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Let R denote a commutative (and associative) ring with 1 and let 4 denote a
finitely generated commutative R-algebra. Let G denote a finite group of R-algebra
automorphisms of A. In the case that R is a field of characteristic 0, Noether con-
structed a finite set of R-algebra generators of the invariants of G. This paper
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INTRODUCTION

Let R, A, and G be as in the abstract. An element which is fixed by every
automorphism in G is called an invariant of G, and A“ denotes the set of
invariants of G in 4. Let {a,, .., a,,} be a finite set of R-algebra generators
of A and let Y, ..., Y,, denote commuting indeterminates. Define

FY,..Y,)=]] I+gla)Y +gla)Y,+ - +g(a,)Y,,).

gelG

Noether [10] proved that

if the non-zero integers are all invertible in R, then A€ is
generated as an R-algebra by the coefficients of
FY,.,Y,). (0.1)

Noether’s proof is an ingenious application of the theorem (due to Waring
[18, p. 13]) that the symmetric polynomials are generated by the elemen-
tary symmetric polynomials. A different proof of (0.1) is described in [ 19,
pp. 275-276], but it is not as short or as direct as Noether’s original proof.

* Deceased. Please direct all correspondence to Professor Michael Filaseta, Department of
Mathematics, University of South Carolina, Columbia, South Carolina 29208.

49

0001-8708/96 $18.00

Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82627237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

50 DAVID R. RICHMAN
This paper generalizes statement (0.1) by proving that

if |G|! is invertible in R, then A€ is generated as an R-algebra
by the coefficients of F( Y, .., ¥,,). (0.2)

The proofs of statement (0.1) cannot be used to establish (0.2), because
they involve dividing by multinomial coefficients which can have arbitrarily
large prime factors.

Noether also proved in [7, pp. 9-10; 11] that

if R is Noetherian, then 4€ is finitely generated as an R-algebra.
(0.3)

As will be shown in this paper, one can deduce easily from (0.3) that

if |G| is invertible in R, then A is finitely generated as an R-algebra.

(0.4)
Now let a,, ..., @, denote elements of 4 such that
A=R[a,,..,a,] and g(a;)e Ra,+ --- + Ra, for every
geGandie{l, .. k}. (0.5)
Such elements «,, ..., a, always exist, because if S is any finite set of R-

algebra generators of A, then we may take {a, .., a,} to be the union of
the sets a(S), as o varies over the elements of G. Campbell et al. [2, 3]
strengthened statement (0.4) by showing that

if |G| is invertible in R, then A€ is generated by the

elements ) g(a$ ---ayt), where (e, ..., ;) varies over all
geqG
k-tuples of non-negative integers such that e, + ---
+ e, <max{ |G|, k|G|(|G| —1)/2}. (0.6)

This paper proves that

if |G| is invertible in R and G is a solvable group, then 4°

is generated by the elements Y g(af ---ay), where
geqG

(e, ..., e;) varies over all k-tuples of non-negative integers

such that e, + --- +¢, <|G|. (0.7)

Statements (0.2) and (0.7) are the main results of this paper. It would be
interesting to determine whether the conclusion of statement (0.7) still
holds when |G| is invertible in R and G is not solvable.
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Let d(R, {a,, .., a;}, G) denote the smallest non-negative number such
that the R-module generated by {a{' ---af:e,+ -+ + e, <d(R, {a,, ... a.},
G)} contains a set of R-algebra generators of 4. Statement (0.3) implies
that d(R, {a,, .., a,}, G) is finite when R is Noetherian and statement (0.7)
implies that d(R, {a,, .., a;}, G) <|G| when |G| is invertible in R and G is
solvable. Let F, denote the finite field of size p. I recently showed [12,
Prop. 8] that, for every prime p and every integer b, there is a finitely
generated F,-algebra A =F,[a,, .., a;] and a group G of automorphisms
of A such that |G| = p and d(F,, {a,, .., a;}, G) > b. Therefore one cannot
remove the assumption in statement (0.7) that |G| is invertible in R.

Smith and Stong [ 14, Theorem 3.2] proved the following result.

Suppose that R is a field of characteristic p>0. If
d(R,{a,, .., a.},G)<p and p does not divide |G|, then
A% is generated by the coefficients of the polynomials

I1 X —h, where L varies over the elements of
he{g(L):geG}

Statements (0.2) and (0.8) imply that, if R is a field and |G| is strictly less
than the characteristic of R, then 4 is generated by the coefficients of the
polynomials mentioned in statement (0.8). Other results about the
invariants of G, in the case that R is a field of characteristic p >0, can be
found in [1, 2, 4, 8, 9, 13]. This list is not intended to be complete; more
references can be found in the cited articles.

Huffman and Sloane [5] have shown that, if G is a primitive group and
R is a field of characteristic 0, then the set of generators described in (0.1)
is (in some sense) close to being optimal. Methods to efficiently compute
generators of the invariants of G, in the case that R is a field of charac-
teristic 0, are described in [6] and [15]. An algorithm for computing
generators of the seminvariants of binary forms is described in [16].

Let m and N denote strictly positive integers and let S, denote the
group of permutations of {1,.., N}. Let {X(i, j): 1<i<N,1<j<m}
denote a set of commuting indeterminates. For every oe€S, and
feR[X(i, j): 1<i<N,1<j<m],let o(f) denote the image of f under the
R-algebra homomorphism which maps X(i, j) to X(a(i), j) for all i, j. The
set of elements fe R[ X(i, j): 1 <i<N,1<j<m] such that a(f)=f for
every g €S, is denoted R[X(i, j): 1 <i<N, 1< j<m]®Y; such elements f
are called vector invariants of S,. The proof of statement (0.1) found in
[ 19, pp. 275-276] and the proof of statement (0.6) found in [2] both rely
on results about the vector invariants of S, (where N =|G|). To prove state-
ment (0.2), this paper also starts by studying the vector invariants of S.
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This paper is organized as follows. Section 1 contains a proof of state-
ment (0.2). Section 2 contains a proof of statement (0.7). Section 3
describes R-algebra generators of the vector invariants of S, in the case
that R is an arbitrary commutative ring with 1 (Campbell ez al. [3] have
described a different set of generators of these invariants). Section 3 also
contains proofs of (0.4) and a result which is similar to (0.6). Sections 1-3
are independent of each other (except for a few place in Section 3, which
use observations or notation from Section 1).

1. INVARIANTS OF FINITE GROUPS OVER RINGS
IN WHICH |G|! IS INVERTIBLE.

Recall that {X(i, j): 1 <i<N,1<j<m} denotes a set of commuting
indeterminates.

ProposiTioON 1. If  U<{l,..m}, define x(U)=> cneonec llucv
X(h(u), u), where the sum varies over all one-to-one functions h from
U to {1,.,N}. Assume that (m—1)! is invertible in R; then

N X, ) (l 2)--- X(i, m) lies in R[x(U): U= {1, .., m} and |U < N].

