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Abstract

This paper describes a timed process algebra called TPAP. The aim of this alge-
bra is to allow the modelisation of real time embedded processes sharing common
resources, and which are sensitive to communication delays and scheduling strate-
gies. Timed broadcasting and process preemption by interruption events are the
two main fundamental notions of the algebra. They allow description of schedulers
and asynchronous communication mediums, thus which can be taken into account
when verifying the real time behaviour of the global system. We first present the
process algebra and discuss its properties. A case study from the avionics area is
then developed using TPAP, and formally verified by translation into the UPPAAL
model checker.

1 Introduction

Design and mastery of embedded systems is a major challenge whose relevance
has increased with the arrival of new generations airplane. Their complexity
stems from their critical, real time and highly distributed and integrated na-
ture. To overcome this complexity, aircraft manufacturers have chosen to build
avionics systems on the federated architecture principle: avionics systems of
modern aircrafts (such as Airbus A340/A330, Boeing B777, EuroFighter Air-
craft, or Rafale. . . ) are mainly composed of functions running in parallel, and
communicating through multiplex data buses, and sharing at set of common
computers. The functional architecture of such systems can be described by
a general term like

S = (S1‖S2 · · · ‖Sn)
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In order to avoid single catastrophic failures, communications between avionics
functions S1 . . .Sn are based on broadcasting (i.e., from one to n non blocking
transmission) through shared asynchronous channels. Unfortunately, these
channels can introduce non deterministic (but necessarily bounded) delays in
the system. Furthermore, avionics functions may share common computers.
Time on such computers is then divided into time slices controlled by one
scheduler per computer. The underlying mechanism is preemption. Accord-
ing to the operating context and to the environment, each scheduler on each
computer decides at any time which function (allocated on this computer) has
to be executed and which function must be preempted. Preemption is then
the main mechanism when dealing with real time embedded systems such as
avionics systems. However, preemption actions can introduce non determinis-
tic delays. Consequently to take into account the functional architecture of the
system is necessary but not sufficient for analyzing the behavior of the global
system. One has to consider also the scheduling strategy executed by each
computer and the communication delays through the communication channels.

Several formalisms have been defined for verifying some properties on real-
time systems. Timed automata [3] allow both to model communication and
the behaviour of processes. Unfortunately, due to the richness of the au-
tomata expressivity, their behaviour is hard to control. Thus it is necessary to
restrict this expressivity to the behaviours which are connected to the studied
problem. So using a process algebra allows to describe more easily real-time
systems we have to study and then to avoid timed automata problems.

Most of the real time process algebras [17,4,15,9,10] adequately capture de-
lays due to process synchronization or action; however, they often abstract
resource-specific details by assuming idealistic operating environment. The
algebra proposed in this paper provides a formal framework that combines
the areas of process algebra and real time scheduling, and thus can help to
reason about systems that are sensitive to deadlines, process interaction, and
resource availability.

To allow preemption mechanism, the process algebra ACSR [7] defined by
P. Brémond-Grégoire and I. Lee uses a combination of priorities and timed
actions which represent resource consuming. Thus if P and Q are two pro-
cesses which use the resource r with respectively priority 2 and 3, then Q
preempts P and is executed on resource r. Another process algebra defined by
M. Buchholtz and al. [8] has been designed to model shared processors. This
algebra is based on the fact that the time can evolve by two different ways:
when using a processor or not. When a process is active (i.e. can be executed
on a processor), the time passes through the processor on which the process is
characterizing execution time. When a process is preempted, it lets the time
to pass independently from the processor. Scheduling strategies are also im-
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plemented using priorities. The computation model of our algebra is based on
the view that a real time embedded system consists of a set of communicating
processes with the same priority, and which may be preempted when receiving
a given message. The preemption mechanism thus formalized is very similar
to the ”abort” instruction of the reactive synchronous language ESTEREL
[5]. The use of shared resources will be modeled by preemption of processes,
and communication will be supported by non blocking broadcasting actions
and timed delays. The execution of a process is then subject to interruptions
sent by the scheduler controlling the resource it uses, i.e., is subject to the
availability of the resource.

The rest of the paper is organized as follows. Section 2 describes the abstract
syntax of the algebra. Some properties like deadlock freeness are discussed. A
strong timed bisimulation and its equational laws are then proposed. After-
wards, section 3 presents an avionics case study formalized i, our algebra and
verified by translation into the UPPAAL model checker [12,1].

