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ABSTRACT 

Some properties of light matrices are derived, and their relation to Perron 
matrices is investigated. 

1. INTRODUCTION 

A key procedure is the theory of non-negative matrices is the “lifting” of 
an inequality of the form 

to a strict inequality Av > c. This is usually done by premultiplication of the 
inequality by a positive matrix X which commutes with A, yielding AXu > 
Xb. Such matrices we shall call “liftable” or simply “light”. To be precise: 

DEFINITION. A E C n x n is called light if there exists a positive n x n 
matrix X such that AX = XA. 

In this note we wish to investigate (possibly real or nonnegative) light 
matrices. This class of matrices generalizes the so called Perron matrices, 
which are defined by [7, 21: 

DEFINITION. A E C n x n is a Perron matrix if there exists a polynomial 
p(X) such that p(A) > 0. 

It should be clear that if A is a real Perron matrix, then the polynomial 
p(A) may be taken to be real. Likewise, if A is a nonnegative Perron matrix, 
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then the coefficients in p(X) may without loss of generality be taken to be 
nonnegative, as well as that p(A) is nonconstant. It is evident that a 
(real/nonnegative) Perron matrix is (real/nonnegative) light. 

An n X n matrix is called reducible (under permutation similarity) if 

for some permutation matrix P, with A, and A, square and nonempty. It is 
well known that A is irreducible (i.e. not reducible) exactly when the 
adjacency graph GA is strongly connected. For a nonnegative matrix this 
implies that (I + A)n-l is a positive matrix which commutes with A. Hence, 
it is clear that if A 2 0, then 

Perron CJ irreducible * light. 04 

There are some obvious differences between irreducible and light matrices. 
For example, if A is irreducible, and p(X) is a polynomial, then p(A) need 
not be irreducible-e.g. 

A= y ; p(x)=l+A2; 
[ 1 

on the other hand, if A is light, so is p(A). 
The spectral radius of a complex matrix A will be denoted by r(A), and 

any nonnegative eigenvector corresponding to r(A) will be called a Peron 
vector. The principal idempotent associated with Xi = r(A) will be denoted 
by Zp( A), and the characteristic and minimal polynomials of A will be given 
by AA(X) and \k,(X) respectively. As usual, permutation similarity will be 
indicated by = , while the algebraic and geometric multiplication of A, will 

be indicated bpy n( h,) and V( X,) respectively. For convenience we call a 
polynomial nonnegative if its coefficients are nonnegative, and we shall use 
the usual notation: A > B if aij > bij for all i, j; A $ B if A > B and A # B; 

and A>Bif aij>b,jforalliand j. 

2. PRELIMINARIES 

First we shall need some preliminary results. 

PROPOSITION 1. LetA>O, X>O. ThenTr(AX)=O = A=O. 

Proof. = : Clear. j: If some aij>O, then Tr(AX)>eFAXei= 
&a &Xki > a i j” ii > 0. n 
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CoRoLum 1. Let 

A= >, 0 and X= 
XI x3 

[ 1 x 
a x, ‘O. 

Then AX = XA j A, = 0 and r(A,) = r(A4). 

Proof. 

;] =XA= [‘;n’ ;]. 

Hence, on equating (1,1) blocks we have A,X, - X,A, = - A,X, and thus 
Tr( A,X,) = Tr( A,X, - X,A,) = 0. By Proposition 1, A, = 0. Now equating 
(1,2) blocks yields A,X, = X,A, with X3 > 0. An application of the follow- 
ing result ensures that r( A,) = r(A4). W 

PROPOSITION 2. If A > 0, B >, 0, then each of the following conditions 
implies the next: 

(a) AX = XB has a positive solution X. 
(b) r(A) = r(B). 
(c) AX = XB has a nonnegative rank-one solution. 

Proof. (a) * (b): Suppose LY = r(A) > r(B) = fi. Then ( B/cI)~ + 0, and 
thus ( A/c~)~X = X( B/cI)~ + 0. Since X > 0, this forces (A/cI)~ + 0, which 
is impossible. Thus OL Q /I. Symmetry now yields CI= p. 