Proof Let T<{l,..,m} and f: T— {1 ,...,N}. If B={l,.., N}, let
|/~'(B)| denote the number of elements ¢ in T such that f(¢)e B. Two
functlons g h from T to {l,.., N} are said to be T-equivalent if the
sequence |g '({1})], g "({2})], . | "({N})| is a permutation of the
sequence A~ "({1})], |A~"({2})], «s [h ' ({N})|. Let E(f, T) denote the set
of functions which are T-equivalent to f. Observe that, if 7= {1, .., m} and
fis a constant function, then E(f, T) is the set of all constant functions
from {1, ., m} to {1,., N} and X, [1.cr X(A(2), ) equals

N X(i, 1)X(i, 2) --- X(i, m). Therefore, to finish the proof, it suffices to
establish the following claim.

CLAM. Y, cpsm [Lier X(h(1),t) e RIx(U): U< {1,...,m} and |U < N]
Sor every T< {1, ...,m} and f- T— {1, .., N}.

Proof. The claim will be established by induction on |T|—|f(T)|,
where | f(T)| denotes the size of the set { f(¢): 7€ T}. Suppose at first that
|T|—|f(T)|=0; then E(f, T) is the set of all one-to-one functions from T
to {1,..., N} and ¥,c 1) [1,cr X(h(2), 1) =x(T). Therefore the claim is
true.

Suppose now that |7|—|f(T)| >0. Let by, ..., by denote the sequence
which is obtained from [/ ~'({1})], ..., |/ ~"({N})| by subtracting 1 from
every term that is strictly bigger than 0. For example, if the sequence
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L ), e [N is 3, 1,0, 2, 2, then by, ..., by equals 2, 0, 0, 1,
1.If U= Tand |U =|f(T)|, let E*(f, U) denote the set of functions g from
T—U to {1, .., N} such that |g~"({1})], .., |g " "({N})| is a permutation
of by, ..., by. Suppose that U, = T and note that

if |Uy|=|f(T)| and the restriction of f to U, is one-to-
one, then the restriction of f to T— U, lies in E*(f, U,). (1.1)

Note also that

if geE*(f,U) then E*(f,U)=E(g, T—U). (1.2)
Define

HfT)= Y (x(U) ST X(hm,z)). (13)

UcT he EX(f.U) teT—U
Ul = AT

Let U denote a subset of T such that |U| = | f(T)|. Note that, for every map
g T—U—{1,.. N},

IT=U| = g(T=U)|<|T=Ul=|T| = |/(T)],

because T— U is non-empty (because |U| = |f(T)| <|T|), |U|=|f(T)| and
UcT. This observation and the induction hypothesis for the claim,
together with statement (1.2), imply that 3, zxr o) [1,c7— v X(A(1), 1) is
an element of R[x(U): U= {1, .., m} and |U| < N]. Therefore

H(f,T)eR[x(U): U={l,..,m} and |U <NJ. (L.4)
One can write

HfT)= ) as(h) [T X(h(2), 1), (1.5)
h: T— {1, .., N} et

where a;(h)e R for every h. The next goal is to show that a.(h) is
unchanged when /4 is replaced by a map which is T-equivalent to it. Define
X*(f, U)=2heersr o) [ ier_uv X(h(t), t) for every subset U of T whose
size is |f(T)|. Let ¢ denote a permutation of {1, .., N}. Observe that the
map h — o oh permutes the one-to-one functions from U to {1, .., N}, and
it also permutes the elements of E*(f, U). Therefore both x(U) and
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x*(f, U) are unchanged when X(i, j) is replaced with X(a(i), j) for all i, j.
This observation and Eqs (1.3) and (1.5) imply that

a,(h)=a,(o°h) for every map h: T— {1, .., N} and every
permutation ¢ of {1, .., N}. (1.6)

Let y denote a permutation of 7 and let * denote the R-algebra
automorphism of R[X(i, j): 1<i<N, jeT] such that y*(X(i j)) =
X(Z, y())) for all i, j. The substitution s =(¢) yields

[T X, yp()="[I Xy ~'(5)),9) (L.7)

teT—U seT—y(U)

Note that the map 4 — hoyy ! gives a one-to-one correspondence from
E*(f, U) to E*(f, y(U)). Therefore, by summing both sides of Eq. (1.7)
over the elements 4 in E*(f,U), one obtains the equation
YEXE( S, U)=x*(f, y(U)). A similar argument implies that y*(x(U)) =
x(¥(U)). Note that by (1.3)

YHH(LT)= Y ) y*(x*(£, V)

UcT
|UI = 1A(D)]

= Y WU XA W)

UcT
Ul =1A(D)]

=H(1.T)

(replace U with y ~!(U) in the preceding sum and use (1.3)). This equation
and Eq. (1.5) imply that

as(hoy)=as(h) for every map h: T— {1, .., N} and every
permutation y of T. (1.8)

Note that every function which is T-equivalent to /& can be express in the
form oo h e, where o is a permutation of {1, .., N} and y is a permutation
of T. This observation and statements (1.6) and (1.8) imply that

ay(h)=a (') (19)

for every map 4’ which is T-equivalent to /.

Suppose now that /4 is a map from 7 to {l,..,N} such that
|A(T)| = |f(T)| and a,(h)#0. It will be shown that 4 is T-equivalent to f.
Equations (1.3) and (1.5) and the hypothesis that a,(#)#0 imply that
there is a subset U of T such that |U| =|f(T)|, the restriction of & to U is
one-to-one, and the sequence |A'({1})n(T—U)|, .., |h " "({N})n
(T—U)| is a permutation of b, .., by. Let 7 denote a permutation of
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{1, .., N} such that |2~ '({j}) n(T—U)| =b,, for every j. Observe that,
for every je {1, .., N}, because the domain of 4 is T,

A= D=1 (T= D) + [~ '({j}) n U
=b.;,+1h '({j})n Ul (1.10)
Recall that |A(T)| = |f(T)| =|U| and the restriction of / to U is one-to-one.

Therefore |7~ '({j})n U|l=1if |h~'({j})| >0. This observation and Eq.
(1.10) imply that the sequence |2~ '({1})], ..., |~ "({N})| is obtained from

b1y - bony by adding 1 to |A(T)| of the terms, in such a way that every
non-zero term from by, ..., by, is increased. Note also that the sequence
I, s IS U N} is obtained from by, ..., by in a similar manner

and recall that |f(T)|=|h(T)|; therefore the sequence [h~'({1})]
“'({N})| is a permutation of [/ '({1})|, ... |/ '({N})|. This proves
that

if |h(T)|=|f(T)| and as(h)#0, then h is T-equivalent to f. (1.11)
Equations (1.3) and (1.5) imply that, for every map h: T— {1, .., N}
such that a,(h)#0, there is a subset U= U, of T such that |U|=|f(T)|

and the restriction of /2 to U is one-to-one. Therefore, if a,(h)#0, then
|f(T)| = |h(U)| <|h(T)|. This observation and statement (1.11) imply that

if a,(h) #0 and h is not T-equivalent to f, then |(T)| > |f(T)|. (1.12)

Statements (1.5), (1.9), and (1.12) imply that

H(f,T)=a/(f) Y  [] X(h(z), 1) +a sum of expressions
heE(f,T) teT
of the form a,(¢) ), ] X(h ), where ¢ varies over

heE(p,T) teT

a set of maps from 7 to {1, .., N} such that |¢(T)|>|f(T)|. (1.13)