2 Timed processes algebra with preemption (TPAP)

2.1 Syntax

Let A be a set of urgent actions representing event transmission. Elements
of A are denoted by a, b, c. . . Let us consider A as a set of co-names defined
by A = {a|a ∈ A}. a in A represents reception of event a. Let us consider
also an invisible action ε such that ε /∈ A ∪ A. ε will be used to denote an
invisible action performed when breaking a delay. A set V = {X,Y, · · ·} of
variables is used for recursive definitions. Finally the time-domain considered
in our algebra is R≥0 and is denoted by T .

Now we can define the expressions of the algebra P , ranged over by P , Q. . . ,
by the following grammar:

P ::= δ | X | aP | aP | IP | P + P | P‖P | recX.P | (P ↑ a)P

where:

• The process δ can do nothing but only idling.

• Two types of actions are defined: actions a ∈ A representing event non
blocking transmission, and actions a ∈ A representing event blocking re-
ception. The process aP executes the urgent action a and behaves like P .
The process aP will behave like P after receiving the event a. Else it idles.

• The process P‖Q can perform actions of P and Q independently, or can
synchronize on complementary actions (like a or a), or can idle if P and Q
are able to do so.

• The process P + Q represents a choice between P and Q. A choice is not
only made by actions but by time too. For instance, if time can progress in
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P more than it can in Q then P + Q may evolve like P .

• I is a closed time interval which denotes a non-deterministic delay with lim-
its in T ∪{∞}. If the upper bound of I is non null, IP may also idle t time
units provided that t less (or equal) than this upper bound. Furthermore,
if its lower limit is zero, the process IP can execute the invisible action ε
and behave like P .

• The process (P ↑ a)Q is a preemption process which behaves like P until
event a is received, and then abandons P and becomes Q. Such an opera-
tion will be useful for describing the behaviour of processes sharing a same
resource (see example in section 3.1). Let R = (P ↑ a)Q, P is called the
preempted subterm of R.

• Finally, the process recX.P is the classical recursive definition which allows
specification of infinite behaviours.

Definition 2.1 (Free Variables)
Let P ∈ P. The set of free variables of P is called free(P ) and is defined by
structural induction on P :

free(δ) = ∅
free(aP ) = free(P )

free(aP ) = free(P )

free(IP ) = free(P )

free(P + Q) = free(P ) ∪ free(Q)

free(P‖Q) = free(P ) ∪ free(Q)

free((P ↑ a)Q) = free(P ) ∪ free(Q)

free(X) = {X}
free(recX.P ) = free(P )\{X}

A term P ∈ P is closed if and only if free(P ) = ∅. A term P ∈ P is reg-
ular if and only if all its parallel and preempted subterms are closed. Let
Pr be the set of regular processes. For instance, P = recX.(aX‖bδ) and
Q = recX.(aX ↑ b)δ are considered to be not regular processes.

Let us now introduce the temporal upper and lower limits of a process.

Definition 2.2 (Upper and lower limits)
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Let U : P → T ∪ {∞} be the upper limit function defined by induction:

U(δ) = ∞ U(IP ) = p if I = [m, p]

U(aP ) = 0 U(aP ) = ∞
U(X) = 0 U(recX.P ) = U(P )

U(P + Q) = max(U(P ),U(Q)) U(P‖Q) = min(U(P ),U(Q))

U((P ↑ a)Q) = U(P )

Let L : P → T ∪ {∞} be the lower limit function defined by induction:

L(δ) = ∞ L(IP ) = m if I = [m, p]

L(aP ) = 0 L(aP ) = 0

L(X) = 0 L(recX.P ) = L(P )

L(P + Q) = min(L(P ),L(Q)) L(P‖Q) = min(L(P ),L(Q))

L((P ↑ a)Q) = L(P )

For a given process P in Pr, U(P ) = N means that P can idle during a
duration t if and only if t ≤ N . Furthermore L(P ) = n means that P must
idle during a duration n, i.e. no action is possible before n time units.

These two functions being defined, we can now introduce the notion of strongly
well-timed processes [17], i.e. processes which cannot prevent time to diverge.
To do so all executions of such processes must perform a non null minimal
delay, i.e. some interval I with strictly positive lower bound. To determine if
a process is strongly well-timed, we define the following predicate.