(b) * (c): From the Perron-Frobenius theorem, it follows that there exist 
Perron vectors 

u > 0, 
# 

v$O 

such that Au = ru, BTv = TV. Now X = uvT> 0 will solve the desired 
equation. 

REMARKS. 

(i) The above conditions include the case A = 0 or B = 0. 
(ii) In general (c) * (b), as seen from the example 

in which a=r(A)=2<3=r(B)=p. Yet 

rank1 O =l 
[ 1 00 * 
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This means that (c) * (a) in general. 
(iii) In general (b) * (a). For example, the equation 

has no positive solutions, yet (Y = p = 2 and all nonnegative solutions have 
rank equal to one, and are of the form X = ee:, with e = [l, 1,. . . , l] ‘. 

PROPOSITION 3. Let A > 0, B > 0, and r(A) = r(B) = r. Zf p(X) is a 
nonnegative polynomial then 

dp(A)) = ~(P(B)) = p(r). 

Proof. If the distinct eigenvalues of A are { Xi, . . . , X s }, then the distinct 
eigenvalues of p(A) are among the { p(X,)}, k = 1,2,. . . , s. NOW 

IP(‘k C Pih;lG CPilXkli G CPiri=PCr)’ 
i=O 

Thus r(p( A)) = p(r) = r(p(B)). Since A and B are nonnegative, it follows 
that p(r) is an eigenvalue of p(A) as well as p(B). W 

It should be noted that this result is not true if some pi < 0. For example, 

r[; ;]=r[; :]=2, 

while with p(X) = 1 - h, the spectral radii drop to 3 and 1 respectively. 

PROPOSITION 4. Zf A $0 is irreducible and x > 0, then Ax = 0 = x = 0. 

Proof. Ax=O*(A+ ... +A”)x=O.But A+ +.- +A”>O,andthus 
x = 0. n 

PROPOSITION 5. Zf 

amlB,, i=l,..., t,are:---‘rxible, thenCi=O, j=l,2 ,..., s-1. 
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Proof. Reduce each Aii to its Frobenius normal form [3, p. 901, 

Ai’ 

with A(j) irreducible. Now if some Ci # 0, then we get a node in the 
condensed graph of A which is not maximal. This is impossible, since all 
nodes are maximal on account of the form of B. n 

PROPOSITION 6. Suppose 

A,, A,, *. . A,, 

A= 

is nonnegative, with Aii f 0, irreducible, and square. Let p(X) = p,h 
+ . . . + pNhN f 0 be a nonnegative polynomial. Also let Ak and p(A) have 
corresponding blocks A(f) and (P(A))~~. Then 

(i) A,,#O~Ac,‘;.)#O. 
(ii) Aij # 0 * (P(A)),~ # 0. 

Proof. (i): We use induction on k. It is clearly true for k = 1, so let us 
assume Ack)ij # 0. Then A$;’ ‘) = Ai1 A(h) + - * * > AiiA(:). Using Proposition 
4, we rnay conclude that A,,A(G) # 0, as desired. 

(ii): (P(A))~~ = CFC1pk(Ak)ij # 0, since some pk > 0 and A(,“i) # 0 for all 
k > 1. 

PROPOSITION 7. Let 

A= 

All Sl Cl 
A2 s2 c2 

0 4 c, 

D q+l 0 

0 . . 

0s _ 

(2.1) 



158 ROBERT E. HARWIG 

be in Frobenius normul form with Ai, Di irreducible and [Sj, Ci] # 0. Sup- 
pose further that A,#O, Dj#O, and p(X)=p,A + ... + pNXN $0 is a 
nonnegative polynomial. 

Zf p(A) = c&d&,..., B,) = B, with Bi irreducible, then A,,. . . , A, are 
P 

absent and 

A = dg(D,,..., 0,). 
P 

Proof. Suppose A,, . . ., A, are present. Then 

P(A) = 

P(AJ TI E, 

P(A,) I T, 4 
. . 1 

0 

0 * . 