The induction hypothesis for the claim implies that, if ¢ is a map from T
to {1, .., N} such that |¢(T)| > |A(T)], then X, c gy 1) [1,c 7 X(h(1), 1) lies
in R[x(U): U= {1, ..,m} and |U| < N]. This observation and statements
(1.4) and (1.13) imply that

a(f) > |] X(h(r),t)eR[x(U): U={],..,m} and |U <N].
heE(f.T) teT

(1.14)
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Statements (1.1), (1.3), and (1.5) imply that
as( f) = the number of subsets U of T such that |U| = | f(T)|

and the restriction of f to U is one-to-one

= [1 I/7'dipl

Jjes(T)

because for every jef(T), there are |f~'({j})| possible choices for
Unf~'({/}). Thus

ar(N= T 1/ (1.15)
jes(n)
If / is not a constant function or |7| <m, then |/~ '({/})| <m for every
je€f(T) (because the domain of f=T< {1, ..,m}) and hence | f~'({j})] is
invertible in R for every je f(T) (because of the hypothesis that (m—1)!
is invertible in R). This observation and statements (1.14) and (1.15) imply
that

if £ is not a constant function or |T'| <m, then (L16)

Y [] X(h(1), 1) e R[x(U): U< {1, .., m} and |U| <NT.

heE(f,T) teT

Note that

[T x({3) =TT (XL )+ X(2, )+ -+ + X(N, j)

j=1

_Z X(h(1), 1) X(1(2),2) - -- X(h(m), m),
where /1 varies over all maps from {1, .., m} to {1, .., N}. Hence,

ﬁ x({j}) = ]2\,: i, 1) X(i, 2)--- X(i, m) + a sum of expressions of

Jj=1

the form Y [T X(h(j), )

heE(g, {1, ..m}) j=1

where g varies over a set of non-constant maps from {I,..,m} to
{1, .., N}. This equation and statement (1.16) (with f replaced by g) imply
that if 7= {1, ..., m}, then

Z X(i,1) X(i, 2)--- X(i,m) e R[x(U): U= {1, .., m} and |U| < N].

(1.17)
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Note that if |7|=m and f is a constant map from 7 to {l, .., N}, then
E(f, T) is the set of constant maps from {1, .., m} to {1, .., N} and

N

Yoo I X(h(e), 0)= ). X(i, 1) X(i,2)--- X(i, m)

heE(f,T) teT i=1

eR[x(U): U= {], .., m} and |U|<N],

by (1.17). This observation and statement (1.16) establish the claim. ||

A monomial in R[ X(4, ):1<i< N, 1<j<m] is defined to be an element
of the multiplicative monoid generated by { X(i, j) : 1 <i< N, 1 <j<m}.

ProrposITION 2. Let Y,,.. Y, denote commuting indeterminates and
define F*(Y, .., Y,) =TIV, (1+X(i, )Y, + X(i,2) Y, + --- + X(i, m)Y,,).
Assume that N\ is invertible in R; then R[X(i, j): 1 <i< N, 1 <j<m]% is
generated as an R-algebra by the coefficients of F*(Yy, ..., Y,,).

Proof. Suppose that w is a monomial in R[X(i j):1<i<N,
1<j<m] and f'is a vector invariant of S,. Note that, for every o€ Sy,
the coefficient of w in f equals the coefficient of o(w) in f, because a( ) = f.
Therefore

every vector invariant f of S, is an R-linear combination

of the expressions Y v, where w varies over the
ve{a(w):oeSy}
monomials which appear in f. (2.1)

Let A4, denote the R-algebra generated by the elements 3, ;). sesy Us
where z varies over the monomials in R[ X(1, j): 1< j<m].

CLamM 1. 3 ow):oesy VEA, for every monomial w in R[X(i, j):
1<i<N,1<j<m].

Proof of the Claim. let w denote a monomial in R[X(i j):
I<i<N,1<j<m] and write w=w;w,...wy, where each w; is a
monomial in R[X(i, j):1<j<m]. Let y(w)=max{deg w,: 1 <i<N};
the claim will be established by induction on degw — p(w). Suppose at
first that degw —yp(w)=0; then there is an element 7€ S, such that
©(w)e R[X(1, j): 1< j<m]. Observe that

> v= D ved,,

ve{a(w):oe Sy} ve {o(t(w)): oSy}



58 DAVID R. RICHMAN

because 7(w) is a monomial in R[ X(1, j): 1< j<m]. Suppose now that
deg w—7y(w) >0 and let u denote an element of {1, .., N} such that y(w) =
degw,. Define H, =3, c (s oesy 0 aNd Hy=3 s ((pn:oesy U The
induction hypothesis implies that

H, and H, both lie in 4,. (2.2)

Define, for every 7eG, P, to be the set of pairs (v, v*) such that
ve{a(w,) :aeSy}, v¥e{a(ww,):aeSy}, and vv* =1(w). Let I denote
the identity element of S, and note that the map (v, v*) — (7(v), (v*))
gives a one-to-one correspondence between P, and P,.. Hence |P.| =|P,|
for every 7€ Sy. Note also that p(vv*)>yp(w) for all ve{a(w,):ceSy}
and v*e{o(w/w,):0€Sy}, with equality if and only if w*e
{a(w): o€ Sy}. Therefore

H H,=|P,]| Y v + asum of monomials y

ve{a(w):oeSn}

such that deg y =deg w and y(y) > y(w). (2.3)

The elements H,, H, and 3, 4. sesy U are vector invariants of Sy.
This observation and statements (2.1) and (2.3) imply that H,H,—
[P712 e (otm): oesyy U 1s @ sum of expressions of the form 3, .,y vesy Us
where y varies over a set of monomials satisfying deg y= deg w and
(y)>y(w). This observation and the induction hypothesis imply that
H H>—[P| X, cio(w):sesy VE Ay This relation and statement (2.2) imply
that |P;| >, c(om):0esy VEA,. Note also that [P;| is invertible in R,
because 1< |P;|<|{o(w,):0€Sy}|=N and N! is invertible in R (by
hypothesis). Therefore 3., ¢ (5(): ses,; V€ 4. This establishes the claim.

N

CLAIM 2 Ujl’ j2’-~~9 jte{la"'a m}s then ZN X(l> JI)X(la ]Z)X(ls Jr)

i=1

lies in the R-algebra generated by the coefficients of F*(Y,, ..., Y,,).

