On a Problem in Monotone Approximation

XINGPING SUN

Department of Mathematics, University of Texas, Austin, Texas 78712, U.S.A.

Communicated by Oved Shisha

Received March 8, 1984; revised August 12, 1988

Let \(f \in C[-1, 1] \). A sufficient condition is given which ensures that the \(n \)th polynomial of best approximation to \(f \) is increasing for \(n \) sufficiently large. Using this condition, we are able to give a counterexample to a theorem announced by Tzimbalario [6].

1. INTRODUCTION

Let \(n, k \) be nonnegative integers and let \(\Pi_n \) denote the set of algebraic polynomials of degree \(n \) or less. Let \(C^k[-1, 1] \) denote the class of functions which have a continuous \(k \)th derivative on \([-1, 1](C[-1, 1] \) will mean \(C^1[-1, 1] \)).

For \(f \in C[-1, 1] \), define

\[
E_n(f) = \min_{p \in \Pi_n} \| p - f \|
\]

where \(\| \| \) denotes the uniform norm on \([-1, 1]\). It is well known that for each \(n \) the above minimum is attained by a unique element in \(\Pi_n \). We call this element the \(n \)th algebraic polynomial of best approximation to \(f \). Later, if no confusion is likely to occur, we will always denote it by \(p_n \) for any given \(f \).

The problem we study in this paper is the following: Let \(f \in C[-1, 1] \), and assume that there exists a \(\delta > 0 \), such that

\[
(f(x_1) - f(x_2))/(x_1 - x_2) \geq \delta \tag{1.1}
\]

for all \(x_1, x_2 \in [-1, 1] \) with \(x_1 \neq x_2 \). What extra condition on \(f \) is needed to ensure that \(p_n \) is increasing for all \(n \) sufficiently large?

Roulier [4] showed that \(f \in C^2[-1, 1] \) is such a condition. Also in [4], Roulier asked: if \(f \in C^1[-1, 1] \) and satisfies (1.1) (or equivalently \(f''(x) \geq \delta \))...
for $x \in [-1, 1]$, is p_n increasing for n sufficiently large? In [5], Roulier conjectured that the answer is negative.

In answering this question, Tzimbalario [6] announced the following theorem:

Theorem 1.1. Let f be a continuous function on $[-1, 1]$ with f' not in some $\text{Lip} \, \alpha$, $\alpha < 1$, and $f' \geq \delta$ for some strictly positive δ. Then there are infinitely many n for which p_n is not increasing.

Fletcher and Roulier discussed this problem in [2]. Their main results are the following two theorems.

Theorem 1.2. Let α be given in the interval $0 < \alpha < 1$. There exists $f \in C^1[-1, 1]$ for which

$$f'(x) \geq \delta > 0, \quad x \in [-1, 1]$$

(1.2)

and

$$f' \in \text{Lip} \, \alpha, \quad \text{but} \quad f' \notin \text{Lip}(\alpha + \varepsilon)$$

(1.3)

for any $\varepsilon > 0$, such that there are infinitely many n for which p_n is not increasing on $[-1, 1]$.

Theorem 1.3. Let $0 < \alpha < 1$ be given. There exists a function $f \in C^1[-1, 1]$ for which (1.2) and (1.3) hold and such that p_n is increasing for all n sufficiently large.

Also in [2], Fletcher and Roulier drew the conclusion that Theorem 1.3 provides counterexamples to Tzimbalario's Theorem (Theorem 1.1).

We have noted that there might be the following different interpretations of Tzimbalario's Theorem:

Theorem 1.1a. Let f be a function in $C^1[-1, 1]$ for which (1.2) holds. If there exists α in the interval $(0, 1)$, such that $f' \notin \text{Lip} \, \alpha$, then there are infinitely many n for which p_n is not increasing.

Theorem 1.1b. Let f be a function in $C^1[-1, 1]$ for which (1.2) holds. If $f' \notin \bigcup_{0 < \alpha < 1} \text{Lip} \, \alpha$, then there are infinitely n for which p_n is not increasing.

Theorem 1.3 only provides counterexamples to Theorem 1.1a, and it is obvious that a counterexample to Theorem 1.1b will automatically be one to Theorem 1.1a.

The purpose of this paper is to prove a stronger result on the positive aspect of the problem, and to provide a counterexample to Theorem 1.1b.
2. Main Results

Theorem 2.1. Let f be a function in $C[-1, 1]$, satisfying (1.1). If $E_n(f) = o(n^{-2})$, then p_n is increasing for all n sufficiently large.