0 P(Ds) 1 

It now follows from Proposition 5 that [Ti, Ei] = 0, and hence by Proposition 
6 that [ Si, Ci] = 0, which is a contradiction. n 

PROPOSITION 8. Let p(X) be nonnegative and nonconstant. Let rl > 0 
and r, > 0. Zf p(rl) = p(r2) then r1 = rz. 

Proof. 0 = p(rJ - p(rz) = C:,lpk(r; - r,“) = (r1- r,)C:,,p,(r:-’ + 

r1 
“-“3 + . . . + $1 ). Since all coefficients are nonnegative and some I-, > 0, 

the summation is positive. This forces rl = r2. n 

3. NONNEGATIVE LIGHT MATRICES 

We are now ready to start our investigation of nonnegative light matrices. 

THEOREM 1. Let A 2 0 be n x n. The following are equivalent: 

(i) A is light. 
(ii) A = dg(A,, A,, . . . , A,), with Ai irreducible, and r( Aj) = r(A) = r. 

P 
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(iii) A and AT have positive eigenvectors. 
(iv) For A there is a real eigenvalue X, with positive left and right 

eigenvectors. 
(v) A = 0 CT there is a nonnegative polynomial p(X), with p(0) = 0, such 

that p(A) = dg(B,,..., B,) withB,>O andr(B,)=r(B,), i=1,2 ,..., t. 

P 

In which ca.se (a) h, = r(A), (b) Z:(A) = dg(E,,..., E,), with Ez = E, > 0 

and rank Ei = 1, (c)q* = (X - r)‘x(h), LA(h) = (h - r)‘+(h), x(r) # 0 f 
G(r). 

Proof If A = 0, all parts are trivial, so let A + 0. 
(i) 2 (ii): Without loss of generality let 

where the A i are irreducible. We now use induction on s. For s = 2 the 
result follows from Corollary 1. Now assume that the result holds for s - 1 
diagonal blocks. Partition A as 

and let 

x= ‘: I- 1 ; >o. 
ss 

Then by Corollary 1, AX = XA * T” = 0 and r(A) = r( A,). Hence Ax” = XA 
and A,X,, = X,,A,. By the hypothesis, 

A = dg(A,,..., A,_,) 
P 

with Ai irreducible and r(A,) = r(A), i = 1,2,. . . , s - 1. This means that 
r(Ai) = r(A,) for all i = 1,. . ., s, and so A F dg(A,,. . . , A,) with all Ai 

irreducible and r( Ai) = T(A). In the special case where A is light and 
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nilpotent, we have r(A) = 0. The above proof then shows that each Ai = 0, 
and nilpotent, we have r(A) = 0. 

The equivalence of (ii), (iii), and (iv) follows at once from Theorem 6, p, 
92 of [3], or Theorem 3.14, p. 41 of [9]. 

(iv) j(i): If Au = X,u and vrA = X,,vr, with u > 0, v > 0, then X = uvr 
> 0 suffices. 

(ii)-(v): If T(Ai)=O, then A=0 an d we are done. So assume r( A i) = T 
> 0. Now because each Ai is irreducible, the polynomial p(X) = X(1 + A)“- 1 
will do. Also, because r(Ai) = r(A) = r, we have by Proposition 3 that 
T( p( A i)) = p(r), where T = r(A). Hence each of the matrices Bi = p( Ai) has 
the same spectral radius. 

(v) * (ii): Suppose A Z 0, and let p(A) = dg( B,, . . . , B,) = B, where Bi > 

0, r(Bi) = si, and p(O) = 0. Also let r(A) =“r. Then clearly p(X) $0, and by 
Proposition 3, ,a1 = r [ p( A)] = p(r). N ow let A be permuted to its Frobenius 
normal form A, as given in (2.1). Thus p(A) = B. Since p(O) # 0 and B, > 0, 

we may conclude that p(A,) and p(Dj) havePpositive diagonal elements and 
hence Ai # 0, Dj # 0. This means that Proposition 7 may be applied to A, to 
yield 

A =A=dg(D,,...,D,). 

