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Paraneoplastic neurological syndromes and autoimmune encephalitides are immune neurological disorders oc-
curring or not in association with a cancer. They are thought to be due to an autoimmune reaction against neu-
ronal antigens ectopically expressed by the underlying tumour or by cross-reaction with an unknown infectious
agent. In some instances, paraneoplastic neurological syndromes and autoimmune encephalitides are related to
an antibody-induced dysfunction of ion channels, a situation that can be labelled as autoimmune channelopa-
thies. Such functional alterations of ion channels are caused by the specific fixation of an autoantibody upon its
target, implying that autoimmune channelopathies are usually highly responsive to immuno-modulatory treat-
ments. Over the recent years, numerous autoantibodies corresponding to various neurological syndromes have
been discovered and their mechanisms of action partially deciphered. Autoantibodies in neurological autoim-
mune channelopathies may target either directly ion channels or proteins associated to ion channels and induce
channel dysfunction by variousmechanisms generally leading to the reduction of synaptic expression of the con-
sidered channel. The discovery of thosemechanisms of action has provided insights on the regulation of the syn-
aptic expression of the altered channels as well as the putative roles of some of their functional subdomains.
Interestingly, patients’ autoantibodies themselves can be used as specific tools in order to study the functions
of ion channels. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Paraneoplastic neurological syndromes (PNS) are disorders of the
nervous system occurring in associationwith a cancer that are not relat-
ed to any metabolic, infectious, degenerative, metastatic or iatrogenic
cause [1]. PNS are thought to be secondary to an autoimmune reaction
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against neuronal antigens ectopically expressed by the underlying tu-
mour (Fig. 1) [2]. The discovery of autoantibodies targeting such anti-
gens has greatly improved our knowledge of these syndromes as they
proved to be useful diagnostic and prognostic tools. In particular, auto-
antibodies targeting neuron membrane proteins such as ion channels,
but not intracellular antigens, were associated to better outcomes and
can improve with immunotherapy [3]. The standardization of antigen
characterization techniques such as immunoprecipitation coupled to
mass spectrometry has allowed the identification of numerous specific
antigens involved in antibody-mediated neurologic syndromes, includ-
ing ion channels or proteins modulating the functions of ion channels
[4–7]. Ion channels expressed at the cell membrane are distributed
throughout the nervous system and play an essential role in its homeo-
stasis by tuning the polarization of neural cells. Ions traffic through rest-
ing membrane channels keeps the basal polarization of neural cells
steady while activation of voltage or ligand-gated ion channels regulate
excitation and inhibition of neurons by inducing either a depolarized or
a hyperpolarized state, respectively [8]. In several autoimmune neuro-
logical syndromes, including PNS, patients’ autoantibodies targeting
ion channels or their associated proteins were shown to alter in vitro
and in vivo the function of their targets, leading to the concept of neuro-
logical autoimmune channelopathies (NACs), that is, a group of various
autoimmune neurological diseases sharing antibody-mediated ion
channel dysfunction as a common pathogenesis. In this chapter, we
will systematically review the autoimmune neurological syndromes re-
lated to antibodies against neuronal ion channels (Table 1), with a par-
ticular focus on the molecular mechanisms of ion channels dysfunction
and the immunological mechanisms of autoantibody generation.
2. Anti-NMDA receptor encephalitis

N-methyl-D-aspartate receptors (NMDAR) are major ionotropic glu-
tamate receptors of the central nervous system (CNS). NMDAR are
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Fig. 1. Pathogenesis of the paraneoplastic neurological syndromes. Ectopic neuronal anti-
gens expressed by some tumours are presented to the lymphocytes presentwithin inflam-
matory infiltrates (arrowheads), leading to a cross-reaction against the same antigens
normally expressed by neurons. As a result, an autoimmune reaction against the nervous
system can develop and progress independently of the triggering cancer.
mainly post-synaptic, and when activated they mediate an input of cal-
cium and sodium that generates excitatory post-synaptic currents [9].
NMDAR activation requires the binding of glutamate and a co-agonist,
either D-serine or glycine, and prior depolarization of the post-
synaptic neuron [10,11]. Due to those characteristics, NMDAR act as
molecular coincidence detectors and are involved in twomajor mecha-
nisms of synaptic plasticity: long-term potentiation (LTP) and depres-
sion (LTD), which consist in respectively long-lasting enhancement
and reduction of the synaptic transmission between two neurons after
repetitive stimulation [9]. Those properties underlie the involvement of
NMDAR in physiological and pathological processes such as memory
[12], executive functions [13], excitotoxicity [14] and psychiatric disor-
ders including schizophrenia [15]. NMDAR forms a heterotetrameric cat-
ion channel composed of a mix of an obligatory subunit, GluN1, with a
variable composition of auxiliary subunits, GluN2 (A-D) and/or GluN3
(A-B) [16].

Autoimmune encephalitis with antibodies against the GluN1 sub-
unit of NMDAR (NMDAR encephalitis) was described in 2007 and
turned out to be one of the most frequent acute autoimmune encepha-
litis [7,17,18], even outnumbering infectious aetiologies in young pa-
tients [19]. NMDAR encephalitis mostly involves women less than
45 years [20]. A paraneoplastic origin is documented in 38-58% of the
patients and involves an ovarian teratoma in 94% of the cases [17,20].
The disease follows a stereotyped course [17]. Seventy percent of pa-
tients experience prodromal symptoms such as fever, nausea, diarrhoea
and upper respiratory tract disorders. The neurologic presentation usu-
ally begins with acute psychiatric symptoms and cognitive impairment,
followed in days toweeks by a loss of consciousness alternatingwith pe-
riods of agitation and/or catatonia associatedwith oro-lingual and limbs
dyskinesias. Dysautonomic symptoms and central hypoventilation are
frequent and severe. During the comatose phase, dissociated responses
to stimuli, similar to the effect of NMDAR antagonists such as ketamine,
may be observed. Seizures can occur at any point of the disease course.
Although the disease progression is approximately similar, initial pre-
sentation is slightly different in children who tend to experience more
movement disorders and atypical neurological signs [20,21], and in
men who are more subject to seizures [22]. More importantly, cancers
are much less frequent in men and children [20,22], rending the diag-
nostic strategy less clear. Outcome is good in 81 % of the patients, but
the recovering phase may last more than two years [20]. Relapses
occur in 12-22% of the patients [20,23]. Prognosis seems to depend on
the precocity of immunotherapy initiation, while immunotherapy after
the first event is associated with a lower frequency of relapses [20,24].
Considering NMDAR encephalitis as a primarily antibody-mediated dis-
ease, the utility of B-cell depleting treatments, such as the monoclonal
anti-CD20 antibody rituximab, has been emphasized [25,26].

