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Let X,, X2, . . . be i.i.d. random variables with continuous distribution function F < 1. 
It is known that if 1 - F(x) varies regularly of order -p, the successive quotients of the 
order statistics in decreasing order of Xt, ..,, 
with distribution functions 

Xn 
xkq k = 1,2, . . . . 

are asymptotically independent, as n -* a~), 
A strong converse is proved, viz. convergence 

in distribution of this type of onle of the quotients implies regular variation of t - F(x). 

order statistics 
limit theorem 
Wiener-Tauber theorem 

partial maxima 
regular variation 

1. introduction and results 

Let X,, X2, . . . be independent random variables with common con- 
tinuous distribution function E;‘ such that F(x) < 1 for all x. By 

410~ Mnla l *** Mn n 1 we denote the order statistics in decreasing order of 
X1, . . . . Xny SO thhtX,, = max (X1, . . . . Xn}. The: index n will be suppressed 
occasionally. The following result is contained in the work of Dwass [ 2, 

31, Lamperti [6] an&Polfeldt [8]: 

Theorem 1. If 1 - F(x) varies regularly of ord’er - p < 0, as x’ -+ *, then 
fork = 1,2, . . . andO< [iC l,i= l,..., k, 

lim P[MnjM;) 1 < 4, j = 1, . . . . k] = Q[ip . . . i$!@ l 

n-+* I - 
fl) 

We give a proof in Section 2, but our main goal is roving the fq~l 
strong converse: 
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Theorem 2. (f for some j 3 1, # E (0,1) and p >, 0, 

lim P[M,,,M;! 1 < t] = tjp, 
n-w I - 

then 

lim ( 1 - F(t+))/( 1 - F(y)) = tp l 

Y 400 

12) 

(3 

Corollary. If (2) holds for all t E (0,l) (or even for & and tz with 
#i)/(log t2) irrational, see [S, Theorem 1..1.2]), then 1 - F(x) 

varies regularly of order - p as x + QQ. 

Let Y,, Y,, e.. be independent random variables with common con- 
tinuous distribution function G < 1 and let NnO, ...D A$ n 1 be the order 
statistics in decreasing or er of Y,, . . . . Yn. By consider&&= exp(Yi) 
with distribution function F(x) = G(log X) and order statistics 

Mni = exp(Q), one immediately derives from Theorems 1 and 2: 

orem 3. If (1 - G(y + q j)/( 1 - G(y)) + exp(-pr)) G”S y + ~a, jfh all 
q > 0, then for k = 1, 2, . . . and Vii > 0, i = 1, . . . , k, 

lian 
n-+w 

PfNn j 
#-- 
1 - Nn i l > ~jt i = 1, . . . . k] = exp(-pql - 2p~, - . . . ‘- kpq& . 

I 

Theorem 4. If for some j 3 1, q b 0 and p 3 0, 

then 

( 1- G(Y ?- rl))/f I- G(y)) + exp(-pq) as y + m . 

arks. Theorems 1 and 2 with p = 0 mean that MnjMi\_, + 0 in 
ability if and only if 1 - F(X) varies slowly at infinity. We may extend 

orems 
.E 

! and 2 to p = 00, with [p = 0,O < f < 1, by stating that 

finity, 
‘j-1 + 1 in probability if and only if 1 - F(x) varies rapidly at in- 
i.e. (1 - F(ax))/( 1 - F(x)) + 0, a > 1 e No change in the proofs is 

uir n analogous remark applies to Theorems 3 and 4. 
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2. Proof of Theorem 1 

289 

S~IIIC@‘(X)< 1 ,~e have Mnj + 00 a.s. as p2 + 00. So it is no restzicticsn 
to assume F(O’) = 0. By symmetry we have, for 1 < r < n, 

P[M,_, > c1 1 M,_,,...,M,] = 
I I 
I1 -FT;)) r, - a>M,. 