Hence p(A) = dg(p(D,),...: p(D,)), in which each p(Dj) is light [recall 

(l.l)], yet nes not be irreducible. Hence, using (i) * (ii), we have for each 
j=l >..-, s, p(Dj) = dg(Gij),. . . , Gl!)), in which the G j;i) are all irreducible 

and have the same ipectral radius for k = 1,2,. . . , 2 . . Also, because each Gij) 
is similar to some Bi, we may conclude that for ali j and k, r(Gfk’))=s,= 

r( B,) and hence r( p( Dj)) = s1 Vj. Now let rj = r( Dj). Then p( rj) = r( p( Dj)) 

= r(p(Di)) = p(r,), for all i and j. By Proposition 8 we have rj = rj, and (ii) 
follows. 

Suppose now that the above hold. Then: 
(a): From (iii) and (iv) it follows that A, = r. 
(b): If A is as in (ii), then Z:(A) = dg(E,,..., E,), where Ei = ZP(A,) 

= u i~iT/~iT~ i is the rank-one principal’idempotent of A, corresponding to 
X=r,withui>O,vi>O. 

(c): This is clear, and completes the proof. 

Several remarks are now in place. 

n 

REMARKS. 

(1) Theorem 1, part (v) generalizes the concept of a nonnegative Perron 
matrix, for which there exists a nonnegative polynomial p(X) with p(O) = 0, 
so that p(A) > 0. 
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(2) In Theorem 1, part (v), we cannot drop the condition that r(B,) = 
r(B,). For example, if 

then 

P(A) = [; ;]y 

yet A is not light, since it has no positive Perron vector. Similarly, we cannot 
drop the condition that p(O) = 0, as seen from the example where 

A=” 
[ 1 0 0 

and p(X) = I- X2. 

In this case p(A) = Z satisfies the conditions of (v), yet A is not light, since it 
is nilpotent. 

(3) It is clear that Perron matrices are light. A larger class of matrices 
which contains the light matrices are those complex matrices for which there 
exists a polynomial p(h) with p(O) = 0 such that P(A) = dg(B,, . . . , B,) with 

Bi > 0. It is not known whether these matrices can be chLacterized by means 
of a matrix equation. 

(4) If A is light and AX = XA, X > 0, then X need not be a polynomial 
in A. That is, { Perron} z {light}. For example, if 

0 1 1 
A= 1 o 1 

[ 1 1 1 0 

then AA = (X + l)“( h - 2), *A = (X + l)( A - 2) and A2 = A + 21. Now let 

2 1 
x= [ 1 3 

2 1 

Then AX = XA, X > 0, yet X cannot be 
polynomial would have to be of the form 

P,Z + P,A = 
[ 

PO 

2 
1 . 
2 I 

a polynomial in A. Indeed, such a 

PI Pl 1 ? ’ 
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which cannot equal X. 
(5) The spectral component Z;(A) is always a polynomial in A, yet its 

polynomial coefficients need not be nonnegative. For example, if 

then 

=A-I. 

Moreover, since *A = (X - 1)(X - 2), no other polynomial representation of 
Zp can be nonnegative. 

COROLLARY 2. Let A 2 0 be n X n. The following are equivalent: 

(a) Zf A is light and AX = XA, X > 0, then X is a polynomial in A. 
(b) A is irreducible and nonderogatory. 

Proof. (a) * (b): Since A is light, there exists X > 0 such that AX = XA. 
By assumption we have X = p(A) > 0 for some polynomial. Now by Theorem 
1, we know that because A is light, A = dg( A,, . . . , A,), with A i irreducible 

and r( Ai) = r. Hence p(A) = dg(p(Ii), . . . , p(A,)), which can never be 

positive if s > 1. Hence s = I ‘and A is irreducible. Now suppose that A is 
derogatory. Then there exists a real matrix E such that AE = EA and E is 
not a polynomial in A. If we set X, = (I + A),-l+ tE, then AX, = X,A, 
and for sufficiently small C, X, > 0. Moreover, X, cannot be a polynomial in 
A. This would contradict (a), and thus A must be nonderogatory. 