Definition 2.3 Let swt : P × 2V×{tt,ff} be a predicate defined by induction:

swt(δ, CV,B)

swt(aP,CV,B) ⇔ swt(P,CV,B)

swt(aP,CV,B) ⇔ swt(P,CV,B)

swt(IP,CV,B) ⇔ (L(IP ) > 0 ∧ swt(P,CV,tt)) ∨ swt(P,CV,B)

swt(P + Q,CV,B) ⇔ swt(P,CV,B) ∧ swt(Q,CV,B)

swt(P‖Q,CV,B) ⇔ swt(P,CV,B) ∧ swt(Q,CV,B)

swt((P ↑ a)Q,CV,B) ⇔ swt(P,CV,B) ∧ swt(Q,CV,B)

swt(recX.P,CV,B) ⇔ swt(P,CV,B ∪ {X,ff})
swt(X,CV,B ∪ {X,BX}) ⇔ (BX = tt)

with CV,B = {(X,B)|X ∈ V and B ∈ {tt,ff}} and CV,tt = {(X,B) ∈
CV,B|B = tt}
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Let Pswt = {P ∈ P|swt(P, ∅)} be the set of strongly well-timed processes.

For instance, let P = recX.[0, 2]aX. By definition swt(P, ∅) = ff , i.e. P is not
strongly well-timed. It can perform an infinite number of action a within a
finite duration. Conversely, process Q = recX.[1, 2]aX is strongly well-timed.
It must idle at least one time unit between two consecutive actions.

Let Prswt be the set of regular strongly well-timed processes, formally Prswt =
Pr ∩Pswt. In the following, we only consider processes in Prswt which will be
renamed as TPAP.

2.2 Operational semantic

Elements of T are denoted by t. The operational semantic of TPAP is denoted
by the labeled transition system (Prswt,→) where →⊆ (Prswt×A∪T ∪{ε}×
Prswt) defined in table 1. We write P

a→ P ′ to mean that P may produce

event a and in so doing become P ′. In the same way, we write P
t→ P ′ to

mean that P may idle during t time units and in so doing become P ′.
As explain in previous section, the process aP is waiting for an event a.
Then it becomes P when receiving a from a parallel co-process. Else aP
must idle. Consequently such a behaviour cannot be defined by a relation
aP

a→ Q. We have then to define an auxiliary relation P
a� P ′ where

�⊆ (Prswt × A × Prswt), in order to mean that P waits for event a and
becomes P ′ when receiving a.

The main relation → and the auxiliary relation � are completely defined
by rules in table 1. However let us notice some semantical points:

• Rule 7, aP
a� P , defines the semantics of the reception action: “the process

aP waits for the event a and when receiving it behaves like P”.

• The synchronization of two processes (rules 5c and 5d) is possible when
one transmits an event (relation

a→) and the other is waiting for this event

(relation
a�).

• The rule 10c shows that communication is based on broadcasting: one trans-
mission may be received by several processes at the same time.

• As said before, the choice may be made by time. Following rules 16b and
16c, if P may idle t time units and in so doing become P ′ and if Q cannot
(because t > U(Q)) then P + Q may idle t time units and in so doing
become P ′.

• Invisible action ε is use to “cut” an interval. IP can perform ε at any time
(ε is a persistent action) and in so doing become P if and only if the lower
bound of I is 0 (rule 2).

• Finally, Rules 8 define the preemption mechanisms. Process (P ↑ a)Q can
receive the event a and then behave like Q. However, if no preemption
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(1)
aP

a→ P
a ∈ A

(2)
[0, p]P

ε→ P
(3)

P
b→ P ′

(P ↑ a)Q
b→ (P ′ ↑ a)Q

b ∈ A

(4a)
P

a→ P ′

P + Q
a→ P ′ a ∈ A ∪ {ε} (4b)

Q
a→ Q′

P + Q
a→ Q′ a ∈ A ∪ {ε}

(5a)
P

a→ P ′ Q
a
�/

P‖Q
a→ P ′‖Q

a ∈ A ∪ {ε} (5b)
P

a
�/ Q

a→ Q′

P‖Q
a→ P‖Q′ a ∈ A ∪ {ε}

(5c)
P

a→ P ′ Q
a� Q′

P‖Q
a→ P ′‖Q′ a ∈ A (5d)