Proof of the Claim. The proof proceeds by induction on ¢. Suppose at
first that 1< N+ 1. Let & denote the R-algebra homomorphism from
RIX(, j): 1<i<N, 1<j<t]to R[X(i, j):1<i<N, 1< j<m] such that
h(X(i, k)) = X(i, j,) for every ie {1, .., N} and ke {l, ..., t}. Note that

> XU, j) X(i, j,) -+ X(i, j,)

i=1

:h<§ X(i, 1) X(i, 2)--- X(i, t)>

i=1

eR[A(x(U)): U< {1, ...} and |U| <N], (2.4)
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by Proposition 1. Note that the last line of statement (2.4) uses the
assumption that t< N+ 1 and MN! is invertible in R. Let Z,, ..., Z,, denote
the elements of the additive group generated by { Y, .., ¥,} such that, for
every ie {1,.., N},

X(@, jO) Y+ X, o) Yo+ - + X(0, j,) Y,
— X(i, ) Z, + X(i,2)Zo+ - + X(i, m)Z,,. (2.5)

Let U denote a subset of {1, ..., #} such that |U| <N and observe that

h(x(U)) = the coefficient of [] Y, in

ueU
N

[T (L+h(X(i, 1) Y, +h(X(i,2) Yo+ - +h(X(i, 1) Y,)

i=1
= the coefficient of [] Y,

ueU

in ﬁ (1+X(i, N Z,+ - +X(i, m)Z,,),

i=1
by (2.5) and the definition of 4. It follows that A(X(U)) is

N
y <the coefficient of Y{"--- Y% in [] (1 + X(;, )Y, + --- + X(J, m)Y,,,)>
d, ..., dy

i=1

X (the coefficient of || Y, in Z{' ~~~Z"’”>,

m
ueU

where the sum ranges over all m-tuples (d,, ..., d,,) of non-negative integers
(and if Z; and d, are 0, then Z% is defined to be 1). Thus,

h(x(U))=an R-linear combination of coefficients of F*(Y,, .., Y,,)

when U< {l,.., ¢} and |U/<N. This observation and statement (2.4)
establish the claim.

Suppose now that ¢>N+1. Let h* denote the R-algebra
homomorphism from R[X(i, j): I<i<N,1<j<N+1] to R[X( Jj):
I <i< N, 1<j<m] such that

h*(X(i, k) = X(i, j,) for all i, ke{l,.. N}

and

W*(XG, N+ 1) = X, jy o )X, juy) - X0, j) forall ie{l, .., N}.
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Observe that by Proposition 1

N

i=1

=h*<§ X(i,I)X(i,2)---X(i,N+1)>

i=1

eR[*(x(U)): U<{l,..,N+1} and |[U <N].  (26)

Suppose that U= {l,..,N+1} and |U|<N. The definitions of 4* and
x(U) imply that degree 2*(x(U)) <t. Note also that h*(x(U)) is a vector
invariant of S, because x(U) is a vector invariant of S, and A*(a(f)) =
o(h*(f)) foreveryoe Syand fe R[X(i, j): 1 <i<N,1<j<N+1]. These
observations and statement (2.1) imply that 2*(x(U)) is an R-linear com-
bination of the expressions 3, ., :sc sy U> Where w varies over a set of
monomials whose degrees are strictly less then z. This observation and
Claim 1, together with the induction hypothesis for Claim 2, imply that
h*(x(U)) lies in the R-algebra generated by the coefficients of
F*(Y,, .., Y,). This observation and statement (2.6) establish Claim 2.

Claims 1 and 2 imply that, for every monomial w in R[ X(i j):
I<i<N, I<j<m],

Y veA,

ve{a(w):oeSy}

c the R-algebra generated by the coefficients of F*(Y,, ..., Y,,).

This observation and statement (2.1) imply that every vector invariant of
Sy lies in the R-algebra generated by the coefficients of F*(Y,, .., Y,,).
Observe also that the coefficients of F*(Y, ..., Y,,) are all vector invariants
of Sy; therefore R[X(i, j):1<i<N,1<;j<m]%" equals the R-algebra
generated by the coefficients of F*(Y,, .., Y,,). |

Remark. Suppose that there is an integer b >0 which is not invertible
in R. The following argument proves that if m> N and b|N, then

N X(i, 1)X(i, 2) --- X(i, m) does not lie in the R-algebra generated by the
coefficients of F*(Y,,.., Y,,). Therefore the hypotheses on R which are
stated in Propositions 1 and 2 cannot be removed.

Assume that m> N and b|N. Let M denote the R-module generated by
the homogeneous polynomials of degree m in R[X(i j):1<i<N,
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1 < j<m]. Let h denote the R-module homomorphism from M to R such
that

h(X(iy, ji)--- X(i,s jm)) =0 if j,, .., j, are not distinct,
h(X(iy, )X(i5, 2) -~ X(i,,, m)) =0 if i;#1

and
nX(iy, HX(iy, 2)-- X(i,,,m)) =1 if =1

Let c¢y,..c, denote coefficients of F*(Y,,.. Y,) such that deg
¢y ¢y --c,=m; the elements ¢y, ..., ¢, are not required to be distinct.

It will now be shown that A(c,c,---¢,) is divisible by b. Let wy, ..., w,
denote monomials in R[ Y, ..., Y,,] such that ¢, is the coefficient of w; in
F*(Y,,.. Y,) for every i. Note that deg ¢;=deg w, for every i; therefore
deg w,---w,=deg ¢, ---¢,=m. Therefore, if w,---w,#Y,Y,---Y,,, then
wy ---w, is not square-free, so ¢, --- ¢, is a linear combination of monomials
X(i, j)---X(i,, jn) such that j,.. j, are not distinct. Hence, if
wy-eew,#Y,---Y,,, then  h(c;---¢,)=0. Suppose now  that
wy---w,=Y,---Y,. Then there is one and only one subscript e€ {1, ..., 1}
such that w, is divisible by Y,. Note that deg w,< N, because w, is a
monomial (in the indeterminates Y,,.., Y,,) which appears in
F*(Y,, .., Y,,). This observation and the hypothesis that m > N imply that
deg w,<m =deg w, ---w,. Therefore there is a subscript r # e such that deg
w, > 0. Observe that

¢, e R[X(i, j): 1<i<N,2<j<m], (2.7)

because r # e and e is the only subscript for which w, is divisible by Y;.

If feR[X(i,j):1<i<N,1<j<m], let s(f) denote the sum of the
coefficients of f, i.e., s(f) is the element of R which is obtained from f by
replacing all the indeterminates X(iZ, j) with ones. Statement (2.7) and the
supposition that w,---w,=Y,Y,--- Y, imply that

s(c,) divides A(cycy---¢,). (2.8)

There are distinct integers j(1), j(2), .., j(d) such that w, =Y, Y;,,---
Y4, because w---w, =Y, Y,--- Y, Note that

¢, = the coefficient of Y;,,Y,5,--- Y,y in F*(Y,, .., Y,)
=x({j(1), }2), ... j(d)}),

where x(U) is defined as in Proposition 1. Note also that
S(X({j(1), ey j(d)}))=N(N—1)---(N—d+1); therefore s(c,) is divisible
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by N. This observation and the hypothesis that »|N imply that s(c,) is
divisible by b. This observation and statement (2.8) imply that i(c,¢,---¢,)
is divisible by b. This proves that A(f) is divisible by b for every fe M n
(the R-algebra generated by the coefficients of F *(Y 1> Y,,)). On the
other hand, >N | X(i, 1)X(i,2) --- X(i, m)e M and (XN, X(i, 1)X(i, 2)---
X(i, m)) =1, which is not d1V151ble by b (because b is not invertible in R).
Therefore >N | X(i, 1)X(i,2)--- X(i,m) does not lie in the R-algebra
generated by the coefficients of F*(Y,,..,Y,).
Let {a,,..,a,,} and F(Y,,.., Y,,) be defined as in the Introduction.

ProPOSITION 3. If |G|! is invertible in R, then AC is generated as an
R-algebra by the coefficients of F(Y,, ..., Y,,).