Anti-NMDAR antibodies’ epitope is thought to be located on a small
region of theGluN1amino-terminal domain (Fig. 2) andmay depend on
post-translational modifications, hence the peculiar pattern of patients’
anti-NMDAR antibodies observed on rat brain immunohistochemistry
[27,28]. The biological effects of anti-NMDAR antibodies have been ex-
tensively studied over the recent years (Fig. 3). Patients’ antibodies ap-
plied on cultured hippocampal neurons alter NMDAR synaptic currents
[29,30] while AMPAR currents are preserved [31]. NMDAR deregulation
is likely not mediated by direct receptor inhibition [30] but rather by a
decrease in surface receptor density [31]. Indeed, NMDAR capping by
the autoantibodies results in receptor cross-linking [31] and disruption
of its interaction with EphB2R [32]. As a consequence, the surface traf-
ficking of the receptor is altered [32], leading to a time and dose depen-
dant NMDAR internalization through recycling endosomes and
lysosomes [27,30,31]. Intracerebro-ventricular infusion ofmicewith pa-
tients’ CSF inducememory deficits and a depressive-like behaviour [33].
In rats infusedwith CSF fromNMDAR-E patients, excessive extracellular
glutamate concentrations are observed, likely due to an imbalance
between NMDA and AMPA receptors [34]. Alternatively, down-
regulation of pre-synaptic NMDAR on the GABAergic neurons may



Table 1
Characteristics of the autoantibodies involved in neurologic autoimmune channelopathies.
ATD: amino-terminal domain; LTP: long-termpotentiation; SPS: stiff person syndrome; PERM: progressive encephalomyelitis with rigidity andmyoclonus; LRR: leucin rich region; FBDS:
facio-brachial dystonic seizures; NMT: neuromyotonia; MoS: Morvan’ syndrome; Ach: acetylcholine; LEMS: Lambert-Eaton myasthenic syndrome; CA: cerebellar ataxia.

Antigen Epitope Modulatory mechanisms Functional consequences Cancer (frequency,
histology)

Associated Syndromes references

NMDAR GluN1(ATD) Cross-linking and disruption of
its interaction with EphB2R
resulting in: 1) Alteration of
surface mobility; 2) increased
internalization

Abrogation of NMDAR
currents & LTP Increased
extracellular levels of
glutamate

38-58%; teratomas Encephalitis (limbic,
dysautonomic, movement
disorders)

[17,20,30–32,34,35]

AMPAR GluA1/GluA2 (ATD) Decreased of synaptic surface
AMPAR

Non evaluated 70%; thymus, lung
or breast cancer

Encephalitis [5,51–54]

GABAAR α1 and/or β3 subunits Decreased surface density and
mobility of GABAAR

Decreased inhibitory
post-synaptic currents’
amplitude

40%; thymoma High titres: encephalitis
Low titres:Seizures, SPS,
OM

[61,62]

α1-AchR α1 subunit Internalization of muscle-type
AchR

Impaired neuromuscular
transmission

10%; thymoma AMG [68,71,81]

α3-AchR α3 subunit unknown Decreased ganglion-type AchR
currents

6-60%; various AAG [70,94,98,99]

GlyR α1 subunit Increased internalization Non evaluated 9%; thymoma,
lymphoma

SPS, PERM [105]

Lgi1 EPTP repeats and LRR
domains

Disruption of the interaction
between Lgi1 and ADAM23
resulting in a decrease in
surface AMPAR

Non evaluated 15%; highly variable Encephalitis, FBDS [4,125,132,133]

Caspr2 Extracellular domain Non evaluated Non evaluated 25%; thymomas Encephalitis, NMT, MoS [6,122,123]
VGCC α1 subunit of the P/Q

type VGCC
VGCC cross-linking and
internalization

Reduction of P/Q type VGCC
Decrease of Ach release

LEMS: 50-60% CA:
≈100%

LEMS, CA [149,150,153,160]
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hamper inhibitory inputs on glutamategic neurons and therefore con-
tribute to a hyperexcitatory state [30,34]. This hyperglutamatergic
state explains the cortical hyperexcitability observed in rats infused
with the patients’ antibodies [35] and may account for the epileptic sei-
zures frequently observed in the patients. Besides, anti-NMDAR anti-
bodies applied on an in vitro model of neural network decreased the
spontaneous burst and spike rates while the rhythmic activity was pre-
served [36]. Such preserved rhythmic activity within a hypo-functional
network have been suggested to promote seizures [36]. On the other
hand, anti-NMDAR antibodies abrogate glutamatergic LTP in hippocam-
pal neurons [29,37]. Hippocampal LTP being thought to constitute the
biological basis for memory encoding, such effect is likely to account
for the anterograde amnesia presented by anti-NMDAR encephalitic pa-
tients. Patient’s brain histopathological studies have comforted the idea
of a mainly antibody-mediated CNS disorder by revealing prominent
perivascular B-cell infiltrates, microglial activation and immunoglobulin
deposits, without complement accumulation or neuronal damages [27,
ATD

LBD

NMDA receptor 

Fig. 2.NMDA and AMPA receptors structure and epitope localization. NMDA and AMPA recepto
and a ligand-binding domain (LBD). The epitope (yellow) recognized by autoantibodies from N
the NMDAR ATD. On the other hand, autoantibodies form patients with AMPAR encephalitis ta
regions are unknown.
38–40]. Accordingly, increased production of the B-cell attracting che-
mokine CXCL-13 [41], B-cell expansion [42] and intrathecal synthesis
of anti-NMDAR antibodies [17] have been demonstrated in the CSF
of NMDAR encephalitis patients. Interestingly, poor outcomes are corre-
lated to elevated serum and CSF anti-NMDAR antibodies titres,while re-
lapses significantly associate with increased CSF NMDAR Ab titres [17,
43]. Pathologic studies on patients’ teratomas have brought insights
on the immunological pathogenesis of paraneoplastic NMDAR enceph-
alitis. Ovarian teratomas contain neural tissues expressing GluN1 and
GluN2 subunits of NMDAR [44]. In NMDAR encephalitis patients, this
neural component can present as foci of dysplastic neurons resembling
cells from neuroblastic tumours of the CNS [45] and are in close contact
with lympho-plasmocytic infiltrates often organized as ectopic reactive
germinal centres [44,46]. Therefore, in paraneoplastic cases intra-
tumorous inflammatory processes are likely to directly trigger anti-
NMDAR autoimmune reaction, particularly when dysplastic neural tis-
sue is present in the tumour. Conversely, non-paraneoplastic cases
ATD

