On the Order of the Commutator Subgroup
and the Schur Multiplier of a Finite p-Group

YA. G. BERKOVICH

Department of Mathematics and Computer Science, Bar-Ilan University,
52900 Ramat-Gan, and The Hebrew University of Jerusalem,
Givat Ram, 91904 Jerusalem

Communicated by George Glauberman
Received June 9, 1988

TO MY DEAR FRIEND BORIS M. SCHEIN
ON THE OCCASION OF HIS 50TH BIRTHDAY

Green [Proc. Roy. Soc. Math A 327 (1956), 574–581] proved that if G is a finite p-group of order p^n and $M(G)$ is its Schur multiplier of order $p^{\mu(G)}$, then $m(G) \leq \frac{1}{2}n(n-1)$. We consider, among other things, the case when $m(G) = \frac{1}{2}n(n-1)$ and then prove that if this equality holds, then $G = E(p^n)$, that is, G is an elementary abelian group of order p^n.

We need the following:

Lemma 1 (Schur; see Proposition 4.1.3 in [2]). Let $G = C(p^{e_1}) \times \cdots \times C(p^{e_d})$, where $e_1 \leq \cdots \leq e_d$, $e_1 + \cdots + e_d = n$, and $C(n)$ is a cyclic group of order n. Then $M(G) = C(p^{e_1})^{d-1} \times C(p^{e_2})^{d-2} \times \cdots \times C(p^{e_d})$, where $H^{(1)}$ is a direct product of t copies of a group H and $H^{(0)} = 1$.

Corollary 2. Let G be an abelian group of order p^n as in Lemma 1. Then $m(G) = (d-1)e_1 + (d-2)e_2 + \cdots + e_{d-1} = (n-e_d) + (n+e_d-e_{d-1}) + \cdots + (n-e_d-\cdots-e_2) \leq (n-1) + (n-2) + \cdots + (n-d+1) \leq \frac{1}{2}n(n-1)$. Also, $m(G) = \frac{1}{2}n(n-1) \iff G = E(p^n)$.

We use the following:

Lemma 3 (Wiegold; see Lemma 4.1.12 in [2]). Suppose that $G/Z(G)$ is a p-group of order p^n. Then G' is a p-group and $|G'| = p^t$ for $t \leq \frac{1}{2}n(n-1)$.

Theorem 4. Let G be a finite p-group of order p^n. If $m(G) = \frac{1}{2}n(n-1)$ then $G = E(p^n)$.
Proof. Let Γ be a representation group of G. Then $\Gamma' \cap Z(\Gamma)$ contains a subgroup $M \cong M(G)$ with $\Gamma/M \cong G$. By Lemma 3,

$$p^{(1/2)n(n-1)} = |M| \leq |\Gamma'| \leq p^{(1/2)n(n-1)},$$

and hence $M = \Gamma'$ and $G \cong \Gamma/M = \Gamma'/\Gamma'$ is abelian.

Now $G = E(p^n)$ by Corollary 2.

Theorem 6 investigates a more general situation when $|G/Z(G)| = p^n$ and $|G'| = p^{(1/2)n(n-1)}$.

Let $Z_2(G)$ be the second term of the upper central series of a p-group G.

Lemma 5. Let G be a p-group with $|G/Z(G)| = p^n$. Then $|G'| = p^{(1/2)n(n-1)-s}$, where $s \geq 0$ is an integer and $|(G/Z(G))'| \leq p^{1+s}$. If $|(G/Z(G))'| = p^{1+s}$, then $Z_2(G)/Z(G)$ has exponent p.

Proof. Without loss of generality assume that G is nonabelian. Then $G/Z(G)$ is not cyclic and $n > 1$.

Let z_0 be a fixed element of $Z_2(G) - Z(G)$. For $x \in G$ let $\phi(x) = [x, z_0] = x^{-1}z_0^{-1}xz_0$. Then, by Grün's Lemma, ϕ is a homomorphism of G into $[G, z_0]$. Set $\text{Im } \phi = N$ and $|N| = p^s$. Obviously, $\text{Ker } \phi = C_G(z_0) \supseteq (z_0, Z(G)) > Z(G)$. Therefore $|G : C_G(z_0)| \leq p^{n-1}$. Since $N \cong G/C_G(z_0)$, we obtain $v \leq n - 1$. Let $p^b = |G/N : Z(G/N)|$. Since $z_0NZ(G/N)$, we have $b \leq n - 1$. Now $N = [G, z_0] \leq G'$, so that $|G'| = |N| \cdot |G'/N|$. By induction, $|G'/N| \leq p^{(1/2)b(b-1)}$. Therefore