Proof. Let N=|G| and let g, ..., g5 be a list of the elements of G. Let
h denote the R-algebra homomorphism from R[X(i j):1<i<N,
1 < j<m] to A4 such that /(X(i, j)) = g,(a;) for all i, j. Note that, for every
f€ A, there is an element f* = f*(X(1, 1), X(1, 2), ..., X(1,m)) e R[ X(1, j):
1<j<m] such that A(f*)=f, because {a,,..a,} generates 4 as an
R-algebra. Observe that if fe A% and N is invertible in R, then

f=0/N) ¥ &lf)

geqG

— (1N <Zf (X 1) X0 2o X))

i=1

eh(R[X(i, j): 1<i<N,1<j<m]®). (3.1)

Let F*(Y,, .., Y,,) be defined as in Proposition 2 and observe that # maps
the coefficients of F*(Y,, .., Y,,) to the coefficients of F(Y,, .., Y,,). This
observation and Proposition 2 imply that

if N! is invertible in R, then A(R[X(i, j):1<i<N,
1<j<m]®) is generated as an R-algebra by the coef-
ficients of F(Y,, .., Y,,). (3.2)

Suppose that N! is invertible in R. Statement (3.2) and (3.1) imply that 4¢
is generated as an R-algebra by the coefficients of F( Y, .., ¥,,). |

Remarks. The argument presented here, showing how Proposition 3
follows from Proposition 2, is similar to the one used in [ 19, pp. 275-276].

If it is assumed that o(a;)eRa,+ --- + Ra,, for every ceG and
Jje{l,..,m}, then one can prove Proposition 3 directly from Proposition
1, without using Proposition 2.
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2. INVARIANTS OF FINITE SOLVABLE GROUPS

In this section, a,, ..., @, denote elements of A which satisfy condition
(0.5).

PROPOSITION 4. Assume that |G| is a prime and is invertible in R. Then
AC is generated as an R-algebra by {Y,.qglai'as---af):e,+ - +
e <|Gl}.

Proof. Let e G— {1}, observe that ¢ generates G as a group, because
|G| is a prime. Let p =|G| and assume at first that there is an element 6
in R such that 14+60+60*+ ... +0?~ ' =0. The first goal is to show that 4
is generated as an R-algebra by a finite set of elements L in
Ra,+ --- + Ra, such that g(L) = (a power of 8) L. Define, for every integer
j and every a € A,

hi(a)=(1/p)a+0'o(a)+0 o> (a)+ --- +0~ " Vg?!(a)).

Note that

o(h;(a))=0’h;(a)  for every j and a, (4.1)

because ¢” is the identity map and 6”=1. If re{1, .., p—1}, then the
sequence 1,07, 0% .,0 "~ is a permutation of 1,0,0> .. 07!
(because p is a prime and 07=1), so 14+0 "+ ... 40P Di=14
0+ --- +07~'=0. Therefore

ho(a) +hy(a)+ --- +h, (a)=a for every ae A. (4.2)

Define V,={h;(a,), h,(a,), .., h,(a;)} for every integer j. Equation (4.1)
implies that

o(L)=0L for every LeV,. (4.3)

Statement (4.2) implies that «; is a sum of elements in V,u
Viu---uV,_, for every i therefore

A is generated as an R-algebra by VouV,u --- UV,

o1 (44)

Let M denote the multiplicative monoid generated by V,u
Viu---uV, ;. Statement (4.3) implies that, for every element ze M,
there is a number e(z)€{0, 1, .., p— 1} such that o(z)=0“"z. Note also
that, by statement (4.4), every element of A is an R-linear combination of
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elements of M. Therefore, for every a € 4, there exist elements b, = by(a), ...,
b, 1=b, (a) in 4 such that

a=by+b,+ --- +b, , and, for each i, b, is an R-linear
combination of elements z in M satisfying o(z) = 0'z. (4.5)

Note that a(b,) =0'b; for every i. Therefore, if ie{l,2,.. p—1}, then
(I+o+ - +a? " Hb)=(1+6"+ --- +0%~Y)b,=0. This observation
and statement (4.5) imply that (14+0¢+ --- +0”~")(a) = pb,. Therefore, if
o(a)=a, then a=b,, so a is an R-linear combination of elements in
M n A°. Hence

every element of 4“ is an R-linear combination of
elements of M N A° (4.6)

Let M* denote the set of elements of M n A° which are products of p
or fewer elements of VouV, u... UV, | (these elements are not
required to be distinct). Suppose that ze M nA“—{1} and write
z=w;w,---w,, where each w; lies in VouV,u-.- UV, ;. It will be
shown by induction on 7 that z is a product of elements of M *. If t < p then
ze M*. Suppose now that 7> p. Statement (4.3) implies that for every
ie{l,..,t}, there is an integer e(i) such that o(w,w,---w,)=
0°Ywiw,---w,. If the elements 01, 0%, . 0°”) are distinct, then
0°Y, 0°), .., 0°?) must be a permutation of 1, 0, ..., 7' (because 07 =1),
so there is a number je {1, .., p} such that 0/ =1. In this case define
z¥=ww,---w;. If the elements 0", 0°®, .., 0“7 are not distinct, then
there are numbers i, je {1, .., p} such that i < j and 0" =0°"; in this case
define z*=w,  w;,,---w;. Observe that, in all cases, z*e M*, and the
induction hypothesis implies that z/z* is a product of elements of M*.
Therefore z is a product of elements of M *. This proves that every element
of MnA9—{1} is a product of elements of M*. This observation and
statement (4.6) imply that M* generates A“ as an R-algebra.

Let S={af'as---af:e,+ --- +e,<p}. Note that M* is contained in
the R-module generated by S, because Vo u V, U --- UV, , is contained
in Ra,+ -+ + Ra,. If z*e M*, then

*=(Ip)z*+a(z*)+ -+ +0771(z¥%))

€ the R-module generated by { Y gls): seS},

geqG

because M*<A° G={l,0,..,0° '} and M* is contained in the
R-module generated by S.
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Thus M* is contained in the R-module generated by {3, ¢ g(s):s€S}.
This observation and the fact that M* generates 4° as an R-algebra imply
that the set {¥,. g(s) : s€S} generates A as an R-algebra.