LBD

AMPA receptor 

L-glutamate

Glycine

D-serine

rs extracellular regions are composed of an amino-terminal domain (ATD)with two lobes
MDAR encephalitis patients has been localized in a small region between the two lobes of
rget an epitope in the bottom lobe of the AMPAR ATD. So far the functional roles of those
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Fig. 3. Functional effects of anti-NMDAR antibodies. A. Basal state. AMPAR and NMDAR are both expressed at the post-synaptic surface of glutamatergic synapses. NMDAR diffuse laterally
to and from synaptic areas. Recycling of NMDAR occurs in the extra-synaptic regions, while they are retained at the synapse by the interaction with the EphrinB2 receptor (EphB2R). Fur-
thermore, NMDAR present on inhibitory GABAergic neurons enhance GABA release to lower the excitability of glutamatergic neurons. B. NMDAR encephalitis. NMDAR Ab disrupt the in-
teraction between EphB2R and NMDAR, thus impairing NMDAR synaptic retention, and cross-link NMDAR, therefore reducing lateral diffusion and increasing the internalization of the
receptor. As a result, post-synaptic NMDAR are decreased, leading to the abrogation of NMDAR currents and LTP, an important mechanism of synaptic plasticity. Impairment of
NMDAR on GABAergic neurons may result in a lack of the inhibitory tone upon glutamatergic transmission, while post-synaptic AMPAR are overexpressed compared to NMDAR. Those
two phenomenons result in an increased excitatory glutamatergic transmission.
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may result from diverse environmental and endogenous factors in
predisposed individuals. For instance, NR2B expression was found in
normal ovary tissue [47], and some authors suggested that local inflam-
mation ormild viral infection could be sufficient to induce the presenta-
tion of ovarian NMDAR subunits to the immune system and trigger
NMDAR encephalitis, explainingwhy viral-like prodromas are frequent.
Similarly, the increased occurrence of NMDAR encephalitis in patients
with a history of recent HSV encephalitis is now well described [48].
Brain inflammation and breakage of the blood-brain barrier during
HSV encephalitis course is likely to lead to the exposure of many CNS
antigens to the immune system, including NMDAR subunits, thus
favouring the development of NMDAR encephalitis later on.

3. Anti- AMPA receptor encephalitis

A-amino-3-hydroxy-5-methyl-4-isoxazolepropion acid receptors
(AMPAR) are ionotropic glutamate receptors permeable to cations
that mediate most of the excitatory neurotransmission in the mamma-
lian brain. AMPAR play a fundamental role in major neurophysiological
processes including learning, memory and cognition [49]. Four different
AMPAR subunits are known, labelled GLuA1 to GluA4, that assemble in
variable heterotetrameric compositions, mostly GluA1/2 and GluA2/3
[50]. AMPAR are notably involved in synaptic plasticity processes such
as LTP and LTD, that are characterized respectively by an increase and
a decrease in surface synaptic AMPAR density in response to neuron re-
petitive stimulation [49].

Autoantibodies directed against the GluA1 and/or GluA2 subunits of
the AMPARwere described recently in a series of ten patients [5] (Fig. 4).
The patients were mostly middle-aged women and had experienced
typical symptoms of a limbic encephalopathy, such as anterograde am-
nesia, seizures and behavioural problems [5]. Sixty percent of the pa-
tients also had diverse extra-limbic symptoms, such as dysexecutive
signs, cerebellar syndrome (cinetic, static, nystagmus), visual hallucina-
tions and sleep disorders. Fourty percent experienced seizure and 50%
had 1 to 3 relapses after the first episode. By contrast with anti-
NMDAR encephalitis, no movement disorder or sign of dysautonomia
were observed. Paraneoplastic aetiology with thymus, lung or breast
cancer was found in 70% of the patients. Additional case reports further
illustrated the variability of the clinical features, such as pseudo-
dementia presentations with isolated confusion or isolated dysexecutive
symptoms [51]. A case of dramatic fulminant encephalitis in a young
woman has also been described [52]. In most patients, brain MRI
shows mesiotemporal hyperintensities, although involvement of
extra-limbic regions is possible [5,52]. EEG is altered in 60% of the
patients and can be useful in the absence of CSF and MRI abnormalities
[51]. Outcome is marked by poor cognitive recovery, 50% of the re-
ported cases remaining significantly disabled [5,51–53]. Prognosis
seems to depend on the number of relapses and the association with
other autoantibodies [5].

Studies using fusion proteins constituted of subdomains of the
AMPAR extracellular region suggested that the epitope recognized by
the patients’ autoantibodies was situated within the bottom lobe of
the amino-terminal region of GluA1 or GluA2 (50, Fig. 2). A direct func-
tional effect of the autoantibodies is suggested by the reversibility of at
least part of the symptomatology after patients immunosuppression
and by the correlation of antibody titres with the clinical evolution ob-
served in one patient [52]. Moreover, in vitro experiments on cultured
hippocampal neurons showed that patients’ antibodies decrease, in a
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Fig. 4. Immunohistofluorescence of a rat hippocampus slice incubated with CSF from an
AMPAR encephalitis patients or CSF from a control subject. Human IgGs are stained in
green, cells nuclei in blue (DAPI). A. Incubation with a patient’s CSF. Patient’s IgGs stain-
ing is distributed throughout the hippocampus neuropil with a pattern characteristic of
AMPAR. B. Incubation with control CSF.
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specific and reversibleway, surfaceAMPAR [5]. Application of purified IgG
from AMPAR encephalitis patients reduces the spontaneous AMPAR-
dependant miniature excitatory post-synaptic currents (mEPSCs) re-
corded at the surface of cultured neurons [54]. Considering that the
functional properties of AMPAR depend on its subunit composition, no-
tablywithGluA2 [49], and that sustained LTP involves a switch between
GluA1-containing and GluA2/3 AMPAR [49,55,56], one can expect that
different effects on synaptic transmission and plasticity might be ob-
served according to which subunit is targeted. However, such differ-
ences depending on antigenic specificities have not yet been assessed.
Concerning the paraneoplastic cases, four tumours were examined
and all expressed GluA1 and GluA2, suggesting that tumorous ectopic
expression of AMPAR subunit is the trigger to develop an aberrant
auto-immune reaction against those auto-antigens [5]. On the other
hand, the origin of the immune deregulation in non-paraneoplastic
cases remains obscure.

4. Anti-GABAA receptor encephalitis

Γ-amino butyric acid receptor A (GABAAR) is a heteropentameric
chloride channel activated by the binding of GABA, the main inhibitory
neurotransmitter in the CNS [57]. Altogetherwith othermembers of the
cys-loop pentameric ligand-gated ion channels superfamily, GABAAR is
constituted of a variable combination of five subunits arranged around
a central pore [58]. In mammals, 19 different subunits have been de-
scribed (α1-6, β1-3, γ1-3, δ, ε, π, ρ1-3 and θ), but in the adult brain,
themost frequent combination associates two copies of aα1, two copies
of β2 and one copy of γ2 [58]. GABAAR intrinsic properties, such as
ligand affinity and channel conductance, kinetics and pharmacological
modulations essentially depend on the receptor subunit composition
[57]. GABAAR is thought tomediatemost of inhibitory neurotransmission
in the adult brain, and several seizure models have been developed by
pharmacologically or genetically blocking GABAAR [59,60].