Since $f \in C^2[-1, 1]$ necessarily means $E_n(f) = o(n^{-2})$, by Jackson's Theorem [1, pp. 147], Theorem 2.1 is stronger than Roulier's result [3].

Theorem 2.2. There exists $f \in C^1[-1, 1]$ for which (1.2) holds, but $f' \notin \bigcup_{0 < \alpha < 1} \text{Lip } \alpha$, such that p_n is increasing on $[-1, 1]$ when n is sufficiently large.

The contradiction between Theorems 2.2 and 1.1 is apparent.

Lemma. Let $f \in C^1[-1, 1]$ and $q_n \in \Pi_n$. If \(\|q_n - f\| = o(n^{-2}) \) then \(\|q_n''\| = o(n^2) \).

Proof. Let n be fixed, and choose k so that $2^k < n \leq 2^{k+1}$. Write

\[
q_n = (q_n - q_{2^k+1}) + \sum_{i=0}^{k} (q_{2^{i+1}} - q_{2^i}) + q_1.
\]

Since $q_1^n = 0$, \(\|q_n''\| \leq \|q_n'' - q_{2^k+1}''\| + \sum_{i=0}^{k} \|q_{2^{i+1}}'' - q_{2^i}''\| \). Since \(\|q_n - f\| \leq \|q_n - f\| + \|f - q_{2^k+1}\| = o(n^{-2}) \), by Markov's Inequality, \(\|q_n'' - q_{2^k+1}''\| = o(n^2) \).

Let $A(n) = \sum_{i=0}^{k} \|q_{2^{i+1}}'' - q_{2^i}''\||$. It remains to show that $A(n) = o(n^2)$, i.e., that for any given $\epsilon > 0$, $A(n) < \epsilon n^2$ for n sufficiently large.

We introduce some new notations by letting $v_i = q_{2^i}$ and $\beta_i = \sup_{j > i} \|v_j - f\|$. We have \(\|v_{i+1} - v_i\| \leq \beta_{i+1} + \beta_i \leq 2\beta_i \).

By Markov's Inequality, \(\|v_{i+1} - v_i\| \leq 2\beta_i(2^{i+1})^4 \). As \(\|q_n - f\| = o(n^{-2}) \), we may assume that $\beta_i \leq \alpha_i(2^i)^{-2}$ where $\alpha_i > 0$.

Now we have

\[
A(n) \leq \sum_{i=0}^{k} 2\beta_i(2^{i+1})^4 = \sum_{i=0}^{k} 2\alpha_i(2^i)^{-2}(2^{i+1})^4 = 32 \sum_{i=0}^{k} \alpha_i 4^i.
\]

Given $\epsilon > 0$, select m so that $\alpha_i < \epsilon$ when $i \geq m$. Select $N \geq m$ so that $n^{-2} \sum_{i=0}^{m-1} \alpha_i 4^i < \epsilon$ when $n \geq N$. Then for any $n \geq N$ we will have

\[
(1/32)n^{-2} A(n) \leq n^{-2} \sum_{i=0}^{m-1} \alpha_i 4^i + n^{-2} \sum_{i=m}^{k} \alpha_i 4^i
\]

\[
\leq \epsilon + n^{-2} \alpha_i 4^i \leq \epsilon + n^{-2} \alpha_i 4^i \leq 5\epsilon.
\]
Proof of Theorem 2.1. Let δ be as in (1.1); we will show that $p'(x) \geq \delta/4$ for n sufficiently large. Suppose not; then there is an infinite subset of natural numbers N^* such that the following is true for $n \in N^*$,

$$p'_n(x_n) < \delta/4,$$ \hspace{1cm} (2.1)

where $x_n, n \in N^*$, is a sequence of points in the interval $[-1, 1]$. By the Mean-Value Theorem and the lemma we have just proved, we have, for n sufficiently large, that

$$|p'_n(x_n) - p'_n(x_n \pm h)| = |p''_n(\xi)| h \leq \|p''_n\| n^{-2} < \delta/4,$$ \hspace{1cm} (2.2)

where $0 \leq h \leq n^{-2}$ and the sign $+$ or $-$ is chosen so that $x_n + h$ or $x_n - h$ is in the interval $[-1, 1]$. In the following, for the convenience of writing, we assume that $+$ has always been chosen.