r 

So, for 1 < r < k, 

PWk M& < tk, . ..s MrM,.-_i < 5,]= j'(l - F(tr’ M,))‘Cl -F(II/J,))I’dp, 

A 

where A = aifr = k and A = {,I!& M& < I$,..., M,,, M,? < &+l) if 
r < k. Since by the regular variation of 1 - F, 

&+pr P[A] - s(1 -- F(t,'M,))'( 1 - F(Mr))-' dP G 
A 

G 
s 

I&+“’ - (1 a- F(~F"M,))~ (1 - F(M,))-'I dP+ 0. 
a 

we have 

h @+pr PEA] -PIM,k/M~k_l<~k,...,M,,IM, r_l < &]I =0 3 
rl+- P , # 

from which the theorem follows by induction with respect to P. 

3. Proof of Theorem 2 

SirIce F(x)< 1 ,we have Mnk -3 = a.s. as n + m9 so that it is no restric- 
tio:a to assume F(O*) = 0. Put 

e(x) = l/(4 - F(x)), x 2 0, 

/3(y)=inf(x:xZO,O(xj~y}, y> 1. 

Then by the continuity of F, we have 

p(e(xj) = x a.e. [F] on [0, ~b), 
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wiY))=Y, Y> 1 l 

2 we obtain 

(7) 

=IzM - 1)(+1 0 
n-2)j@ (F(ci))+‘- J * dF(u) f (I.- F(v))+l dF(v) 

ur-’ 

= n(rJ - I) . . . (n -j) -- 
I! 

s o I[F(u)p f- 1 (1 - F’(t;’ u),’ dF(u) . 

0 

Taking 43(u) as new integration variable, we find, using (61, 

P[fl$_, > pMi] = n(n- 1) . . . W-j) 
s if I 

O” (1 _x_~yl_j_l x_j4 rtxJ Gx 

;Q 

with y(x) forx 3 1 defined by 

dx) = #I { 1 - Fg-’ /3(x)))’ = (e(p(x)Ye(t-~ P(xW ’ (% 

Defining the probability density qi on (0, m) by 

f, 
a,(x> =7 x -j-2 expl-x-l), x > 0, w 

. 

we have 

lim j I dx = 0 nin - I) l In -1) (1 _ x-l)&-j-1 x-j- 2 

j! 
? 

b%-+- 1 

(11) 

e thank 
puttiqg x 

lim s O” i h-l rl,.(h-‘x) - ~-l qj(rc”‘X)i dx = 13 , (12) 
h-*=J 

I&-$<1 
0 

the referee for the following short proof of (11) and (12). By 
= ny in ( 11) and x = Ay in (I 2’)> the integrals are reduced to 

p are &obabilify densities. Now 
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So from (2), (8) and (1 I), since y is bounded, 

Defining am = 1, say, for 0 6 x < 1, we find from (13) and (12), 

(14) 

We now use the Wiener-Tauber Theorem 3.2 given in [ 11, Section (8.3)]. 
Since 7 is bounded and q f 6: i.e. 

implies a(x) = 0 for bounded continuous Q, we have 

for any probability density$ We now prove 

lim h{ 1 - F(twel p(Ay))) = y-l $P, y > 0 . (16) 
h+m 

Since X{ 1 - F(g-l p( Ly))} decreases with y a,nd is bounded by y A, it is 
sufficient to show that Xk -ib w and 

where D($) is the set of discontinuity points of I,(I on (0, w), imply 
q(y) = y-r tp. Now (17) implies, by (9) and (I S), since 7 is bounded arid 
D($)r is countable, that 

for every probability density& so that 

xj 3/j(x) = @P ) 
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and (16) follows. From ( 16) we easily derive (3), since /3(u) + - as y + 00. 
See the proofs of [4, Lemma 2, Section ‘VIII.81 and [S, Theorem 1.1.31. 

Remark. Shorrock [ IO, Theorem 3] proved a result analogous to our 
Theorem 1 for quotients of upper record values. Attempts to prove a 
converse failed, even when using the strengthened version of Wiener’s ’ 

Tauberian theorem given by Moh [7]. 
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