Antibodies targeting the α1 and/or β3 subunits of the GABAA

receptor were recently described in twenty patients with central and/
or peripheral neurological symptoms [61,62]. High titre antibodies
(N1:160) are associated with a subacute encephalopathy with refracto-
ry seizures and/or cognitive or behavioural disturbances, whereas lower
titres were found in patients with a more variable symptomatology,
such as atypical encephalopathy with seizures, stiff-person syndrome
or opsoclonus-myoclonus syndromes. In patients with low-titres anti-
GABAAR antibodies where found only in serum but not in CSF and
were associated in 50% of the cases with other autoantibodies such as
anti-NMDAR or anti-GAD65 antibodies, putting into question whether
such low-titre antibodies were actually responsible for the patients’
symptoms. Brain MRI in all encephalitic patients displayed multifocal
patchy cortico-subcortical FLAIR hyperintensities predominantly in-
volving fronto-temporal areas. CSF analysis was normal in most cases.
Forty per cent of the patients with high-titre antibodies had an invasive
thymoma and their disease was considered as paraneoplastic, although
reactivity for GABAAR in tumour tissuewas not evaluated. Recoverywas
good in most patients but devastating status epilepticus are possible.

In vitro, anti-GABAAR autoantibodies applied on cultured rat hippo-
campal neurons target inhibitory synapses, decrease total surface
GABAAR density and remove them away from the synaptic areas [61,
62]. In the same model, patients’ antibodies decreased inhibitory post-
synaptic currents’ amplitude while excitatory currents remain unal-
tered. Though strongly advocating for a pathogenic effect of anti-
GABAAR antibodies, those data have yet to be correlated to in vivo data
in animal models.

5. Autoimmunity againstnicotinic acetylcholine receptors:myasthenia
gravis and autoimmune autonomic ganglionopathy

Nicotinic acetylcholine receptors (AchRs) belong to the cys-loop
pentameric ligand-gated ion channels superfamily that also includes
GABAA, glycine, serotonine and chloride permeable glutamate receptors
[63]. AchR are allosteric membrane receptors composed of five subunits
symmetrically arranged around a central pore [64] andwere reported in
both neural and non-neural cells [65]. Twelve AchR subunits have been
described so far (α2-10 and β2-4) [63] but muscle-type AchR also in-
clude a γ- (fetal form) or an ε- (adult form) subunit [64]. AchR subunits
assemble into different homo- and heteromeric combinations that
determine AchR electrophysiological and kinetic properties [65]. Sub-
unit combination varies according to the cell-type, adult muscle AchRs
following an (α1)2βδε stoichiometry [63] and vegetative ganglionic re-
ceptors combineα3 and β4 subunits [66] while brain-type AchR consist
of heteromeric combinations of α4-10 and β2-10 subunits and
homopentamers of α7 subunits [67]. Muscle-type AchR are expressed
at the post-synaptic level of the neuromuscular junction (NMJ) and
play a fundamental role in the transmission of motor signalling [68].
On the other hand, ganglionic AchR are expressed at the post-synaptic
level of the vegetative ganglion neurons that control the autonomic
functions of the body, such as eye pupil constriction, heart beat frequen-
cy, bladder functions and digestive motility [8]. CNS cholinergic trans-
mission is involved in a broad spectrum of brain functions, and has
been suggested to play a pivotal role in various cognitive and psychiatric
disorders [67]. So far, autoimmunity against AchR subunits has been
documented in patients with two distinct PNS autoimmune conditions,
namelymyasthenia gravis and autoimmune autonomic ganglionopathy
[69,70].

Autoimmune Myasthenia Gravis (AMG) is a chronic disease charac-
terized by afluctuatingweakness of the voluntarymuscles that typically
worsens after exercise. A specific electromyography (EMG) feature is
the decrement of the compound muscle action potentials (CMAP)
after low-frequency repetitive stimulation of the motor nerves [71].
AMG is rather heterogeneous and patients can be classified according
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to their age of onset (juvenile, early-onset or late-onset MG), to their
clinical presentation (ocular, oro-pharyngeal or generalized), to the sta-
tus of their thymus (normal/atrophic, hyperplasia or thymoma) and to
the presence of specific autoantibodies [71]. Eighty to ninety per cent
of AMG patients have detectable antibodies targeting an extracellular
portion of the muscle-specific α1 subunit (α1-AchR Ab) [68]. Antibod-
ies directed against other proteins interactingwith the AchR at the NMJ,
such asMusk and Lrp4, can be found in a subset ofα1-AchR Ab negative
AMG patients [72,73].

A body of evidence has suggested a direct role of α1-AchR Ab anti-
bodies in the pathogenesis of AMG. Active immunization with the
muscle-type AchR as well as passive transfer of patients’ antibodies to
rodents induce an experimental AMG that is clinically and electrophys-
iologically similar to AMG [68,74]. Moreover, clinical evolution seems to
correlate with serum antibody titres [75]. In AMG patients as well as in
animals passively immunizedwith anti-AchR Ab, disruption of the post-
synaptic membrane structure and decrease of AchR cluster density is
observed [68,76]. Muscle AchR Ab are likely to impair NMJ functions
through severalmechanisms. For instance, autoantibodies froma subset
of patients are able to exert a direct blockade of the binding of Ach upon
its receptor [77]. More importantly, α1-AchR Ab are able to cross-link
muscle-type AchR through binding of the α1-subunit of two adjacent
AchR, resulting in an increase of AchR endocytosis and lysosomal degra-
dation [78]. Moreover, patients’ α1-AchR Ab antibodies are of the IgG1
and IgG3 isotypes and are therefore able to recruit complement [79]. Ac-
cordingly, activation of themembrane attack complex and complement-
mediated damage of the muscle EP have been demonstrated in animal
studies and in neuromuscular biopsies from AMG patients [80].

Around 10% of AMG patients have a thymoma, and 38% of all
thymoma patients display AMG features, suggesting a causal relation-
ship between thymoma and AMG [81,82]. Compared to other subtypes
of AMG, thymoma-associated AMG (TAMG) usually involves older pa-
tients and is more frequently generalized [71]. Several evidences point
towards a role of the thymoma in the autoimmune process. The vast
majority of TAMG patients have detectableα1-AchR Ab [83]. Thymoma
resection can be followed by clinical improvement and decreased titres
of α1-AchR Ab [75]. Furthermore, a growing body of evidence suggest
impaired thymocyte maturation in TAMG patients. In the normal
thymus, immature thymocytes from bone marrow progenitors are
processed in order to undergo positive selection of competent, self-
tolerant T-cells and negative selection of autoreactive T-cells [84]. Dur-
ing normal thymopoiesis, the induction of tolerance depends on the ex-
pression, under the control of the autoimmune regulator (AIRE)
transcription factor, of a large repertoire of self-antigens bound to
MHC-II molecules at the surface of medullary thymic epithelial cells
[84]. Importantly, muscle-type AchR are furthermore expressed by thy-
mic myoid cells [78]. In contrast, expression of AIRE is usually defective
in thymomas [85] and MHC-II molecules expression is down regulated
[86] while the medulla is often disorganized [83]. Besides, thymomas
are able to produce large amounts of long-lived T-cells despite the fact
they contain more immature T-cells than the normal thymus [87–89].
Moreover, decreased production of thymic regulatory T-cells has been
observed in thymoma patients [90]. Different but non-mutually exclu-
sive mechanisms have therefore been proposed to explain the develop-
ment of autoimmunity in TAMG patients. On the one hand, impaired
thymocyte maturation is likely to result in the escape of immature and
potentially autoreactive thymocytes from thymomas, while T-cells
might also undergo autoimmunization against self antigens present
within the thymus, such as the AchR expressed by thymic myoid cells
[91]. On the other hand, the defective production of regulatory T-cells
could facilitate the development of autoimmune diseases such as AMG
[90]. AMG has thus turned out to be a useful physiopathological model
for antibody-mediated neurological diseases as well as for autoimmune
conditions related to thymus dysfunction [68,71].