$$|G'| \leq p^{(1/2)b(b-1)+v}. \quad (1)$$

Since $b \leq n - 1$ and $v \leq n - 1$, we obtain

$$|G'| \leq p^{(1/2)n(n-1)} \quad \text{ and } \quad |G'| = p^{(1/2)n(n-1) - s} \quad (2)$$

with an integer $s \geq 0$. By (1) we have $v \geq \frac{1}{2}n(n-1) - s - \frac{1}{2}b(b-1) \geq \frac{1}{2}n(n-1) - s - \frac{1}{2}(n-1)(n-2) = n - 1 - s$. Hence, $p^{n-1-s} \leq p^v = |N| = |G : C_G(z_0)|$. Since $G/C_G(z_0) \cong N \leq Z(G)$ is abelian, we obtain $G'/Z(G) \leq C_G(z_0)$. Therefore $|G'/Z(G)| \leq |G : C_G(z_0)| \geq p^{n-1-s}$. This inequality implies $|(G/Z(G))'| \leq |G/Z(G)|/p^{n-1-s} = p^s/p^{n-1-s} = p^{s+1}$.

Now let $|(G/Z(G))'| = p^{1+s}$. Since $G'/Z(G) \leq C_G(z_0)$, for every $z_0 \in Z_2(G) - Z(G)$, we have $|G : C_G(z_0)| \leq |G : G'/Z(G)| - |G/Z(G) : (G/Z(G))'| \leq p^{n-2}$. Since $|N| = |G : C_G(z_0)|$, we obtain $v \leq n - 1 - s$. Suppose that $z_0 \notin Z(G)$ for some $z_0 \in Z_2(G) - Z(G)$ (in other words, exp $Z_2(G)/Z(G) > p$). It follows from $z_0NZ(G/N)$, where $N = [G, z_0]$, that $|G/Z(G)| \leq p^{n-2}$. Thus, by Lemma 3 or by induction, $|G'/N| \leq p^{(1/2)n(n-2)(n-3)}$ and $|G'| = |N| \cdot |G'/N| \leq |G : G'/Z(G)| \cdot |G'/N| \leq p^{n-1-s + (1/2)(n-2)(n-3)}$, or $\frac{1}{2}n(n-1) - s \leq n - 1 - s + \frac{1}{2}(n-2)(n-3)$ and $n \leq 2$. Thus $G/Z(G)$ is abelian.
of order \(p^n \leq p^2 \), and \(G = Z_2(G) \). Since \(\exp Z_2(G)/Z(G) > p \), \(G/Z(G) \) is cyclic and \(G \) is abelian, which is a contradiction.

A \(p \)-group \(G \) is called extraspecial if its center \(Z(G) \) coincides with its commutator subgroup \(G' \) and has order \(p \). The order of an extraspecial group is \(p^{1 + 2m} \) and we denote such a group by \(ES(m, p) \).

Theorem 6. Let \(G \) be a \(p \)-group such that \(|G/Z(G)| = p^n \). If \(|G'| = p^{(1/2)n(n-1)} \) then either \(G/Z(G) = E(p^n) \) or \(G/Z(G) = ES(\frac{1}{2}(n-1), p) \).

Proof. We have \(s = 0 \) in notations of Lemma 5. Then, by Lemma 5, \(|(G/Z(G))'| \leq p \).

Let \(G/Z(G) \) be abelian. Take \(z_0 \in G - Z(G) \). If \(z_0^b \notin Z(G) \), then \(b \leq n-2 \) in notations of Lemma 5, so that \(\frac{1}{2}n(n-1) = \log_p |G'| \leq \frac{1}{2}(n-2)(n-3) + (n-2) = \frac{1}{2}(n-1)(n-2) \), which is a contradiction. In this case, \(G/Z(G) = E(p^n) \), an elementary group of order \(p^n \).

