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Let X;, X, ... be i.i.d. random variables with continuous distribution function F < 1.
It is known that if 1 — F(x) varies regularly of order — p, the successive quotients of the
order statistics in decreasing order of Xj, .. .» X, are asymptotically independent, as n - o,
with distribution functions xX#, = 1,2,. A strong converse is proved, viz. convergence
in distribution of this type of one of the quoticnts implies regular variation of 1 - F(x).

order statistics partial maxima
limit theorem regular variation
Wiener—~Tauber theorem

1. Introduction and results

Let X, X,, ... be independent random variables with common con-
tinuous distribution function F such that F(x) < 1 for all x. By
M,,o, My, ..., M, ,_y we denote the order statistics in decreasing order of
Al wes Xy, 80 that X w0 = max {X,, ..., X,,}. The index n will be suppressed
occasxonally. The following result is contained in the work of Dwass (2,
3], Lamperti [6] and- Polfeldt [8]:

Theorem 1. If 1| — F(x) varies regularly of order —p < 0, as x - o, then
fork=1,2,..and 0< §; < 1,i=1, ..,k

<E =1kl =EPERP L ER 1)

lim P[M ,” 1 <§

n-»>

We give a proof in Section 2, but our main goal is proving the following
strong converse:
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Theorem 2. If for somej= 1,£€ (0,1)and p> 0,

lim P(M, M,  <k]= ge (2)
then
}1_131 (1-FE YA -FON =t . (3)

Corollary. If (2) holds for all § € (0, 1) (or even for &, and &, with
(log &,)/(log &,) irrational, see (S, Theorem 1.1.2]), then 1 — F(x)
varies regularly of order —p as x = .

Let Y,, Y,, ... be independent random variables with common con-
tinuous distribution function G < 1 and let N, ..., N,, ,_; be the order
statistics in decreasing order of Yy, ..., Y,,. By considering X; = exp(Y;)
with distribution function F(x) = G (log x) and order statistics
M,,, = exp(N,,,), one immediately derives from Theorems | and 2:

Theorem 3. If (1 — G(y + 7))/(1 — G(y)) > exp(—pn) as y - o, for all
n> 0, thenfork=1,2,...and1;>0,i=1,..,k,

lim P[N - Nn.i> ), j=1...,kl=exp(-pn, — 20my ~ ... - kpny) .

n-»oe

Theorem 4. If for somej= 1,7>0and p > 0,

lim PN, . | — N, ;> n]=exp(-pin),

n~»os

then
(1 -G(y +m)/(1 — G(»)) > exp(—pn) asy—> o .

Remarks. Theorems 1 and 2 with p =0 mean that M,; M;%_, > Oin
probability if and only if 1 — F(x) varies slowly at mfxmty We may extend
Theorems 1 and 2 to p = o, with £ =0, 0 < ¢ < 1, by stating that

M, M,, j-1 * lin probablhty if and ouly if 1 — F(x) varies rapidly at in-
fimty, i.e. (1 — F(ax)/(1 — F(x)) » 0,a > 1. No change in the proofs is
required. An analogous remark applies to Theorems 3 and 4.
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2. Proof of Theorem 1

Since F(x) < 1, we have M,; > « a.s. as n - . So it is no restsiction
| to assume F(0*) = 0. By symmetrv we have, for 1 <r <n,

PIM,_, >ulM, ,M,]={TL:-I—£(—§A%)', a>M, .

So, for 1 <r<ik,
PIM, Ml <&, ... M M7, <E1= [(1—FE M) (1 - F(M))™" P,
A

where A =Qifr=kand 4 = (M M}, < &, ... M. M7V < &) if
r < k. Since by the regular variation of 1 — F

YT PlA) — [(1-FE M) (1- F(M,)™" dP|
A

< [Igrer — (1 - F&E M) (1 - F(M)™"1 dP~ 0.
Q

we have

lim 1£+*" P[A] —P[M,, /M, , | <Ep... M,,/M

n-»oco

<EN=0

n,r-1

from which the theorem follows by induction with respect to r.

3. Proof of Theorem 2
Since F(x) < 1, we have M, -~ e a.s. as n ~ e, 50 that it is no restric-
tion to assume F(0*) = 0. Put
O(x)=1/1-F(x)), x=0, 4

B(y)=inf{x:x>0,0(x)=2y}, y=1. (5)
Then by the continuity of F, we have
BOx)) =x a.e. [F]on [0, ), (6)
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e(yN=y, y>1. ¥
Forn>j+ 12 2 we obtain

UM,y t""M,l =

-n(n»-n(" 2) f (F(u»"--’“1 dF(u) f a - F)Y~! dF ()
ut”™

1) ..(n-j) f (Fa)y' -1 (1 - FE ' wY dF) .
0

j!

Taking ©(u) as new integration variable, we find, using (6),

PlM,_, > &' M) = an =D m =k [ a—xty=1xmim2 ey dx,
I 1
(8)
with y(x) for x > 1 defined by
y(x)=x! {1 — FE~1pe)Y = {8B())/OE )Y . &)
Defining the probability density 4; on (0, =) by

g;) =;‘; -2 expl—x~1), x>0, (10)

we have

o

lim f n- ql(n"‘x) n(n - D] (n—]) (1 = x~lye=i=1 x=i=2 |dx =0,

n-ros

lim J W lgctxn) - plguixyidx =0, (12)
We thank the referee for the following short proof of (11) and (12). By
puttingx =ny in (11) and x = Ay in (12), the integrals are reduced to
f1p,(») —p(3) dy,

where p,(y) -+ p(y) asn - «, and p,, p are probability densities. Now
apply Scheffé’s lemma ([9], [1, App. II]).
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So from (2), (8) and (11), since v is bounded,

lim [ nlq(n~'x)y(x) dx = ¢ . (13)
1

Defining y(x) = 1, say, for 0 < x < 1, we find from (13) and {12),

Ao
A= OO

im [ A"lg(\"lx) y(x) dx = £ . (14)
J M

We now use the Wiener—Tauber Theorem 3.2 given in [11, Section (8.3)).
Since v is bounded and g; € U, i.e.

[ u g 'x)alx)dx =0, u>0,
0

implies a(x) = 0 for bounded continuous ¢, we have

N R L O TERS L (15)
=

for any probability density £ We now prove

lim M1-FETBWNI=y~ 1% »>0. (16)

A > o0

Since M1 — F(¢~1B(\y))} decreases with y and is bounded by y-litis
sufficient to show that A, ~ c and

khfl A= FETIBOONI =¥(y), y€DW), (17)
where D({) is the set of discontinuity points of Y on (0, o), imply

w(») = y~1£°. Now (17) implies, by (9) and (15), since v is bounded and
D({Y) is countable, that

f f(x) x7 YI(x) dx = ¢/P
0

for every probability density f, so that
X! YiGx) =g,
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and (16) follows. From (16) we easily derive (3), since f(y) —» = asy - oo,
See the proofs of (4, Lemma 2, Section VIII.8] and |5, Theorem 1.1.3].

Remark. Shorrock [10, Theorem 3] proved a result analogous to our

Theorem | for quotients of upper record values. Attempts to prove a
converse failed, even when using the strengthened version of Wiener’s -
Tauberian theorem given by Moh [7].
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