Autoimmune autonomic ganglionopathy (AAG) is a rare cause of au-
tonomic failure [92]. Patients present with symptoms of sympathetic
(orthostatic hypotension, anhidrosis) and parasympathetic failure
(fixed heart rate, sicca syndrome, impaired pupil constriction, genito-
urinary dysfunction and gastro-intestinal dysmotility). Mean age is
around60 years [93,94]. The course is usually subacute andmonophasic,
followed by a slow and often incomplete recovery [92]. Autonomic dys-
function can be demonstrated by standardized tests for autonomic func-
tion such as the quantitative sudomotor axon reflex test or the heart rate
response to deep breathing [92]. An immune-mediated mechanism has
been suspected in many patients due to the subacute installation of the
symptoms, the association with cancer and autoimmune diseases, and
the frequent improvement after immunotherapy [93]. Antibodies di-
rected against the α3-subunit of the ganglionic AchR (α3-AchR Ab)
have been identified in 1998 in a subset of AAG patients but revealed
to be non specific for AAG as only 21-22% of the patients with α3-
AchR Ab present with AAG criteria [70,93,94]. Indeed, α3-AchR Ab are
also found, although at lower levels, in patients with neurodegenerative
or non neurological autoimmune conditions [93,94]. Coexisting autoan-
tibodies, including α1-AchR Ab with MG, are present in 26% of the pa-
tients [93]. α3-AchR Ab have been suggested to be associated to
cancer, notably lung cancers and adenocarcinomas from various tissues,
but the association with a cancer greatly varies from a study to another
and the expression of the α3-subunit by tumour tissue has not been
studied [70,92–94]. Despite those limitations, a pathogenic role of α3-
AchR Ab in AAG patients is supported by clinical and experimental
data. Elevated α3-AchR Ab levels correlate with AAG while low-levels
of serum autoantibodies are more frequent in non-AAG patients [93,
94]. Furthermore, fluctuations of serum α3-AchR Ab levels seems to
follow clinical evolution and to correlate with the severity of the
dysautonomy [92,93,95]. In animalmodels, active immunization against
the α3-AchR subunit and passive transfer of patients’ antibodies lead to
severe autonomic dysfunction [96,97] and to impair autonomic gangli-
onic synaptic transmission [98]. In vitro, application of serum IgG from
AAG patients and rabbits immunized against the α3 AchR subunits on
cultured neuroblastoma cells constitutively expressing AchR results in
an inhibition of the ganglion-type AchR current [99]. This effect required
cross-linking of the AchR by divalent IgG and was time- and dose-
dependant [99]. It can be therefore assumed that, similarly to α1-AchR
Ab,α3-AchR Abmay cross-link ganglionic AchR at the surface of gangli-
onic neurons, leading to its internalization and reduction of its surface
density, hence the impairment of the ganglion-type cholinergic
transmission.
6. Anti-Glycine receptor antibodies associated syndromes

Glycine receptors (GlyR) are chloride pentameric channels com-
posed of a variable arrangement of α and β subunits [100]. GlyR are
mainly distributed in the spine and brainstem and have a prominent
role in the inhibitory modulation of motor, visual, auditive and auto-
nomic networks [100,101].

Brainstem and spine autoimmune disorders such as stiff-person syn-
drome (SPS) and its variants are seen in 85% of the reported anti-GlyR
patients, including progressive encephalomyelitis with rigidity andmy-
oclonus (PERM) in 61% of them [102–105]. SPS is a disorder character-
ized by axial and proximal limb rigidity along with painful muscular
spasms, dysautonomic signs and exaggerated startles [106], while
PERM is similar to SPS with a peculiar pathological startle known as
hyperekplexia, severe autonomic disturbances, brainstem and cerebel-
lar signs and central respiratory failure [105,106]. Anecdotally, Anti-
GlyR antibodies were also observed in patients with pure encephalo-
pathic features, optic neuritis, or isolated brainstem involvement
[105]. Nine percent of the reported patients had an on-going cancer, ei-
ther a thymoma or lymphoma, but a clear causality link is lacking
[102–105]. Fifteen percent of GlyR Ab patients have also anti-GAD 65
antibodies, an ISA Ab also associated with SPS/PERM with poorer out-
come than GlyR Ab syndromes [104,105].
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The alpha 1 subunit of theGlycine receptor (GlyRα1) is themain an-
tigenic target of anti-GlyR ab [104,105]. Interestingly, GlyRα1mutations
in humans are associatedwith hereditary SPS and hyperekplexia,which
is thought to be due to a suppression of the glycinergic inhibition in the
nucleus reticularis pontis caudalis [107]. Moreover, SPS associated with
anti-amphiphysin antibodieswas shown to be due to a dysregulation of
spinal inhibitory network [108] therefore a similar mechanism in anti-
GlyR SPS is expected. Patients’ antibodies co-localize with GlyRα1 in
the brainstem and spinal cord of rodent [105]. In vitro, GlyRα1 Ab ap-
plied on GlyRα1-expressing cells induce the internalization of the
antibody-glyR complex through the lysosomal pathway [105]. This in-
creased internalization is likely to underlie glycinergic networks dys-
function, although the possibility of a direct inhibitory effect of the
antibodies on the GlyR was not evaluated. GlyRs are also expressed in
regions known to regulate autonomic function as for instance the
locus coeruleus, nucleus solitarius, and the rostral ventrolateral medulla
[109–111]. In these sites a reduction in GlyR control of sympathetic ac-
tivity by the GlyR antibodies could be responsible for the dysautonomic
symptoms. Similarly, a functional effect of GlyRα1Ab on the rostral ven-
trolateral medulla, which express GlyRα1 and is involved in generating
the rhythmic respiratory pattern, could explain the respiratory failure
observed in some patients [112]. Therefore, clinical and experimental
data seem concordant to suggest that anti-GlyR antibodies impair the
inhibitory glycinergic transmission in patients by inducing the internal-
ization of GlyR, although this hypothesis has yet to be confirmed by
in vivo studies.