Now let \(|G/Z(G))'| = p \). Then, by Lemma 5, \(\exp Z_2(G)/Z(G) = p \). Suppose that \(Z_2(G)/Z(G) \) contains two distinct subgroups \(A/Z(G) \) and \(B/Z(G) \) of order \(p \). Let \(A = \langle z_0, Z(G) \rangle \) and \(B = \langle y_0, Z(G) \rangle \). By (1) we have \(v = n-1 = b \) for every \(z_0 \in G - Z(G) \). Therefore, \(G/C_G(y_0) \) is abelian of order \(p^{n-1} \). Thus \(G' \leq C_G(z_0) \cap C_G(y_0) = Z(G) \) and \(G/Z(G) \) is abelian, which is a contradiction. Therefore, the abelian group \(Z_2(G)/Z(G) \) of exponent \(p \) has the only subgroup of order \(p \), and hence \(|Z_2(G)/Z(G)| = p \). Since \(|(G/Z(G))'| = p \) and \((G/Z(G))' \leq Z_2(G)/Z(G) \), we obtain \((G/Z(G))' = Z_2(G)/Z(G) = Z((G/Z(G))) \) and these are groups of order \(p \). Thus \(G/Z(G) \) is extraspecial of order \(p^n \), that is, \(G/Z(G) = ES(\frac{1}{2}(n-1), p) \).

As a corollary to Theorem 6 we obtain the following:

Theorem 7. Let \(G \) be a \(p \)-group of order \(p^n \) and let \(m(G) = \frac{1}{2}n(n-1) - 1 \). Then either \(G = C(p^2) \) or \(G = ES(1, p) \) of exponent \(p > 2 \).

Proof. Obviously, \(G = C(p^2) \) and \(G = ES(1, p) \) of exponent \(p > 2 \) satisfy our condition (for the latter group, see Theorem 4.7.3 in [2]).

Now let \(m(G) = \frac{1}{2}n(n-1) - 1 \) and let \(\Gamma \) be the representation group of \(G \). Then \(\Gamma'/Z(\Gamma) \) contains a subgroup \(M \cong M(G) \) with \(\Gamma/M \cong G \). Obviously, \(G' \cong \Gamma'/M \) and \(|\Gamma : Z(\Gamma)| \leq |\Gamma : M| = |G| = p^n \), so that \(\log_p |\Gamma'| = \frac{1}{2}n(n-1) - s \geq m(G) = \frac{1}{2}n(n-1) - 1 \), by Lemma 5, and hence \(s \leq 1 \).

Suppose that \(M < Z(\Gamma) \). Then \(|\Gamma : Z(\Gamma)| \leq p^{n-1} \) and, by Lemma 3 or 5,

\[
\frac{1}{2}(n-1)(n-2) \geq \log_p |\Gamma'| \geq \log_p |M| = m(G) = \frac{1}{2}n(n-1) - 1
\]

and \(n \leq 2 \). In this case \(G = C(p^2) \). Now let \(M = Z(\Gamma) \) and suppose that \(G \) is not cyclic. By Lemma 1, \(G \) is not elementary. Therefore \(n > 2 \). If \(G \) is abelian as in Lemma 1, then, since \(d > 1 \) and \(e_d > 1 \), we have
$m(G) = (n - e_1) + \cdots + (n - e_a - \cdots - e_2) \leq (n - 2) + (n - 3) + \cdots + 1 = \frac{1}{2}(n - 1)(n - 2) < \frac{1}{2}n(n - 1) - 1$ as, by our assumption, $n \geq 3$ in the abelian case.

Now suppose that G is not abelian. Then $M < \Gamma'$. Therefore $\frac{1}{2}n(n - 1) - s = \log_p |\Gamma'| > \log_p |M| = \frac{1}{2}n(n - 1) - 1$, and hence $s = 0$. By Theorem 6, $G \cong \Gamma/Z(\Gamma) = \Gamma/M = ES(\frac{1}{2}(n - 1), p)$. If $n > 3$ then, by Theorem 4.7.3 of [2],

$m(G) = 2\left\{\frac{1}{2}(n - 1)\right\}^2 - \frac{1}{2}(n - 1) - 1 = \frac{1}{2}(n - 1)(n - 2) - 1 < \frac{1}{2}n(n - 1) - 1$,

which is a contradiction. Thus $n = 3$ and G is nonabelian of order p^3 and exponent p.

Remark. Theorem 6 solves Exercise 6.41 from the book [3] (for further information in this direction, see exercises at the end of Chapter 6 of [3]).

REFERENCES