P
a� P ′ Q

a→ Q′

P‖Q
a→ P ′‖Q′ a ∈ A

(6)
P [recX.P/X]

a→ P ′

recX.P
a→ P ′ a ∈ A ∪ {ε}

(7)
aP

a� P
a ∈ A

(8a)
(P ↑ a)Q

a� Q
(8b)

P
b� P ′

(P ↑ a)Q
b� (P ′ ↑ a)Q

a �= b

(9a)
P

a� P ′

P + Q
a� P ′ (9b)

Q
a� Q′

P + Q
a� Q′

(10a)
P

a� P ′ Q
a
�/ Q

a
→/

P‖Q
a� P ′‖Q

(10b)
P

a
�/ P

a
→/ Q

a� Q′

P‖Q
a� P ′‖Q

(10c)
P

a� P ′ Q
a� Q′

P‖Q
a� P ′‖Q′ (11)

P [recX.P/X]
a� P ′

recX.P
a� P ′

(12)
δ

t→ δ

(13)
aP

t→ aP

(14)
[m, p]P

t→ [max(0, m − t), p − t]P
t ≤ p (15)

P
t→ P ′

(P ↑ a)Q
t→ (P ′ ↑ a)Q

(16a)
P

t→ P ′ Q
t→ Q′

P + Q
t→ P ′ + Q′

(17)
P

t→ P ′ Q
t→ Q′

P‖Q
t→ P ′‖Q′

(16b)
P

t→ P ′

P + Q
t→ P ′

t > U(Q) (16c)
Q

t→ Q′

P + Q
t→ Q′

t > U(P )

(18)
P [recX.P/X]

t→ P ′

recX.P
t→ P ′

Table 1
Operational semantic rules

occurs, this process executes actions of P (rule 3) or lets time to progress if
P is able to do so. This expression is similar to “abort p when a do q” of
the untimed reactive language ESTEREL [5].
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2.3 Properties

This section discusses some of the model properties defined in [16].

Time Determinism. The time determinism is satisfied if and only if the
resulting process by time passing is uniquely determined.

Proposition 2.4 TPAP is time deterministic, i.e.

∀P, P ′, P ′′, t : (P
t→ P ′ ∧ P

t→ P ′′) ⇒ P ′ = P ′′

Time additivity. The time additivity is satisfied if and only if: a process P
can pass t + t′ time units to the process P ′ if and only if P can pass t time
units to a process Q can pass t′ time units to the process P ′.

Proposition 2.5 TPAP satisfies time additivity, i.e.

∀P, P ′, t, t′ : (∃P ′′ : P
t→ P ′′ ∧ P ′′ t′→ P ′) ⇔ P

t+t′→ P ′

Deadlock-freeness. Deadlock-freeness is satisfied if and only if any process
can execute an action or pass time.

Proposition 2.6 TPAP satisfies deadlock-freeness, i.e.

∀P ∃l ∈ A ∪ {ε} ∪ T ∃P ′ : P
l→ P ′

Finite variability. Finite variability is satisfied if and only if any process
can perform only finitely many actions in a finite time interval.

Proposition 2.7 TPAP satisfies finite variability.

Action urgency. Action urgency is satisfied if and only if there is at least a
process which must execute an action a ∈ A without letting time to pass.

Proposition 2.8 TPAP satisfies action urgency, i.e.

∃P, P ′ ∈ Prswt, a ∈ A,∀t ∈ T : P
a→ P ′ ⇒ P

t
�

Persistency. Persistency is satisfied if and only if time progress cannot sup-
press the ability to perform an action, i.e.

∀P,Q, P ′, t, a : P
a→ P ′ ∧ P

t→ Q⇒ ∃P ′′ : Q
a→ P ′′

TPAP does not satisfy persistency. For instance, process aP + [2, 3]Q can
execute a immediately. But it can also let 2 time units to pass and in so doing
become [0, 1]Q. Then it is not able to perform a.

Meanwhile, invisible action ε is used to “cut” time interval. An delayed process
[0, p]P can perform action ε or idle t time units (t ≤ p) and in so doing become
[0, p− t]P which can still perform ε. We talk about ε-persistency, i.e.

∀P,Q, P ′ : P
ε→ P ′ ∧ P

t→ Q⇒ ∃P ′′ : Q
ε→ P ′′
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2.4 Timed equivalences, congruence and equational laws

This section now introduces the notion of timed equivalence between processes.
Definitions used here are related to works of Milner [14] and Larsen and Wang
[13].