7. Neurological syndromes related to anti-VGKC complex antibodies

Voltage-gated potassium channels (VGKC), or Kv channels, are
membrane channels able to open selectively for potassium ions in re-
sponse to changes in membrane polarity [113]. Mammalian VGKC con-
tain four α-subunits arranged around the channel pore as homo- or
hetero-tetramers and can assemble with auxiliary cytoplasmic β-
subunits that modulate their functions. Twelve VGKC α-subunit iso-
forms (named Kv1 to Kv12) with distinct physiological and pharmaco-
logical properties have been identified so far [114]. The Kv1 VGKC, also
referred as shaker-type channels, are highly expressed in the brain and
cerebellum and are thought to play a major role in regulating neuronal
excitability [115]. Schematically, opening of presynaptic Kv1 channels
following neuronal depolarization results in a progressive output of po-
tassium that contributes to the repolarization of the activated cell until
the resting membrane potential is reached [8]. Axonal Kv1 channels
regulate conduction by stabilizing the resting potential and decrease
the repetitive firing of neurons [116]. Six subfamilies of Kv1 channels,
classified as Kv1.1 to Kv1.6, have been described [114]. In humans,
Kv1 genesmutations or deletions have been related to epilepsy, episod-
ic ataxia and hereditary neuromyotonia [117,118].

Autoantibodies called “anti-VGKC antibodies” (“VGKC Ab”) were
described in 1995 in patients with neuromyotonia (NMT), an acquired
peripheral nerve hyperexcitability syndrome [119]. Later, similar
antibodies were found in patients with encephalopathies and called
“autoimmune limbic encephalitis” and in individuals with the rarer
Morvan’s syndrome (MoS) [120,121]. “VGKC Ab” were detected with
a radioimmunoprecipitation assay (RIA) using radiolabelled 125I-α-
dendrotoxin, which is able to bind and to aggregate shaker type-VGKC
of the Kv1.1, Kv1.2, Kv1.4 and Kv1.6 subtypes [115]. Patient’s antibodies
were shown to co-localize with such shaker-type VGKC aggregates ob-
tained from human brain extracts and it was therefore assumed that
they specifically recognized Kv1 channels [119]. However, different
studies based on immunoprecipitation using patients’ antibodies
coupled tomass spectrometry allowed to identify other proteins, name-
ly contactin-associated protein-like 2 (Caspr2) and leucin-rich glioma
inactivated 1 (Lgi1), as the main antigenic targets of the previously
called “VGKC Ab”, while the patients’ sera exceptionally recognized
the VGKC itself [4,6,122]. This discrepancy is explained by the fact that
Lgi1 and Caspr2 strongly interact with Kv1 channels and are present
in dendrotoxin-induced aggregates [4]. Similarly, other proteins
interacting with Kv1 channels, such as transient axonal glycoprotein-1
(TAG1)/Contactin2, the Netrin receptor DCC or dipeptidyl peptidase-
10 (DPP10)may represent additional antigenic targets in some patients
[123–125]. Moreover, up to 75% of “VGKC Ab” positive patients lack se-
rologic specificity, raising the possibility that other antigenic targets
could be still unknown [126].

Anti-Lgi1 antibodies (Lgi1 Ab) were described in a cohort of 57 pa-
tients with “VGKCAb” associated encephalitis [4]. Lgi1 is a secreted pro-
tein expressed in neural tissues first identified as a potential tumour
suppressor protein in gliomas [127]. Dimerized Lgi1 interacts with the
two synaptic receptors ADAM22 and ADAM23 to constitute a trans-
synaptic complex that includes post-synaptic glutamatergic AMPA
receptors and pre-synaptic Kv1.1 [128]. Interaction of Lgi1 with
ADAM22 promotes the interaction between ADAM22 and scaffolding
proteins that enhances surface expression of post-synaptic AMPAR
[125]. Besides, Lgi1 reduces Kv1.1 inactivation by modulating the auxil-
iary subunit Kvβ1 [129]. Lgi1 is therefore proposed to act as a key regu-
lator of neuronal excitability at synapses. Accordingly, Lgi1mutations in
humans are related to ADPEAF, an autosomal dominant hereditary epi-
leptic syndrome [130] and Lgi1 knockout mice develop lethal epilepsy
[128]. Lgi1 Ab are foundmostly in patients with a phenotype of autoim-
mune encephalitis [4,125,126]. Lgi1 Ab associated encephalitis usually
installs in the sixth decade but age of onset ranges from 20 to 80 years
[4,131,132]. Both limbic (anterograde amnesia, behavioural/psychiatric
disturbances, seizures) and extra-limbic signs (motor, cerebellar, extra-
pyramidal involvement) can be observed. Epilepsy is found in 80% of the
patients and may represent the initiating symptom [4,126,131,132]. In-
somnia, paradoxical sleep disorders and hyponatremia are other typical
features [4,126,131,132]. More importantly, atypical seizures called
facio-brachial dystonic seizures (FBDS) are closely associated with
anti-Lgi1 encephalitis [124,133]. FDBS can occur alone, accompany or
precede the complete encephalitic syndrome and are highly responsive
to immunotherapy despite the poor effect of antiepileptic drugs [124,
133]. Additionally, prodromal severe brady-arrythmias were described
in patients with Lgi1 encephalitis, presumably due to insular lobe dys-
function [134]. In the settings of Lgi1 encephalitis, high levels of Lgi1
Ab are usually found and Lgi1 is the only antigenic target, while PNS
symptoms are absent [125]. Additional or isolated peripheral nerve in-
volvement is indeed noted in only 6.5% of patients positive only for
Lgi1 Ab [126]. Lgi1 Ab encephalitis seems to be associated to a poor cog-
nitive outcome with frequent evolution to hippocampal atrophy [131].
Relapses may occur in 10% of the patients [4,131,132]. Aggressive and
prolonged immunotherapy is important to relieve symptoms and to
prevent relapses but may provoke severe adverse effects [124,132,
135]. The prevalence of cancers varies from a study to another but
does not seem to exceed 20% [4,126,131,132,136].

In vitro, Lgi1 Ab were shown to impair Lgi1 binding to ADAM22 and
to decrease surface expression of post-synaptic AMPAR in a reversible
and dose-dependant manner [125]. Other putative functional roles of
Lgi1 Ab, notably onKv1 channels expression, remain to be assessed. Fur-
thermore, appositions of complement on neuronal membranes have
been demonstrated in the brain of Lgi1 encephalitis patients, suggesting
the involvement of complement-dependant cytotoxicity [137]. This
data might explain the more frequent occurrence of hippocampal atro-
phy associatedwith Lgi1 Ab compared to other anti-cell surface antigen
antibodies associated to autoimmune encephalitis, such as anti-NMDAR
or anti-Caspr2 Antibodies.