(b) * (a): From the standard theory we know that the only solutions to 
AX = XA are polynomials in A. It is also clear that such matrices exist, e.g. 
X = (I + A)n-l. n 

Let us now examine the related matrix equation AX = XB with A and B 
nonnegative. 

4. THE EQUATION AX = XB, WITH A, B > 0 

We now wish to investigate how the conditions of Theorem 1, for the 
existence of positive solutions to AX = XA, have to be generalized to 
guarantee the existence of positive solutions to AX = XI?, with A, B > 0. For 
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convenience let us say that a matrix A has “cornered” Frobenius normal 
form if in (2.1), r(Ai) < r = r(Dj), i = l,..., q, j = q + l,.. ., s, that is, if the 
spectral radius of A is “cornered ’ in the (2.2) block of D. In other words, the 
singular vertices (classes) are precisely the maximal (also called final or 
essential) vertices (classes) under the access partial ordering. 

PROPOSITION 9. Let A, B > 0. The following are equivalent: 

(i) AX = XB has a positive rank-one solution X. 
(ii) AX = XB has a positive solution X. 
(iii) A and BT have positive eigenvectors and r(A) = r(B). 
(iv) A and BT have cornered Frobenius normal fm and r(A) = r(B). 

Proof. (i) q (ii): Clear. (ii) = (iii): From Proposition 2, we know that 
r(A) = r(B) = r. Using the Perron-Frobenius theorem, we may select y and w 
so that 

ATy=ry and Bw =rw, with Y$O, W$O. 

Then AX=XB, X>O * Au =ru and BTv=rv, where u =Xw>O, 
VT = y=x > 07 

(iii) * (i): If Au = rlu, BTv = r,v, u > 0, v > 0, and r(A) = r(B), then 
rl = r(A) = r(B) = r,. Now use X = uvT > 0. 

(iii) e (iv): It was shown in [3, p. 921 that A has a positive eigenvector 
exactly when its Frobenius normal form is concerned. n 

REMARKS. 

(a) It may be shown that if the Frobenius form (2.1) is cornered, then all 
positive Perron vectors are given by 

[ 
(rz-A’)-‘CU , where U= : 

U 1 
“q+lUq+l 

[ * 1 ) 

‘YSUS 

with ei > 0 and Diui = rui, ui > 0. 
(b) If B = A, then the conditions (i), (ii), and (iii) of Theorem 1 are 

recovered. In particular, if both A and AT have cornered normal form, then 
only the Di blocks can be present. 

(c) It is not known if the existence of a positive eigenvector can be 
replaced by a polynomial condition. 

(d) The idea of a “cornered” matrix also plays an important role in the 
study of the zero nonzero pattern of a Perron vector of a nonnegative matrix. 
See for example [l], [4], [5], [6], and [8]. 
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COROLLARY 3. The systems AX = XB and BY = YA have positive 
solutions if and only if A and B are light and r(A) = r(B). 

Proof. * : By Proposition 6, A and BT as well as B and AT have 
positive eigenvectors, and r(A) = T(B). Hence by Theorem 1, A and B are 
light. 

(= : By Theorem 1, we may without loss of generality consider 

Since A i and B are irreducible, they have positive Perron vectors. Hence by 
Proposition 6, tL e equations AiXij = XijBj with r(Ai) = r(Bj) always have 
positive solutions. Similarly for BY = YA. n 

PROPOSITION 10. Let A, B > 0. lf AX = XB has a nonnegative solution 
and A is light then r(A) < r(B). 