Definition 2.9 (Strong timed equivalence)
A binary relation R is a strong timed simulation if ∀(P,Q) ∈ R ⇒ ∀a ∈
A,∀t ∈ T :

(i) whenever P
a→ P ′,∃Q : Q

a→ Q′ and (P ′, Q′) ∈ R
(ii) whenever P

ε→ P ′,∃Q : Q
ε→ Q′ and (P ′, Q′) ∈ R

(iii) whenever P
t→ P ′,∃Q : Q

t→ Q′ and (P ′, Q′) ∈ R
(iv) whenever P

a� P ′,∃Q : Q
a� Q′ and (P ′, Q′) ∈ R

Symmetrically, the relation R is a strong timed bisimulation. Let ∼ be the
largest strong timed bisimulation. ∼ is called strong timed equivalence.

∼ is a congruence and can be defined by a complete and sound axiomatic given
by table 2 (proofs of congruence, completeness and soundness are omitted in
this paper).

Remark 1: as explained in [11] for a more simple real-time calculus no expan-
sion theorem exists for TPAP, i.e. parallel composition can not be removed
in general. This point may be explained by the use of time interval for mod-
eling non-deterministic delay without explicit clock variables. An immediate
consequence is that TPAP processes cannot be compiled into sequential terms
without using global and explicit clocks.

Remark 2: in order to abstract the invisible action ε, a weak timed equiva-
lence may be defined.

Definition 2.10 (Weak timed equivalence)
Let ⇒ and � defined by:

• P
a⇒ P ′ if P (

ε→)∗ a→ (
ε→)∗P ′

• P
t⇒ P ′ if P (

ε→)∗ t1→ (
ε→)∗ · · · ( ε→)∗ tn→ (

ε→)∗P ′ with t =
∑

i≤n ti

• P
a

� P ′ if P (
ε→)∗ a� (

ε→)∗P ′

A binary relationR is a weak timed simulation if ∀(P,Q) ∈ R ⇒ ∀a ∈ A,∀t ∈
T :

(i) whenever P
a→ P ′,∃Q : Q

a⇒ Q′ and (P ′, Q′) ∈ R
(ii) whenever P

t→ P ′,∃Q : Q
t⇒ Q′ and (P ′, Q′) ∈ R

(iii) whenever P
a� P ′,∃Q : Q

a

� Q′ and (P ′, Q′) ∈ R
Symmetrically, R is a weak timed bisimulation. Let ≈ be the largest weak
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Fig. 1. A control surface system

timed bisimulation.

Unfortunately, ≈ is not a congruence for TPAP since [0, 0][0, 2]Q ≈ [0, 2]Q
but [0, 1]P + [0, 0][0, 2]Q ≈/ [0, 1]P + [0, 2]Q.

3 Example and verification using UPPAAL

The aim of this real-time calculus with preemption introduced in the previ-
ous sections is to allow modelisation and verification of embedded systems
composed of shared resources, schedulers, communication channels, . . . This
section proposes a case study of such a system formally described in TPAP
and verified by using the UPPAAL model checker. This case study was first
explained (in French) in [6].

3.1 An avionics case study

Let us consider a subsystem, part of a whole avionics system, which controls
the ailerons of a plane. This subsystem is pictured in figure 1. It is composed
of:

• two shared computers C1 and C2, which executes all the on-board functions
(F1, Fi, . . . , F2, Fj, . . . )

• two functions F1 and F2 (executed respectively by C1 and C2) which control
the ailerons. F2 is the recovery function of F1 (i.e. which replaces F1 when
F1 fails).

• a controller Ctrl, deciding at any time if F1 fails or not.

• two communication channels, Medium1 and Medium2 which transmit cmd1
and start2 signals from C1 to Ctrl and from Ctrl to C2. Transmission of
each signal needs between 0 and 20 time units through each channel.

