2pr
0pp1p1

0pp1þp2p1

minfL�
%pðp1 þ 2p2 þ 2e0Þ;L�

%pðp1 þ 2p2 � 2e0Þg ð4:11Þ

analytically is very difficult. However, numerical experiments suggest that if we have a bound

p2prA½0:032; 1=4� then Rðr; eÞe2; where

Rðr; eÞ ¼ 8

1þ 8r� 8
6

192re

ð1þ 8rÞ3
;

may serve as a lower bound for (4.11).

4.2.3. Case 3: ‘‘Complete covering’’
The case of ‘‘complete covering’’ in which %pA ¼ ð0; 1� p; pÞ for each AAA parallels the case

p2 ¼ 0: Note, however, that the problem is not symmetric due to the relation p1 þ 2p2 ¼ x in the
relative entropy. Methods and ideas in the proofs correspond to ones in the case p2 ¼ 0 or p2
small. We begin by showing an improvement in the rate function:

Theorem 4.9. If 1AðXiÞ þ 1AðsðXiÞÞAf1; 2g for all i and s : X-X is measure preserving then for
mX2

Pr sup
AAA

1

2m

Xm

i¼1
1AðXiÞ þ 1AðsðXiÞÞ � PðAÞ

�����
�����Xe

( )

p4e16e
2þ16eE½ÑAðX1;y;Xm2Þ�e�8me2

p4e16e
2þ16eSðA; 2m2Þe�8me2 :

Proof. In this case the p̂ ¼ ðp̂0; p̂1; p̂2Þ from the Step 3 in the proof of Lemma 4.2 satisfies
p̂APA ¼ f %pA ¼ ðp0; p1; p2Þ;AAAg and

E½e�m infxAFe0
*L�

p̂
ðxÞ�pe�m inf %pAPA

infxAFe0 L
�
%pðxÞ;
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where

L�
%pðxÞ ¼ L�

pðxÞ ¼
ð2� xÞln 2� x

p
þ ðx � 1Þln x � 1

1� p
if xA½1; 2�;

N otherwise:

8<
:

Because

L�
pðxÞ ¼

1

�2þ 3x � x2
X4

we conclude that

inf
xAFe0

L�
pðxÞ ¼ minfL�

pðp þ 2e0Þ;L�
pðp � 2e0ÞgX8e02:

As e�8me02pe16e
2þ16ee�8me2 ; the result follows from Lemma 4.2. &

Also it is possible to show improvement when p0 is small as was done in Theorem 4.5.

5. Relaxing the measure preservability assumption

We illustrate how the measure preservability assumption on the side information mapping
sðxÞ : X-X can be relaxed. It turns out that in this case the analysis for both kinds of exponential
bounds can be repeated with a smaller value of e:
Assume that there exists a probability measure Q on X such that the side information mapping

s : X-X is measure preserving with respect to Q: Assume further that P is absolutely continuous
with respect to Q so that the Radon–Nikodym derivative dP=dQ ¼ f satisfies, for some constants
c1; c2; 0oc1pfpc2 for all xAX : Thus Q is also absolutely continuous with respect to P and
dQ=dP ¼ 1=f :
Then

Pðs�1ðAÞÞ ¼
Z

s�1ðAÞ
fdQpc2QðAÞpc2

c1
PðAÞ

and similarly

Pðs�1ðAÞÞ ¼
Z

s�1ðAÞ
fdQXc1QðAÞXc1

c2
PðAÞ:

Bounds for consistent algorithms. Assume that there exists a constant r40 such that PðAÞ4e
implies Pðs�1ðAÞÞ4re; and then

sup
AAAP

1AðXiÞþ1AðsðXiÞÞ¼0

1

m

Xm

i¼1
1AðXiÞ þ

1

m

Xm

i¼1
1AðsðXiÞÞ � 2PðAÞ

�����
�����42e

8>><
>>:

9>>=
>>;
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is contained in

sup
AAAP

1AðXiÞþ1AðsðXiÞÞ¼0

1

m

Xm

i¼1 1AðXiÞ þ
1

m

Xm

i¼1 1AðsðXiÞÞ � PðAÞ � Pðs�1ðAÞÞ
����

����4eþ re

8>><
>>:

9>>=
>>;:

Hence we can study

Pr sup
AAAP

ZA
i
¼0

1

m

Xm

i¼1 ZA
i � ðPðAÞ þ Pðs�1ðAÞÞÞ

����
����4eð1þ rÞ

8>><
>>:

9>>=
>>;

in place of

Pr sup
AAAP

ZA
i
¼0

1

m

Xm

i¼1 ZA
i � 2PðAÞ

����
����42e

8>><
>>:

9>>=
>>;;

and the analysis of C1e
�c2me bounds can be repeated with 1þr

2
e in place of e: This means that the

improvement from side information is smaller if sðxÞ is not measure preserving. For example,
Theorem 3.1 translates to:

Theorem 5.1. If 1AðXiÞ þ 1AðsðXiÞÞAf0; 1g for all i and s : X-X is such that for some r40; for all

AAA PðAÞ4e implies Pðs�1ðAÞÞ4re then

Pr sup
AAAPm

i¼1 ZA
i
¼0

1

2m

Xm

i¼1
ZA

i � PðAÞ
�����

�����4e

8>><
>>:

9>>=
>>;p2SðA; 2m2Þe2 1þ1þr

2
e

� �
e�mð1þrÞe:

General convergence bounds. For general convergence bounds assume that there is ro2e so that
PðAÞpð1þ rÞPðs�1ðAÞÞ and PðAÞXð1� rÞPðs�1ðAÞÞ for all AAA (we can take r ¼ ðc2 � c1Þ=c1).
We claim that the event

sup
AAA

1

m

Xm

i¼1 1AðXiÞ þ
1

m

Xm

i¼1 1AðsðXiÞÞ � 2PðAÞ
����

����42e
� �

is contained in

sup
AAA

1

m

Xm

i¼1 1AðXiÞ þ
1

m

Xm

i¼1 1AðsðXiÞÞ � PðAÞ � Pðs�1ðAÞÞ
����

����42ðe� r=2Þ
� �

:

Assume that j1
m

P
1A�ðXiÞ þ 1

m

P
1A�ðsðXiÞÞ � 2PðA�Þj42e: In this case 1

m

P
1A�ðXiÞ þ 1

m

P
1A�ðsðXiÞÞ

o2PðA�Þ � 2e or 1
m

P
1A�ðXiÞ þ 1

m

P
1A�ðsðXiÞÞ42PðA�Þ þ 2e: Using PðA�Þpð1þ rÞPðs�1ðA�ÞÞ
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in the former and PðA�ÞXð1� rÞPðs�1ðA�ÞÞ in the latter case, we get
1

m

Xm

i¼1 1A�ðXiÞ þ
1

m

Xm

i¼1 1A�ðsðXiÞÞoPðA�Þ þ Pðs�1ðA�ÞÞ � 2 e� r
2

 �
or

1

m

Xm

i¼1 1A�ðXiÞ þ
1

m

Xm

i¼1 1A�ðsðXiÞÞ4PðA�Þ þ Pðs�1ðA�ÞÞ þ 2 e� r
2

 �
:

Thus

sup
AAA

1

m

Xm

i¼1 1AðXiÞ þ
1

m

Xm

i¼1
1AðsðXiÞÞ � PðAÞ � Pðs�1ðAÞÞ

�����
�����42 e� r

2

 �
:

That is, we can repeat the analysis of Section 4 with *e ¼ e� r=2 is place of e: Then, for example,
Theorem 4.4 translates to the following:

Theorem 5.2. If 1AðXiÞ þ 1AðsðXiÞÞAf0; 1g for all i and s : X-X is such that for some ro2e;
ð1� rÞPðs�1ðAÞÞpPðAÞpð1þ rÞPðs�1ðAÞÞ for all AAA; then

Pr sup
AAA

1

2m

Xm

i¼1 1AðXiÞ þ 1AðsðXiÞÞ � PðAÞ
����

����Xe
� �

p4e16ðe�r=2Þ2þ16ðe�r=2ÞSðA; 2m2Þe�8mðe�r=2Þ2 :

6. Open problems and conclusions

In this paper we showed how to incorporate into the learning theoretic complexity bounds
improvements due to side information arising from the classification of a function, called the side
information map, of each new training sample. The essential approach was to use

P
1AðxiÞ þ

1AðsðxiÞÞ; where s is the side information mapping, to approximate PðAÞ:
The analysis of this approximation then led to conditions under which the exponential terms in

the learning bounds are improved and by how much. The degree of improvement depends on the
overlap between target concepts and their images under the side information map. The case of no
overlap yields the strongest improvement. By comparing Theorem 3.1, in which the rate improves

from �me to �2me; to Theorem 4.4, in which the rate improves from �2me2 to �8me2; one sees
that e is effectively doubled when there is no overlap. On the other hand, without sufficient control
on overlap, no improvement may occur. This is not caused by a deficiency of technique, because
exact rates obtained earlier in [12] in the analysis of a concrete model problem of learning an
interval on a circle when the antipodal point is classified as side information, show the loss of
improvement. If there are several known side information maps the problem becomes
considerably harder as the overlap phenomenon will be even more complex, and require more
sophisticated overlap assumptions. However, in a simple toy problem2 with two suitably taken