Anti-Caspr2 antibodies (Caspr2 Ab) were initially described in eight
“VGKC Ab” patients with encephalitis and/or PNS symptoms [6]. Caspr2
Ab significantly correlate with the presence of PNS symptoms, mostly
NMT and MoS [6,122,126]. NMT associates motor symptoms (fascic-
ulations, myokimia, pseudomyotonia, muscular hypertrophy and
gait disorders), dysautonomic features and neuropathic pain. By def-
inition, CNS involvement is excluded in patients with pure NMT.
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Electroneuromyography (ENMG) displays fasciculations, spontaneous
bursts of motor neurons firing and fibrillation potentials. NMT’s
aetiology is mainly autoimmune and linked with Caspr2 Ab, although
genetic and toxic disorders may also present some features of the dis-
ease [117]. MoS on the other hand is a rare autoimmune disorder asso-
ciating neuromyotonia features alongwithmarked dysautonomic signs
(profuse sweating, tachycardia, genito-urinary dysfunction), complete
disruption of sleep organization and specific encephalopathic features
(visual hallucinations, delusion and impaired vigilance) [123]. MoS is
thought to be a purely autoimmune disorder associated to Caspr2 Ab
((123). Caspr2 Ab is found in most of NMT/MoS, either alone or with
moderately elevated anti-Lgi1 Ab [123,125]. Nevertheless, Caspr2 Ab
can also be found in patients with pure limbic encephalitis, whose spe-
cific clinical pattern and prognosis remain to be precisely determined
[6,131]. Differences in epitope specificities and location of the produc-
tion of auto-antibodiesmay account for such a variety of clinical presen-
tations (unpublished data). Importantly, a thymoma is found in 50% of
Caspr2 positive NMT/MoS patients [123], while the prevalence of tu-
mours is much lower in patients with CNS involvement [4,126,131,
132,136].

Caspr2 is a membrane protein first described in specific axons
subdomains surrounding the nodes of Ranvier and the juxtaparanodes
[138]. Caspr2 seems to be critical for the optimal progression of the ner-
vous influx along myelinated axons [138]. In the central and peripheral
nervous system, Caspr2 and TAG1/Contactin2 form a protein complex
necessary for the organisation of juxtaparanodes and its enrichment in
Kv1 channels [139]. Experimental findings suggest that Caspr2 may
also be present in the CNS at pre-synaptic sites where it may interact
with the pre-synaptic Kv1 channels [140]. Caspr2 was also suggested
to play a role in synapse formation and dendritic arborisation [138].
Polymorphisms of the CASPR2 gene (CNTNAP2) have notably been de-
scribed to the autistic spectrum disorders [141]. The frequent associa-
tion of NMT/Mos with MG and thymomas (43% and 50%, respectively)
[123] raise the possibility that Caspr2 Ab positive NMT/MoS and MG
share a common etiopathogeny involving the deregulation of thymus
immune functions [71]. Virtually all patients with Caspr2 NMT/MoS
have concurrently multiple other auto-antibodies such as low-titre of
Lgi1 Ab, anti-DCC or anti-DPP10 antibodies [125]. Some responsibility
of those other antibodies in the development of the symptoms is not ex-
cluded. For instance, anti-DCC antibodies were shown to impair DCC’s
binding to his receptor Netrin-1, and are significantly associated to
NMT/MoS features [125]. In vitro, Caspr2 Ab were shown to co-localize
with Caspr2 at the juxtaparanodal region of mouse sciatic nerve fibers
[6]. It can be therefore hypothesized that Caspr2 Ab may disrupt in
some way the interaction between Caspr2 and its partners and could
disorganize the juxtaparanodes as well as decrease Kv1 expression in
those regions, but functional studies are lacking to assess the actual
functional effects of Caspr2 Ab.

Serologic specificity for either Caspr2 or Lgi1 is lacking in 12-33% of
“VGKC Ab” encephalitis patients [122,131] and in up to 75% of all
“VGKC Ab” positive patients, regardless of the clinical phenotype
[126]. Negativity for Caspr2/Lgi1 Ab is correlated with low “VGKC Ab”
levels [131]. The clinical phenotype of “VGKC Ab” patients seronegative
for both Lgi1 and Caspr2 seems to be diverse, as patients may present
with features of autoimmune encephalitis, PNS symptoms, or both [4,
123,126]. One study has suggested a higher frequency of refractory ep-
ilepsy persisting despite immunotherapy in autoimmune encephalitis
patients positive for “VGKC Ab” but negative for either Lgi1 or Caspr2
Ab [131]. More studies are needed to accurately decipher the clinical
phenotype associated to “VGKC Ab” without Lgi1 or Caspr2 antibodies,
as well as to identify the auto-antigens involved.

Lastly, autoantibodies directed against dipeptidyl-peptidase protein
like-6 (DPP6 or DPPX) were recently described in seven patients with a
peculiar phenotype of subacute encephalopathy, cerebellar syndrome,
axial and limb stiffness and symptoms of CNS hyperexcitability such
as tremor, myoclonus, seizures and hyperekplexia [142,143]. In most
of the patients, prominent digestive symptoms were also observed. As
DPPX is highly expressed in the vagus nerve ganglion, this could suggest
an alteration of the vegetative tracts function in those patients [144]. In-
terestingly, DPPX was shown to co-assemble with and regulate the
Kv4.2 channels in the CNS [145,146], but the precise role of this protein
in the CNS and the biological effects of anti-DPPX antibodies remain un-
clear. Overall, the recent description of anti-DPPX antibodies further ex-
pands the spectrum of neurological autoimmune diseases to other
VGKC subfamilies than Kv1 channels.

To conclude, the discovery of specific antigenic targets for the so-
called “VGKC Ab” has allowed to further understand the complex clini-
cal spectrum associated to this biological marker and the pathophysio-
logical processes at stake. Despite the fact that clinical syndromes
overlap, some symptoms specific for Lgi1 or Caspr2 sero-positivity are
beginning to emerge, but further works are needed to understand the
exact role of these auto-antibodies. On the other hand, other auto-
antigens underlying “VGKC Ab” positivity are probably yet to discover.
8. Lambert-Eaton myasthenic syndrome and cerebellar ataxia with
anti-VGCC antibodies

Voltage-gated calcium channels (VGCC) are classified into 5 subfam-
ilies (L, N, P/Q, T, R) according to voltage and time dependency, channel
conductance andpharmacological properties.Most of those characteris-
tics depend on the obligatory α1 subunit isoform. Ten α1 isoforms, dis-
tributed into the 5 subfamilies mentioned above, have been described
so far. P/Q- (Cav2.1), L- (Cav1.1) and N- (Ca2.2) types VGCC are high-
voltage activated calcium channels expressed at the presynaptic end
of the nerve terminals and are involved in neurotransmitter release in
the synaptic cleft [147]. Indeed, their opening triggered by the pre-
synaptic neuron depolarization induces a calcium intra-cytosolic influx
that activates neurotransmitters’ exocytosis, notably acetylcholine at
the neuromuscular junction (NMJ) [147]. Antibodies targeting the P/
Q-type VGCC (CaV2.1) (VGCC Ab) are found in patients with Lambert-
Eatonmyasthenic syndrome (LEMS) or cerebellar ataxia (CA), occasion-
ally in association with antibodies targeting the L- and N-type [148].