In normal mode, F1 is active and F2 is passive (is not executed). F1 sends
periodically a command “cmd1ail” to the ailerons and a message “cmd1” to
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(+1) P + Q ≡ Q + P

(+2) P + (Q + R) ≡ (P + Q) + R

(+3) P + P ≡ P

(↑1) (δ ↑ a)P ≡ aP

(↑2) (aP ↑ a)Q ≡ aQ

(↑3) ((P + Q) ↑ a)R ≡ (P ↑ a)R + (Q ↑ a)R

(‖1) P‖δ ≡ P

(‖2) P‖Q ≡ Q‖P
(‖3) (P‖Q)‖R ≡ P‖(Q‖R)

(‖4) (P + Q)‖R ≡ P‖R + Q‖R
(‖5) aP‖bQ ≡ a(P‖bQ) + b(aP‖Q)

(‖6) aP‖aQ ≡ a(P‖Q)

(‖7) aP‖aQ ≡ a(P‖Q)

(‖8) [0,m]P‖aQ ≡ a([0,m]P‖Q) + [0, 0](P‖aQ)

(‖9) [n, n]P‖[n,m]Q ≡ [n, n]([0, 0]P‖Q) + [n, n](P‖[0,m− n]Q)

(‖10) [n, n]P‖[n + m,n + p]Q ≡ [n, n](P‖[m, p]Q) m > 0

(‖11) IP‖aQ ≡ a(IP‖Q) if L(IP ) > 0

(‖12) aP‖(bQ ↑ a)R ≡ b(aP‖(Q ↑ a)R) + (a(P‖R)

(‖13) aP‖([0,m]Q ↑ a)R ≡ [0, 0](aP‖(Q ↑ a)R) + a(P‖R)

(‖14) aP‖(IQ ↑ a)R ≡ (a(P‖R) if L(IP ) > 0

(recX1) recX.P ≡ P [recX.P/X]

(recX2) if P [Q/X] ≡ Q then Q ≡ recX.P

Table 2
TPAP Axiomatic

Ctrl via Medium1. If F1 fails, no more occurrence of “cmd1” is sent to Ctrl.
After waiting 70 time units, Ctrl sends a “start2” signal to C2. Then F2
becomes active and sends periodically “cmd2” to the ailerons. The system is
then in failure mode. To simplify, we consider that only C1 can fail (Medium1,
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Medium2 and Ctrl are supposed to be reliable).

Fig. 2. Time behaviours of CPU1 and CPU2 in normal mode

Executions on each computer are controlled by a scheduler. These schedulers
send periodically (every 20ms) signals to CPUs (p1 and q1 to CPU1) indicating
which function has to be executed. We assume that there are two time slices
on each CPU. F1 (in normal mode) and F2 (in failure mode) are executed in
the first time slice of each CPU. Other functions (not involved in the ailerons
control and then not considered in the modelisation) are executed in the second
time slices. Figure 2 shows the behaviours of CPU1 and CPU2 in normal
mode.

3.2 Modelisation with TPAP

According to the previous description the system under consideration is com-
posed of seven processes which can be formally defined in TPAP.

F1 and F2 F1 sends “cmd1” and “cmd1ail” and idles. F2 sends “cmd2” and
idles. These behaviours may be defined by the two following expressions:

F1 = cmd1 cmd1ail δ

F2 = cmd2 δ

Ctrl As said, Ctrl waits for the signal “cmd1ctrl” from Medium1. However
if it does not receive any occurrence of “cmd1” for 70 time units, then it
sends “start2”:

Ctrl = recX.(cmd1ctrlX+ timeout start2 δ)‖
recX.(([70, 70]timeout δ) ↑ cmd1ctrl)X

Schedulers Before defining the two CPUs, we have to formalize the be-
haviours of the two schedulers. Each scheduler sends interruptions to CPUs
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every 20 time units: “qi” (respectively “pi”) to interrupt Fi (respectively
the other functions) on Ci.

Sch1 = recX.p1[20, 20]q1[20, 20]X

Sch2 = recX.p2[20, 20]q2[20, 20]X

CPU1 In normal mode, CPU1 executes a sequence T1 which alternates F1
and other functions when receiving signals “p1” and “q1”. As we are not
interested in the behaviour of the other functions, we abstract them by the
idle process. In the failure mode, CPU1 does nothing and is abstracted by
the idle process too. In order to simplify the modelisation, the transition
from normal mode to failure mode is denoted by a single signal “fail” which
can be sent at any time by an external failure process:

Failure = [0,∞)fail δ

T1 = p1 recX.(F1 ↑ q1)(δ ↑ p1)X

CPU1 = (T1 ↑ fail)δ
CPU2 In normal mode, CPU2 executes a sequence T2 which alternates func-

tions not involved in the ailerons control system when receiving signals “p2”
and “q2”. These functions are abstracted by the idle process. In the failure
mode, i.e. when receiving event “start2”, CPU2 executes a new sequence
T2’ which alternates F2 and other functions:

T2 = recX.(δ ↑ q2)(δ ↑ p2)X

T2′ = recX.(F2 ↑ q2)(δ ↑ p2)X

CPU2 = (T2 ↑ start2)T2′

Mediums To model Medium1 and Medium2, we use parallel composition of
several simple channels as shown by Milner [14]. Whenever simple channel
receives a signal, it transmits it after waiting a non-deterministic time t ∈
[0, 20]. Since F1 sends signals every 20 time units and since Ctrl sends signals
at least every 50 time units then only two simple channels are necessary per
medium. We can then define formally the two mediums by:

M1 = recX.cmd1 [0, 20] cmd1ctrl X

M2 = recX.start2ctrl [0, 20] start2 X

Medium1 = M1‖M1

Medium2 = M2‖M2

Finally, the whole system is defined by the composition of the previous pro-
cesses.

System = (CPU1‖CPU2‖Sch1‖Sch2‖Ctrl‖Medium1‖Medium2)

The problem is then to verify two safety properties (see next section) on this
expression when assuming only F1 can fail. The algebraic expression under
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consideration is then System′ = (System‖Failure).

3.3 Verification using UPPAAL

To make verification using UPPAAL, each term of TPAP has to be translated
into timed automata ([3]) used by UPPAAL.

Definition 3.1 (Timed automaton)
A timed automaton is a tuple A =< N , n0, E , C, I > where

• N is a set of nodes

• n0 is the initial node (denoted graphically by double circles)

• C is the set of clocks

• I is the invariant function which associates an invariant at each node

• E is a set of edges, E ⊆ N ×N × Act× 2C × G.
Let e =< s, t, a, rt, gt >∈ E .
· s, t represent the source and target of the edge e.
· a is the action executed by e (a! stands for emission of a and a? stands

for reception of a).
· rt is the set of clock resets.
· gt is the set of guards.

The general translation rules from TPAP to UPPAAL timed automata
are not given here (but will detailed in the long version of this paper). The
timed automata corresponding to the TPAP processes defined in the previous
subsection are pictured in figures 3, 4 and 5.

The ailerons control system is assumed to satisfy two safety properties:

• the aileron should receive a command before 120 time units;

• F2 should work only if F1 does not.

To express these properties, we use the TCTL temporal logic [2]:

ϕ1 = ∀✷(∀✸≤120(cmd1 ∨ cmd2))

ϕ2 = ∀✷(cmd2 → ∀✷¬cmd1)

In order to verify these properties ϕ1 and ϕ2 are translated into timed au-
tomata pictured in figure 6. The final verification consists then in proving
that the “unhappy” states (see figure 6) are unreachable. This verification,
realized with UPPAAL v3.2.1 on a Sun Ultrasparc 10 with 256 Mo memory
needs less than one second for ϕ1 and ϕ2.

4 Conclusion

We have described a time process algebra called TPAP that supports broad-
casting and preemption in a dense time context. The aim of this formal frame-
work is to allow the modelisation and afterward the verification of real time
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q2?
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Fig. 3. Automata of CPU1 (up) and CPU2 (down)

embedded systems composed of loosely coupled communicating processes sen-
sitive to scheduling strategies on shared computing resources. Such scheduling
strategies may be modeled by preemption operations. We have then developed
a small case study translated into UPPAAL timed automata. Verification of
reachability properties by model checking is then available.

However, one of the main lack of our approach is the impossibility to model
temporary preemption, i.e. suspension. The preemption mechanism (P ↑ a)Q
leads to abort P when receiving event a. In that sense, the semantics of such
expression is similar to the ”control C” Unix command. However, real time
operating systems often offer suspension mechanism (similar to the ”control Z”
Unix command), i.e. suspension of activity without losing the current state
of the process. Abortion and suspension are the two fundamental kinds of
preemption necessary to model concrete real time systems. Consequently, the
main perspective of this work is to extend TPAP with a suspension operator,
and to translate it into timed automata.
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Fig. 4. Ctrl automaton (up - left), Sch1 and Sch2 automata (up - center and right)
and mediums automata (down)
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x>=0 u:=0 fail!u==0

Fig. 5. The failure automata
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