In the case that R does not contain a solutionto 1 +80+ --- +07~'=0,
one can reduce to the case considered earlier by the “extension of con-
stants” [7, pp. 7-9] and thereby establish the proposition. To keep the
exposition self-contained, the details of this argument are presented here.
Let T denote an indeterminate and let § denote the natural image of T in
A[T]/(1+T+T?*+ ... +T?"). Observe that ¢ extends to an R-algebra
automorphism of A[ 7] which fixes T this extended automorphism maps
the ideal (1 + T+ --- + T7~') into itself. Therefore ¢ extends to an R[0]-
algebra automorphism ¢* of A[0]. Let A[0]¢ denote the set of elements
in A[ 0] which are fixed by ¢*. Note that A[ 6] is generated as an R[0]-
algebra by the set {a,..,a,} and (¢*)” is the identity map on A[0].
Therefore the first part of the proof implies that

A[0]€ is generated as an R[ 0]-algebra by { Y gls): SES}. (4.7)

geCG

Let f denote the A-module homomorphism from A[0] to 4 such that
Plag+a,0+ - +a, 0" *)=a,forallay,a,..a, ,eA If fe A% then

S =B,

because f fixes every element of A. By (4.7),

fep <the R[ 0]-algebra generated by { > gls): seS})

geqG

=the R-algebra generated by { Y gls):se S}.

geCG

This proves that A is contained in the R-algebra generated by
{X.cc &(s):seS}. This observation and the fact that 3, _sg(a)e A for
every ac€ A imply that the set {3, ; g(s):s€S} generates 4 as an
R-algebra. ||

Remark. The expressions /;(a) used in the preceding proof are special
types of Lagrange resolvents. Lagrange resolvents were introduced inde-
pendently by Vandermonde and Lagrange in the 1770’s as tools to express
the roots of certain polynomials in terms of radicals [ 17, pp. 77-81].

PROPOSITION 5.  Assume that G is solvable and |G| is invertible in R;
then A° is generated as an R-algebra by the set {Y,. glaj'as---af):
er+ -+ +e,<|Gl}.
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Proof. Proceed by induction on |G|. If |G|=1, then A°=A=
R[ay, ..,a,] (by (0.5)), so the proposition is true. Suppose now that
|G| > 1. Since G is solvable, there is a normal subgroup H of G such that
the index of H in G is a prime p. Let f}, ..., f, be a list of the elements of
{Speuhaias---aj) e+ --- +e,<|H|}. The induction hypothesis
implies that

A™ is generated as an R-algebra by {f,, .., f.}. (5.1)
If te G and x e A4, then

r( > h<x>)= Y tht((x)

heH heH

= ) h(z(x)),
heH
because the map /& — tht~' permutes the elements of H (because H is a
normal subgroup of G).
This equation and condition (0.5) imply that

©(f;)ERf1 + Rf,+ --- + Rf, for every 1€ G and ie {1, .., t}. (5.2)

Statements (5.1) and (5.2) imply that every element of G maps A* into
itself. Let r(G/H) denote the group of automorphisms of A obtained by
restricting the elements of G to 4”. Note that #(G/H) is a homomorphic
image of G/H; therefore |r(G/H)| divides |G/H|. Thus |r(G/H)| divides p,
so |r(G/H)| = p or 1 (because p is prime).

Suppose at first that |r(G/H)| = p. Note that p is invertible in R, because
p divides |G| and |G| is invertible in R. Therefore statements (5.1) and (5.2)
and Proposition 4 (with 4, G, and {ay, .., a,} replaced by 4%, r(G/H), and
{f1, - [}, respectively) imply that

(A1 ig generated as an R-algebra by

[ S otrfosinidis o +d,<p). (53)
ger(G/H)

If |[r(G/H)| =1, then statement (5.3) follows from statement (5.1); thus
statement (5.3) holds in all cases.

Define S = {a{'ay---af:e,+ -+ +¢,<|G|} and let M denote the
R-module generated by S. Condition (0.5) and the definition of the
elements f7, .., f, (together with the fact that |H|p=|G|) imply that
Y eramo(f (- f¥%) eM whend, + --- +d,<p. Note also that (A4")" "
equals 4%, by the definition of r(G/H). These observations and statement
(5.3) imply that

A% is generated as an R-algebra by elements in M n A€ (54)
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Note that M N A is contained in the R-module generated by the set
{Xeco g(s):se S}, because f=(1/|G|) X, g(f) for every fe A“ and M
is the R-module generated by S. This observation and statement (5.4)
imply that 4 is generated as an R-algebra by {3, ; g(s):seS}. |

Remark. Using Proposition 3 and an argument similar to the one used
to prove Proposition 5, one can establish the following result (here G is not
necessarily solvable).

Let u denote the maximum of the sizes of the composition
factors of G. If u! is invertible in R, then A is generated
as an R-algebra by the set mentioned in Proposition 5. (5.5)

3. VECTOR INVARIANTS OF S, OVER ARBITRARY RINGS

Notation. 1If ae A, let d(a) denote the number of elements in the set
{g(a): g€ G} and let E\(a), Ey(a), .., Ey.(a) denote the elements of A4
such that

I1 (Y+h)

he{gla):geG}

= YU 4 By (@) YN 4 Ex(@) YU By (a); (60)

here Y denotes an indeterminate. Thus E,(a) is the ith elementary sym-
metric function in the elements of {g(a): ge G}.
Recall that {a,, .., a,,} denotes a finite set of R-algebra generators of A.

PROPOSITION 6. Assume that a,, ..., a,, are algebraically independent over
Rand o(a))€{a,, .., a,} for every 6 € G and je {1, ..,m}. Let M denote the
R-module generated by {af ---al:0<e;<d(a,) for every j}; then A°
equals the R[E,(a;) : 1 < j<m, 1 <i<d(a;)]- module generated by M n A°.

Proof. Define d(j)=d(a,) for every je {1, .., m}. If a is replaced by a;
and Y is replaced by —a; in Eq. (6.0), then one obtains

a}i(j) — El(aj) aj{i(j)fl _ Ez(aj) ajaf(j)f2 4+ .+ ( —1 )d(j)fl Ed(j)(aj)«
Therefore

Das— = Ex(a)as 4 - + (=D Ey(a)as— ) (6.1)

J
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for every je {1, .., m} and every integer e>d(j). By repeatedly applying
Eq. (6.1), one can express every element of 4 as an element of the R[ E;(a;) :
1<j<m, 1 <i<d(j)]-module generated by {a{---aiy:1<e;<d(j) for
every j}. Therefore every 1€ A can be expressed as

h=Y w,(h)w, (6.2)

where the sum varies over the elements w in the multiplicative monoid
generated by {E,(a;): 1<j<m, 1<i<d(j)} and pu,(h)e M for every w.

If he A, then X, u, (W)w=Y, o(u,(h))w for every ¢ € G, so one might
guess (by “equating coefficients”) that u,(#)e A for every w. If this guess
were indeed true, then every element of 4 would lie in the R[E,(a)):
1<j<m,1<i<d(j)]-module generated by A~ M (by (6.2)) and the
proposition would be established. A problem with this approach is that
there is often more than one way to write an element of 4¢ as in Eq. (6.2);
for example, if d(j) > 1 and 1 <i<d(j), then E;(a;) € M. Thus the elements
u,,(h) are not well defined by Eq. (6.2). The rest of the proof describes how
to overcome this problem by a more precise definition of the elements
w,(h).

If je{l,..,m}, let Ga,={o(a,):0eG}. Let {Y(i,Ga,):1<j<m,
1<i<d(j)} denote a set of commuting indeterminates (where Y(i, Ga;) =
Y(i, Ga,) if Ga;= Ga,) and let Mon(Y) denote the multiplicative monoid
generated by this set. Let A*=A[ Y(i, Ga;): 1< j<m, 1 <i<d(j)]. Let 0
denote the R-module homomorphism from 4* to A* such that

0(aj) = as if0<e<d(j)and je{l, .., m},

J

0(ai)=as~ ' Y(1, Ga)) — a5~ 2 Y(2, Ga,) + -

J

+(— 1)l 4 Y(d(j), Ga,)

if e>d(j) and je{l,..,m}, and

0(311a7 )=y I1 0a7)

j=1 j=1
for all ye Mon(Y) and all non-negative integers ey, ..., ,,.