Proof. Let a = r(A). If r(B) < a, then ( A/a)NX = X( B/a)N + 0. Now 
X > 0 has a nonzero column xi. Hence ( A/(w)~x~ + 0. We may lift this to 

yled (A/c_x)~~+~, where p=Yxi>O and AY=YA, Y>O. This yields 3 
T( A/a) < 1, which is impossible. Thus r(A) < r(B). n 

REMARKS. 

(i) This result is no longer true if we replace the assumption that A is 
light by the weaker assumption that A only has a positive eigenvector. For 
example let 

A=[; ;], B=[; j, x=[; ;]. 

Then Ae=2e, [i,l]B=i[i,l], and AX=XB. Yet r(A)=2>i=~(B). 
(ii) Strict inequality is possible in Proposition 10, even if A is irreducible. 

This may be seen from the example where 

A=[; ;], B=[; ;], and X= [; ;]. 
Here r(A) = 1 -C 2 = r(B). 
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COROLLARY 4. Zf A and B are nonnegative light, and AX = XB has a 
nonnegative solution, then r(A) = r(B). 

Combining Proposition 9 with Corollary 4, we obtain: 

COROLLARY 5. Zf A, B > 0 are light, then the following are equivalent: 

(i) there is a positive rank-one solution to AX = XB. 
(ii) There is a positive solution to AX = XB. 
(iii) There is a nonnegative solution to AX = XB. 
(iv) r(A) = r(B). 

5. REAL LIGHT MATRICES 

We may now characterize the real light matrices. 

THEOREM 2. Let A E DB ,,X,,. The following are equivalent: 

(a) A is real light. 
(b) A and AT have positive eigenvectors. 
(c) there is a real eigenvalue X, such that Au = h,u and ATv = Xp, with 

u > 0. v > 0. 

Proof. (a) * (b): Again suppose A # 0. Suppose AX = XA, X > 0, and 
set cr = r(A), r = r(X). Now every eigenspace of X contains an eigenvector 
of A. In particular, if Xu = ru, with u > 0, then AXu = X(Au) = r(Au). 
Since Au # 0, and the eigenspace N(X - rZ) has dimension one, we may 
conclude that Au = Xp for some X,. Clearly X, must be real. Likewise if 
XTv = rv, with v > 0, then ATXTv = XT< ATv) = r( ATv), and ATv = Xsv with 
X, real. 

(b) = (c): If Au = Xp, ATv = hsv, with u > 0, v > 0, then ApTu = vTAu 
= X,vTu and thus h, = A,. 

(c) =$ (a): X = uvT will do. n 

In general 1X,1 need not equal r(X). Furthermore A may be reducible 
and the geometric and algebraic multiplicities of X, may exceed unity. For 
example, let 

A=[ -; -; a] and X=eeT>O. 
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Then AX = XA = 0, u = v = e, and X, = 0. Moreover, Ax = h2(h - 3), r = 3, 
A, = X2(X + 2). Since rank(A) = 1, the nullity of A equals 2 and thus both 
multiplicities of X, equal 2. Unlike in the nonnegative light case, no canonical 
form seems possible for general real light matrices. 

We now return to the Perron matrices. The following simplifies and 
extends Theorem 2.7 of [7]. 

PROPOSITION 11. Let A be real n X n with n > 2. The following are 
equivalent: 

(a) A is a real Perron matrix. 
(b) A has a real eigenvalue X, with algebraic multiplicity n(h,) = 1 and 

associated positive left and right eigenvectors u > 0, v > 0. 
(c) There is an eigenvalue X, of A for which Zp > 0. 

In which case A is irreducible. 

Proof. (a) * (b): Let X = p(A) > 0, where p(A) is a polynomial (with 
real coefficient). Clearly A # 0 and p(A) # p,. From Theorem 2 we have 
Au = XpArv = hiv, where u,v > 0 and p(A)u = TU, p(AT)v = TV. Here 
r = r(p(A)) is a simple eigenvalue of p(A), of algebraic multiplicity equal to 
unity. Now Au = Xp = p(A)u = p(A,)u = TU. Hence r = p(X,). Since 
each eigenvalue of p(A) is of the form p(h,) for some eigenvalue Xi of A, 
we may conclude that X, must be a simple eigenvalue of A with algebraic 
multiplicity one. 