By (2.1) and (2.2)

$$p'_n(x_n + h) = p'_n(x_n + h) - p'_n(x_n) + p'_n(x_n) < \delta/4 + \delta/4 = \delta/2.$$

Using the Mean-Value Theorem again, we have

$$p_n(x_n + n^{-2}) - p_n(x_n) < \delta/(2n^2).$$ \hspace{1cm} (2.3)

As $\|p_n - f\| = o(n^{-2})$ we may assume that $\|f - p_n\| < \delta/(4n^2)$. Using this last inequality and (2.3), we get

$$f(x_n + n^{-2}) - f(x_n)$$

$$= \left[f(x_n + n^{-2}) - p_n(x_n + n^{-2}) \right]$$

$$+ \left[p_n(x_n + n^{-2}) - p_n(x_n) \right] + \left[p_n(x_n) - f(x_n) \right]$$

$$< \delta/(4n^2) + \delta/(2n^2) + \delta/(4n^2) = \delta/n^2.$$

This contradicts the assumption (1.1), and completes the proof.

Proof of Theorem 2.2. We choose the basic interval here to be $[0, 1]$ instead of $[-1, 1]$; there is no loss of generality in doing this.

Let

$$g(x) = \begin{cases}
 x/\ln(2/x), & x \in (0, 1] \\
 0, & x = 0.
\end{cases}$$

Then

$$g'(x) = \begin{cases}
 (\ln(2/x) + 1)/\ln(2/x)^2, & x \in (0, 1] \\
 0, & x = 0.
\end{cases}$$
Let \(f(x) = g(x) + \delta x \), where \(\delta \) is as in (1.1). It is obvious that \(f \) satisfies (1.2). Since
\[
\lim_{x \to 0} \frac{g'(x)}{x^\alpha} = \infty
\]
for any \(0 < \alpha < 1 \), we infer
\[
g'(x) \notin \text{Lip } \alpha \quad \text{for every } \alpha \text{ satisfying } 0 < \alpha < 1.
\]
By Theorem 2.1, the proof will be completed if we can show that \(E_n(f) = o(n^{-2}) \). As \(E_n(f) = E_n(g) \) for \(n \geq 1 \), it suffices to show that \(E_n(g) = o(n^{-2}) \). Consider
\[
G(x) = \begin{cases}
\frac{x^2}{\ln(2/x^2)}, & x \in [-1, 0) \cup (0, 1] \\
0, & x = 0.
\end{cases}
\]
Differentiating \(G(x) \) twice, we observe that \(G \in C^2[-1, 1] \). By Jackson's Theorem \(E_n(G) = o(n^{-2}) \). Let \(Q_{2n} \) be the 2nth best approximation polynomial of \(G \). As \(G \) is even, so is \(Q_{2n} \) [3, Chapt. 2, Problem 3], and therefore \(Q_{2n}(x) = q_n(x^2) \) where \(q_n \) is a polynomial of degree \(n \) or less. We have now
\[
\| g(x) - q_n(x) \|_{[0,1]} = \left\| \frac{x}{\ln \frac{2}{x^2}} - q_n(x) \right\|_{[0,1]} \\
= \left\| \frac{x^2}{\ln \frac{2}{x^2}} - q_n(x^2) \right\|_{[-1,1]} \\
= \|G(x) - Q_{2n}(x)\|_{[-1,1]} = o(n^{-2}).
\]
So we have \(E_n(g) = o(n^{-2}) \) and Theorem 2.2 is proved.

3. Comment and Conjecture

If we read carefully the proofs of Theorems 1.2 and 1.3 by Fletcher and Roulier [2], we find that the example in the proof of Theorem 1.3 satisfies the condition of Theorem 2.1, i.e., \(E_n(f) = o(n^{-2}) \), while the one in that of Theorem 1.2 does not. The result of Theorem 2.2 also exhibits the power of Theorem 2.1.

We make the following conjecture:

Conjecture. Theorem 2.1 cannot be improved, in the sense that there exists \(f \in C[-1, 1] \), satisfying (1.1), and \(E_n(f) = O(n^{-2}) \), such that \(p_n(x) \) is not increasing for infinitely many \(n \).
ACKNOWLEDGMENT

I express my gratitude to Professor Gao Fuhong for his encouragement and suggestions. Also, I thank the referees for their valuable comments which helped to correct inaccuracies and errors in the original manuscript. Finally I thank Professor E. W. Cheney who spent much time making the paper easier to read.

REFERENCES