Note that such a homomorphism 6 exists because «,, .., a,, are alge-
braically independent over R and hence over R[Y(i, Ga,):1<j<m,
1<i<d())].

Let M?* denote the R[Y(i,Ga;):1<j<m,1<i<d(j)]-module
generated by M and suppose that e A4*. The definition of # implies that
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the set {h, O(h), O(0(h)), ...} contains an element of M*. Note also that
every element of M* is fixed by 0. Therefore the set {h, O(h), 0(0(h)), ...}
contains exactly one element of M*; let 0*(h) denote this element. Write

0*(hy= Y. w,(h)y, where u,(h)e M for every ye Mon(Y). (6.3)

yeMon(Y)

Suppose that o€ G. Extend ¢ to an R-algebra automorphism of A* by
defining o( Y(i, Ga,)) = Y(i, Ga;) for every i and j. The definition of § and
the assumption that o(a) e{a, .. a,} for every j imply that 6o =0-0.
Therefore g - 0* = 0* o g. This observation and Eq. (6.3) imply that

a(u,(h))=u,(a(h)) for every o€ G, ye Mon(Y) and he A*. (6.4)

Let y denote the A-algebra homomorphism from A* to A4 such that
Y(Y(i, Ga;)) = E;(a;) for all i, j; note that  is well defined because
E;(a;)=E;(a,) when Ga,=Ga,. Equation (6.1) and the definition of 0
imply that y(0(h)) =y(h) for every he A*. Therefore Y o0* =y. If he A,
then we use that s fixes every element of A4, yo0* =y, and (6.3) to
obtain

h=y(h)=y(O0*(h)= Y  w(hy(y).

yeMon(Y)

Therefore,

if heAd, then h lies in the R[E( ) 1<j<m, (6.5)
1 <i<d(j)]-module generated by {u (h) : y € Mon( Y)}. '
Statement (6.4) and the definition of yx, imply that, if he A, then
u(h)e A M for every ye Mon(Y). This observation and statement
(6.5) imply that A is contained in the R[E;(a;):1<j<m, 1<i<d(j)]-
module generated by A¢ n M. Note also that E, ( ;) €AY for every i and j;
therefore A equals the R[E(q): 1<]<m 1 <i<d(j)]-module
generated by AN M. |

Suppose that ye Mon(Y) and z lies in the multiplicative monoid
generated by {a,, .., a,}. The definition of x, implies that u(z) is an
R-linear combination of the divisors of z. Therefore u, (¥, c4z):geay V)
is an R-linear combination of the divisors of the elements in {g(z): g€ G}.
Note also that u,(h) e A9~ M for every he A by statement (6.4) and the
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definition of u,. These observations and statement (6.5) (with
h= ZUE {g(z): g€ G} U) lmply that

Y vlies in the R[E,(a,): 1< j<m, 1 <i<d())]-
ve{g(z):geG}
module generated by 4“ n M n (the R-module generated
by the divisors of the elements in {g(z) : g € G}), assuming
that {a,, .., a,} and G satisfy the conditions of Proposi-
tion 6. (6.6)

Notation. 1If fe R[X(i, j): 1<i<N,1<j<m] and ie{l,.., N}, let
E;(f) denote the ith elementary symmetric function in the elements of

{a(f):0€Sy}.

PROPOSITION 7. The set {X(1, ) X(2,))--- X(N, j), E;(w):1 <i<N-—1,
1<j<m, w divides 7 XL, )N generates R[X(i, j): 1<i<N,

1<j<m]® as an R-algebra.

Proof. Suppose that z is a monomial in R[X(i j):1<i<N,
1< j<m]. Let Fy(z), Fy(2), ..., Fy(z) denote the monomials such that

F,(z)eR[X(e, j): 1< j<m] for every ee {1, .., N}

and z=F,(2)Fy(z) --- Fy(2). (7.1)

Define y(z)=max{deg F,z):1<e<N}. Let B denote the R-algebra
generated by the set mentioned in the proposition, and let w denote a
monomial in R[ X(7, j): 1<i<N, 1< j<m]. It will be shown, by induc-
tion on deg w—y(w), that 3, ;). ses, VEB. Let u denote an element
of {1, .., N} such that deg F,(w)=yp(w) and let U denote the set of sub-
scripts i such that F,(w)e{a(F,(w)):0eSy}. Note that ue U. Define
w =1TicoFi (w).

Coam L. 3 ) pesyy VEB.

Proof of the Claim. Suppose at first that F,(w) divides [T/, X(u, HYL
Let 7 denote an element of S, such that z(#) =1 and note that z(F,(w))
divides 172, X(1, /)™~ Let |U| denote the size of U and observe that

Z U=E|U\(FM(W))

ve{o(w'):ceSn}

=Ey (2(F,(w))), (7.2)
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by the definitions of w" and U. If |U| <N, then E,(t(F,(w))) € B, because
©(F,(w)) divides TT/_, X(1, )V~ If |U =N, then Ey(z(F,(w))) is a
product of elements in {X(1, j) X(2, j)--- X(N, j): 1< j<mj}, so it lies in
B. Thus E|(z(F,(w))) lies in B in all cases. This observation and Eq. (7.2)
establish the claim.

Suppose now that F,(w) does not divide [ 72, X(u, 7N~ Let M denote
the R-module generated by the divisors of [T/, T1/., X(i, j)¥~'. State-
ment (6.6) (with z=w', G=S,, and {a,,..a,} ={X(, j): 1 <i<N,
1 < j<m}) implies that

> v lies in the B-module generated by (the
ve{a(w'):ce Sy}
invariants of S,) N M N (the R-module generated by the
divisors of the elements in {a(w'): o€ Sy}). (7.3)

The definition of U and the supposition that F, (w) does not divide
m  X(u, j)¥ " imply that

j=1

F,(w) does not divide [[ X(i, /))¥ ' when ie U. (7.4)

Jj=1

Let z denote a divisor of w’ which lies in M. Note that F,(z) divides F;(w)
when i e U, because z divides w’ and w' =[], F;(w). Note also that F,(z)
divides TT7, X(, J)¥ ! for every i, because z € M. These observations and
statement (7.4) imply that deg F;(z) < deg F;(w) for every i € U. Note that,
since z|w' =]1;cv Fi(w), deg F;(z) =0 when i does not lic in U. Therefore
there is an element «’ € U such that deg F,(z) = y(z). Suppose that |U| > 1
and observe that

degz—yp(z)= Y, degF,(z),

ieU—{u'}

by (7.1), the definition of «’, and the fact that deg F; (z) =0 when i does
not lie in U. Thus

degz—yp(z)< ) degF(2),
ieU—{u'}

because deg F;(z) <deg F;(w) for every ie U (and because |U| > 1). Hence

deg z —p(z) <degw —y(w),
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because w=F;(w)---Fy(w) and deg F,(w)=y(w) (because
deg F;(w)=7(w) for every ie U). Thus degz—y(z) <degw —p(w) (when
|U| >1). This inequality and the induction hypothesis (for the assertion
that 3, (5. sesy VEB) imply that, when |U[>1, 3, c ) .0esy VEB
Note also that, if |U|=1, then z divides []/, X(u, V! (because z
divides w', w'=F,(w), and ze M) and hence 3, (o). 5esy; V=E(2)€B.
Thus 3, c (5:): sesy; VE B in all cases, ie., for all divisors z of w" which lie
in M. This observation and statement (2.1) imply that

(the invariants of S,) N M n (the R-module generated by
the divisors of the elements in {a(w’) : 6 € Sy}) is contained
in B.