LEMS is a rare autoimmune disorder of the NMJ and is clinically de-
fined by the triad of muscular weakness, dysautonomia and areflexia.
The diagnosis is based on clinical features, ENMG and VGCC Ab [149].
A small-cell lung carcinoma (SCLC) with neuroendocrine features ac-
companies the neurological disease in 50 to 60% of cases [150]. VGCC
Ab are found in 85-90% of LEMS patients, and in up to virtually 100%
of the paraneoplastic cases [151,152]. Their main antigenic target is
the α1 subunit of the P/Q type [153]. Concordant data suggest that
VGCC Ab in LEMS patients are directly pathogenic. In rodents, genetic
mutations of the CaV2.1 α1 subunit, active immunisation with VGCC
peptides and passive transfer with patients’ immunoglobulin all lead
to a LEMS phenotype, alongwith a decrease of the acetylcholine release
at the NMJ [149]. In vitro, immunoglobulin G from LEMS patients induce
cross-linking of VGCC, internalization of the antibody-VGCC complexes
and decrease of surface VGCC expression [154]. LEMS antibodies could
therefore act by down-regulating VGCC at pre-synaptic nerve terminals,
consequently decreasing acetylcholine release. A comparable effectmay
affect the autonomic system, as LEMS antibodies were shown in vitro to
down-regulate VGCC at the surface of parasympathetic and sympathetic
neurons [119]. P/Q type VGCC are normally expressed in both neural
and endocrine tissue [109] and consistently SCLC expresses functional
VGCC as well [156]. It is then widely accepted that in paraneoplastic
cases the immune adapted reaction against the tumour is likely the trig-
ger for a deregulated, autoimmune response. Interestingly, in SCLC pa-
tients with LEMS, survival appears more favourable in comparison to
SCLC patients without LEMS [157], suggesting that the immune re-
sponse in LEMS patients can inhibit tumour growth or even eradicate
the tumour [149]. In non-paraneoplastic LEMS patients, HLA-B8-DR3-
haplotype have been suggested to be a predisposing factor [158].
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VGCC Ab are also found in up to 45% SCLC-associated CA [159,
160]. VGCC Ab associated CA is not clinically different from other
paraneoplastic CA and is usually subacute with symmetrical gait and
limb ataxia, dysarthria and nystagmus. However, Anti-VGCC CA may
sometimes install progressively, mimicking idiopathic sporadic late-
onset ataxia [161]. Response to immunotherapy is often poor, due to
the early and diffuse loss of Purkinje cells observed in these patients
[162]. A few case reports have suggested that the rare VGCC Ab non-
paraneoplastic CA patients may nonetheless respond well to immuno-
therapy [163,164]. Many observations suggest a direct pathogenic role
of VGCC Ab in the developing of cerebellar ataxia. P/Q-type VGCC are
prominent in the cerebellum [165], and mutations of P/Q VGCC cause
ataxia in mice [166]. Post-mortem brain examination have revealed a
diffuse loss of Purkinje cells along with Bergmann’s gliosis, with no or
slight lymphocytic perivascular infiltration [162], arguing against a
prominent role of cellular immunity. Moreover, P/Q type VGCC is de-
creased by 70-80% in the cerebellum of VGCC Ab CA patients compared
to healthy individuals or LEMS patients without CA [162]. Lastly, Intra-
thecal injection of antibodies from VGCC Ab CA patients have been
shown to induce acute ataxia in mice, further demonstrating the
prominent role of VGCC Ab in the pathogenesis of CA [167].

The association of SCLC with LEMS, CA, or both had early suggested
an overlap between LEMS and CA. Indeed, clinical or electrophysiologi-
cal features of LEMS are present in 43% VGCC Ab CA [160]. Conversely,
CA affects 9% of LEMS patients, almost exclusively in paraneoplastic sit-
uations. Intriguingly, VGCC Ab from LEMS patients without CA were
shown to reduce surface expression of VGCC in cerebellar Purkinje
and granule cells in vitro [168]. Differences in the site of the production
of VGCC Ab, but also in antibodies’ epitope specificities, could account
for the variable clinical presentation between patients and in particular
explain why CA more frequently affects cancerous patients. For in-
stance, antibodies targeting the DIV functional domain of VGCC are
mostly found in non-paraneoplastic LEMS patients and fail to bind
SCLC cells [163]. Monoclonal antibodies (mAb) designed to target a dif-
ferent functional domain, DIII, were shown to exert in vitro a direct and
competitive inhibition over both N and P/Q type VGCC and to reduce
pre-synaptic release of neurotransmitter quanta, while mAb against
DIV had no effect [169]. Anti-DIII mAb injected into live mice cisterna
magna induced ataxia, without evidence of neuronal loss or inflamma-
tion in post-mortem examination [169]. Further studies are needed to
understand the immunological mechanisms that result in different epi-
tope specificities and clinical phenotypes in paraneoplastic versus non-
paraneoplastic cases.

9. Conclusion

Neurologic autoimmune channelopathies can be defined as neuro-
logical syndromes related to antibodies targeting ion channels or associ-
ated proteins in the nervous system. They constitute a continuously
expanding entity encompassing a large spectrum of clinical symptoms.
Autoimmune channelopathies reflect the functional consequences of
thefixation of an autoantibody upon a protein involved in neural signal-
ling and as such are highly responsive to immunotherapy. So far several
antibodies targeting neuronal ion channels have been described and it is
likely that many remain to identify. Importantly, such auto-antibodies
do not systematically target ion channels themselves, but can be direct-
ed against othermembrane proteins interactingwith them aswell. Fur-
thermore, auto-antibodies most often do not directly modulate channel
functions, but they rather decrease channel surface expression by di-
verse mechanisms. Those alterations may encompass the whole ner-
vous system, hence the highly diverse clinical phenotypes observed.
Moreover, such effects on channel expression result in the alteration
of fast neural transmission regulation as well as of mechanisms of
long-term synaptic plasticity, explaining theprogressive and sometimes
delayed recovery after immunotherapy. Interestingly, it is not rare that
for the same apparent antigenic target different clinical syndromes can
be observed from one patient to another. Important parameters seem
indeed to be which functional domain is targeted by the antibody, and
where auto-antibodies are produced. This ability to label and to impair
specific functional subdomains of neuronal proteins has been used in
the research field to identify such regions of interest [169] and alterna-
tively as selective tools to specifically study ion channels functionswith-
in the synapse.

Finally, neurological autoimmune channelopathies encompass a
wide range of treatable neurological syndromes and involve a great vari-
ety of neurophysiological processes. Furtherwork are needed to improve
our knowledge about the precise pathophysiological mechanisms at
stake, while the patients’ autoantibodies themselves are promising
tools for functional studies of the ion channels involved in neural
signalling.
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