(b) j(c): Let Au = X,u, ATv = X,v, u > 0, v > 0, and let n(A,) = 1. 
Then ZP(A,) = uvT/vTu ; 0. 

(c)*(a): Z’, is always a polynomial in A, with real coefficients. 
Lastly, if A were reducible, so would p(A) be and hence it could 

positive. 
not be 

n 

EXAMPLE. If 

A=[-: _:] and p(h) =1+2X 

then 

P(A)= [; ;]>O- 
In this case u = v = e, and h, = 0 < 2 = r. Clearly A is irreducible. 
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It should be noted that a Perron matrix need not be nonderogatory, as 
seen from the matrix 0 1 1 

B= 1 0 1 
[ 1 1 1 0 

with +,(A) = (X + 1)(X - 2) and A = (X + l)‘(X - 2). Here A2 > 0. 

Let us now turn to the complex case. 

PROPOSITION 12. The following are equivalent: 

(a) A is complex light. 
(b) A and AT have positive eigenvectms. 
(c) A and A* have positive eigenvectors. 

Proof. Let A = B + iC, with B, C real. (a) j (b): If AX = XA, X > 0, 
then BX = XB and CX = XC. Hence by Theorem 2, if Xu = ru, u > 0, then 
Bu = plu and Cu = viu. Setting A, = pi + iv,, we get Au = (B + iC)u = hiu. 
Similarly, if X*V = TV, v > 0, then B*v = ~_ly, C*v = Y~V, and A*v = Xiv. 

(b)-(a): If Au =h, u and ATv=h2v with u>O, v>O, then again 
X, = X2 and X = UV* will do in AX = XA. 

(a) =. (c): As in the first section, we get Au = hiu, u > 0 while Av = (B* 
- iCT)V = h,v, v > 0. 

(c)=(a): If Au=h, u and A*v = hiv, with u > 0, v > 0, then vTA = vTA2 
and thus Xp*u = v*Au = uTATv = u*A*v = Ap*u, and hence h, = Xi. NOW 
AuvT= h UV*= A 1 UV*= uv 2 *A, as desired. w 

PROPOSITION 13. Let n 2 2. The following are equivalent: 

(a) A is Perron. 
(b) A has eigenvalue A, with n( A,) = 1 and positive left and right 

eigenvectors. 
(c) ZP(A,) > 0 for some eigenvalue A,. 

In which case A is irreducible. 

The proof is similar to that of Proposition 12 and is omitted. 

6. DISCUSSION AND OPEN QUESTIONS 

We have seen that the study of light matrices is closely related to the 
study of the matrix equation AX = XB, with A, B > 0. The existence of 
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positive solutions has been fairly well characterized in Proposition 9. On the 
other hand, it is not known how to characterize all positive solutions to this 
equation in a satisfactory manner, even if A and B are irreducible and 
nonnegative. 

A related problem is the following: If A, B >, 0, when does AX = XB 
have nonnegative nonzero solutions X? If so, what do they look like? It 
suffices that r(A) = r(B); however, this is not necessary. It is further not 
necessary for AX or XB to be a multiple of X, as seen from 

We may recapitulate this in the following table: 

SOLUTIONS TO AX = XB 

Existence Characterize Existence Characterize 
of x>o allx>o OfX$O allX$O 

A,B>O Known Open Open Open 

A,B>O 
irreducible Known Open Known Open 

A related and more formidable problem is to find all positive (nonnega- 
tive) solutions to AX - XB = C with A, B > 0. 

Lastly, it would be of interest to know whether part (b) of Theorem 1 
characterizes nonnegative light matrices. 

The author wishes to thank Hans Schneider for several valuable sug- 
gestions, resulting in an improved presentation of Theorem 1. 
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