This containment and statement (7.3) establish the claim.

Claim 1 implies that, if w=w’, then 3, ,):sesy; V€ B. Assume now
that w# w'. Observe that

deg w—yp(w) = deg(w/w'"), because y(w)=deg F,(w) <deg w’

> deg(w/w') — y(w/w'"), because w #w'.

This inequality and the induction hypothesis (for the assertion that
ZUE {a(w):ceSn} vE B) lmply that

veEB. (7.5)
ve{a(w/w'):ce SN}
If v is a monomial in R[ X(i, j): 1 <i<N,1<j<m], let J(v) denote the
set of subscripts j such that deg F;(v) >0. Note that J(w/w’) is non-empty,
because w # w'. Define

H, = Y Y vv*
ve{a(w'):ae Sy} v*e{a(w/w):oeSy}
J(v) nJ(v*) is empty
and

H, = > > vu*,

ve{o(w'):ceSN} v¥e{o(w/w'):ceSy}
J(v) nj(v*) is non-empty

Observe that

H, +H2=< y v>< y v*>eB, (7.6)

ve{a(w'):oeSy} v¥e {a(w/w'):ceSy}

by Claim 1 and (7.5).
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CLAM 2. Hl :Zve{o(w):aeSN} v.

Proof of the Claim. The definition of w' and Eq. (7.1) (with z replaced
by w) imply that

w' =[] Fi(w) and wiw' = I1 F,(w). (7.7)

ieU ie{l,..N} —U

Let a« and f denote elements of S, such that J(a(w')) nJ(f(w/w')) is
empty. Then a(J(w')) n B(J(w/w')) is empty. Note also that J(w') N J(w/w')
is empty, by statement (7.7); therefore there is an element o € S, such that
the restriction of ¢ to J(w') equals the restriction of « to J(w') and the
restriction of ¢ to J(w/w') equals the restriction of f§ to J(w/w"). Therefore
o(w')=a(w") and a(w/w') = p(w/w"), so a(w)=o(w")(w/w"). This proves
that

if J(o(w")) nJ(f(w/w'")) is empty, then
a(w")B(w/w') e {a(w):aeSy}. (7.8)

Suppose now that a and 7 are elements of S, such that a(w’) divides
7(w). Let A= {a(F,w)):0eSy}. Note that U equals the set of subscripts
i such that F;(w) is divisible by an element of A, because of the maximality
of deg F,(w) and the definition of U. Therefore

7(U) = the set of subscripts i such that F;(z(w))
is divisible by an element of A
2a(U), because F;(t(w)) is divisible by F;(a(w"))

for every i and F;(a(w')) € A for every i e a( U).

Thus 7(U) 2a(U). Hence t(U) =a(U) (because 7 and « are one-to-one and
U is finite), so t(w')=a(w'). This proves that, given 7€ S, there is one
and only one element of {a(w') : o€ Sy} which divides 7(w), namely 7(w").
Therefore there is one and only one pair (v, v*) such that ve {a(w'):
ge Sy}, v¥e{a(ww'):oe Sy}, and vv* = 7(w), namely, v =t(w') and
v¥ =t(w/w"). Note also that J(z(w')) nJ(z(w/w')) is empty for every t€ Sy,
by (7.7). These observations, together with statement (7.8) and the defini-
tion of H,, imply that H, =Y v. This establishes the claim.

ve{a(w):oeSy}

CLamm 3. H, eB.

Proof of the Claim. The definitions of U and w' imply that
deg F;(a(w')) =y(w) for every 6 € S,y and i € J(a(w")). This observation and
the definition of H, imply that, if z is a monomial which appears in H,,
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then y(z)>y(w) and degz=degw. This observation and the induction
hypothesis (for the assertion that 3, (,(s).scs, v lies in B) imply that

Y veB for every monomial z which appears in H,. (7.9)

ve{a(z):oe Sy}

Claim 2 and the first part of statement (7.6) imply that o(H,)= H, for
every g€ Sy. This observation and statement (2.1) (with f = H,) imply
that H, is an R-linear combination of the expressions 3, y:):vesy Us
where z varies over the monomials which appear in H,. This observation
and statement (7.9) imply that H, € B. This establishes the claim.

Statement (7.6) and Claim 3 imply that H, € B. This observation and
Claim 2 imply that 3, . ) :0esy V€B. Thus, 3 o) :vesy VEB for
every monomial w. This observation and statement (2.1) imply that
R[X(i, j) : 1<i<N,1<j<m]% < B. Note also that every element of B is
a vector invariant of Sy; therefore R[ X(i,/):1<i< N, 1 <j<m]*"=B. |

The following is a proof of statement (0.4), using (0.3). Let S denote a
finite set of R-algebra generators of 4 and let R’ denote the additive sub-
group of R generated by 1. Note that R’ is a Noetherian ring, because it
is a homomorphic image of the integers, and every element of G maps
R'[o(s):0eG,seS] into itself. Therefore statement (0.3) (with 4=
R'[a(s):0€G,seS]) implies that

R'[o(s):0eG, seS]¢ is finitely generated as an R’-algebra. (8.0)

Assume that |G| is invertible in R and let fe A°. Note that, since fe 4,

f=/I6l) ¥ a(f)

geCG

= an R-linear combination of the elements > a(w),

ogeCG

where w varies over the multiplicative monoid generated by S (because
fe A and A is generated as an R-algebra by S). Thus,

f=an R-linear combination of the elements of R'[a(s):0e G, se S]°.

Therefore A¢ is contained in the R-module generated by
R'[o(s):0eG,seS]° Hence every set of R’-algebra generators of
R'[o(s):0eG,seS]% will generate A as an R-algebra. This observation
and statement (8.0) imply that A9 is finitely generated as an R-algebra.
This establishes statement (0.4).
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PrROPOSITION 8. If |G| is invertible in R, then AC is generated as an
R-algebra by the coefficients of the polynomials [l,.q(1+
glasta---am)Y), where ey, .., e, vary independently over the elements of
{0, 1, .., max{1, |G| — 1} }.

Proof. Assume that |G| is invertible in R, and let A’ denote the
R-algebra generated by the coefficients mentioned in the proposition. Let
N=|G| and define & as in the proof of Proposition 3. Observe that if
fe A€, then by (3.1) and Proposition 7

fEh(R[X(i, ]) 1<ig<N, 1 <]<m]5\)
w divides (X(1, 1)X(1,2)--- X(1,m))¥ ']
cd.

Therefore A°< A’. Note also that, for every ae A, the coefficients of
[T, (14+g(a)Y) are invariants of G; therefore A'=A4° Hence
A =A4° |
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