ARTICLE IN PRESS

2 In an interval problem take, say, T ¼ ð0; 1=6Þ; s1ðxÞ ¼ x þ 1=3mod 1; s2ðxÞ ¼ x þ 2=3mod 1; and use the smallest
interval containing positive original samples or side information translates as an approximation of the target. Apply

similar reasoning as in [12] to the intervals T ; s�11 ðTÞ ¼ s2ðTÞ and s�12 ðTÞ ¼ s1ðTÞ:
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side information maps the best improvement from the standard expð�meÞ bound is expð�3meÞ;
suggesting that further side information will increase the effective size of e yet further.
Our analysis considered a restricted class of side information maps. In particular, we assumed

that the side information map was measure preserving or almost measure preserving. Inevitably
such an assumption translates into an assumption on the underlying measure. It would be
interesting to see how distribution dependent results, such as [20] and [19] compare.
In another direction, one can imagine side information of a very different type than that

generated by a side information map. For other problems, and even for the problems considered
here, one could consider instead refining analysis of the polynomially growing combinatorial term
in Learning Theory convergence bounds. The idea would be to use side information to restrict the
Vapnik–Chervonenkis (VC) dimension of the class. The dissertation [11] introduced a modified
VC-dimension where side information acted as a complexity constraint. However, in examples
considered it appeared that side information was not as restrictive as expected.
Incorporating side information into empirical VC-dimension analysis might be more promising.

A recent paper [10] introduced improved sample complexities through a stopping time which is
based on available data. One may ask if such an approach can also be applied to side information
problems. A data dependent approach could also be applied to the problem of empirically
determining a bound on the overlap probability p2 so as to apply the error bounds when sufficient
upper bounds on p2 are not known a priori, because the data will restrict the set of possible
concepts. Clearly, the possibility of doing this is tied very closely to the geometry of the underlying
space X and the structure of the side information map, and requires a data dependent formulation
of the rates problem.

Appendix A. Proof of Theorem 4.6

Proof. First for p140; p240; minfL�
p1;p2

ðp1 þ 2p2 þ 2eÞ;L�
p1;p2

ðp1 þ 2p2 � 2eÞg is a continuous
function on p1 and p2: We begin by studying the rate function as ðp1; p2Þ approaches the corner
ð0; 0Þ or ð1; 0Þ:
First let ðp1; p2Þ-ð0; 0Þ: Then

L�
p1;p2

ðp1 þ 2p2 þ 2eÞ

¼ inf
q0;q1;q2

q0 ln
q0

p0
þ q1 ln

q1

p1
þ q2 ln

q2

p2
; q1 þ 2q2 ¼ p1 þ 2p2 þ 2e;

X
qi ¼ 1

� �

and q1 þ 2q2-2e as ðp1; p2Þ-ð0; 0Þ: There exists ror0 ¼ e
8

e�128=e such that p21 þ p22oð2rÞ2 implies
that q14e=2 or q24e=4: Then by using x lnðx=pÞ4x ln x4� 1=e for pAð0; 1Þ and the fact that
q lnðq=pÞ432 when q4e=4 and po2r0; we have

q0 ln
q0

p0
þ q1 ln

q1

p1
þ q2 ln

q2

p2
4� 2

e
þ 32:

Hence L�
p1;p2

ðp1 þ 2p2 þ 2eÞ416: Observe that as ðp1; p2Þ-ð0; 0Þ we need not study L�
p1;p2

ðp1 þ
2p2 � 2eÞ as by definition L�

p1;p2
ðxÞ ¼ N if xe½0; 2�:
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Similarly, as ðp1; p2Þ-ð1; 0Þ; q1 þ 2q2 ¼ p1 þ 2p2 þ 2e-1þ 2e: Because q1p1; there exists
ror0 such that ð1� p1Þ2 þ p22oð2rÞ2 implies that q24e=2: Then again q0 ln

q0
p0
þ q1 ln

q1
p1
þ

q2 ln
q2
p2
4� 2

e
þ 32 and hence L�

p1;p2
ðp1 þ 2p2 þ 2eÞ416:

Finally, when q1 þ 2q2 ¼ p1 þ p2 � 2e-1� 2e there exists ror0 such that ð1� p1Þ2 þ p22oð2rÞ2
implies that q1o1� e: Hence either q04e=2 or q24e=2 and by repeating the above argument we
conclude that L�

p1;p2
ðp1 þ 2p2 � 2eÞ416:

Now we take neighborhoods Vð0;0Þ ¼ fðp1; p2Þ; p21 þ p22oð2rÞ2; p1 þ p2p1; p140; p240g and

Vð1;0Þ ¼ fðp1; p2Þ; ð1� p1Þ2 þ p22oð2rÞ2; p1 þ p2p1; p140; p240g; where r is such that

ðp1; p2ÞAVð0;0Þ implies that minfL�
p1;p2

ðp1 þ 2p2 þ 2eÞ;L�
p1;p2

ðp1 þ 2p2 � 2eÞg416X8e2; and Vð1;0Þ
similarly.
Fix p1 such that rpp1p1� r and assume that p040 and p240: For xp2; L�

p1;p2
ðxÞ ¼

Fðx; q̂ðxÞÞ; where

Fðx; qÞ ¼ ð1� x þ qÞln 1� x þ q

1� p1 � p2
þ ðx � 2qÞln x � 2q

p1
þ q ln

q

p2
ðA:1Þ

and q̂ðxÞ is the unique solution in ðmaxf0; x � 1g;x=2Þ of @F=@qðx; q̂Þ ¼ 0: @F=@qðx; q̂Þ ¼ 0
implies that

q̂ðxÞð1þ q̂ðxÞ � xÞ
ðx � 2q̂ðxÞÞ2

¼ p0p2

p21
:

Fix p140 and as p2-0 either q̂ðxÞ-0 or 1þ q̂ðxÞ � x-0: The solution minimizing the relative
entropy is q̂ðxÞ-0:
We claim that q̂ðxÞ-0 uniformly in p1 provided that p1A½r; 1� r�: This can be seen by actually

solving for q̂ðxÞ by using the quadratic formula. Thus

q̂ðxÞ ¼ �b7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
;

where p ¼ p0p2=p21; a ¼ 1� 4p; b ¼ 1� x þ 4xp and c ¼ �px2 and the correct sign is taken to give

the solution in ðmaxf0; x � 1g; x=2Þ: Now 2aXr2 if p2pr2=8: For p1A½r; 1� r�; ppp2=r2 and as
p2-0; p-0 uniformly in p1 and hence also jq̂ðxÞj-0 as p-0: Hence q̂ðxÞ-0 uniformly in p1 as
p2-0; provided that p1A½r; 1� r�:
Let x ¼ p1 þ 2p2 þ 2e: Then q̂ðxÞ-0; 1þ q̂ðxÞ � x-1� ðp1 þ 2eÞ and x � q̂ðxÞ-p1 þ 2e as

p2-0: Thus

L�
p1;p2

ðxÞ ¼ ð1� x þ q̂ðxÞÞln 1� x þ q̂ðxÞ
1� p1 � p2

þ ðx � 2q̂ðxÞÞln x � 2q̂ðxÞ
p1

þ q̂ðxÞln q̂ðxÞ
p2

-ð1� ðp1 þ 2eÞÞln
1� ðp1 þ 2eÞ

p0
þ ðp1 þ 2eÞln

p1 þ 2e
p1

¼ L�
p2¼0ðp1 þ 2eÞ

uniformly in p1 and L�
p1;p2

ðp1 þ 2p2 � 2eÞ similarly.
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We have previously shown that minfL�
p2¼0ðp1 þ 2eÞ;L

�
p2¼0ðp1 � 2eÞgX8e

2 and thus by taking p2

small enough

minfL�
p1;p2

ðp1 þ 2eÞ;L�
p1;p2

ðp1 � 2eÞgXð8� lÞe2:

If p1 ¼ 0;

L�
p1¼0ðxÞ ¼min ð1� qÞln 1� q

1� p2
þ q ln

q

p2
; 2q ¼ x

� �

¼ 1� x

2

 �
ln
1� x

2

1� p2
þ x

2
ln

x
2

p2

and

L�
p1¼0ð2p2 þ 2eÞ ¼ ð1� ðp2 þ eÞÞln 1� ðp2 þ eÞ

1� p2
þ ðp2 þ eÞln p2 þ e

p2
-N

as p2-0 establishing the result for p1 ¼ 0: &
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