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SUMMARY

AMPA receptor (AMPAR) complexes contain auxil-
iary subunits that modulate receptor trafficking and
gating. In addition to the transmembrane AMPAR
regulatory proteins (TARPs) and cornichons (CNIH-
2/3), recent proteomic studies identified a diverse
array of additional AMPAR-associated transmem-
brane and secreted partners. We systematically
surveyed these and found that PORCN and ABHD6
increase GluA1 levels in transfected cells. Knock-
down of PORCN in rat hippocampal neurons, which
express it in high amounts, selectively reduces
levels of all tested AMPAR complex components.
Regulation of AMPARs is independent of PORCN’s
membrane-associated O-acyl transferase activity.
PORCN knockdown in hippocampal neurons de-
creases AMPAR currents and accelerates desensiti-
zation and leads to depletion of TARP g-8 from
AMPAR complexes. Conditional PORCN knockout
mice also exhibit specific changes in AMPAR expres-
sion and gating that reduce basal synaptic transmis-
sion but leave long-term potentiation intact. These
studies define additional roles for PORCN in control-
ling synaptic transmission by regulating the level and
composition of hippocampal AMPAR complexes.
INTRODUCTION

AMPA-type glutamate receptors underlie most excitatory sy-

naptic transmission in brain. In addition to mediating moment-

to-moment signaling, AMPARs undergo activity-dependent

functional changes, which mediate aspects of the synaptic plas-

ticity that underlies learning and memory (Anggono and Huganir,

2012; Ehlers, 2000; Huganir and Nicoll, 2013; Malinow and Mal-

enka, 2002; Nicoll et al., 2006; Sheng and Kim, 2002). Molecular

manifestations of this plasticity include changes in AMPAR pro-
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tein synthesis, post-translational modification, channel traf-

ficking, and subunit composition.

Assembly of neuronal AMPAR complexes is precisely

controlled. AMPARs comprise heterotetramers of the gluta-

mate-binding, pore-forming subunits GluA1–4 (Boulter et al.,

1990; Seeburg, 1993). Distinct combinations of GluA subunits

and their alternative splicing and post-transcriptional editing

impart differential physiological properties to AMPARs (Boulter

et al., 1990; Seeburg, 1993). Additionally, AMPAR complexes

often contain multiple classes of auxiliary subunits (Kato et al.,

2010; Yan and Tomita, 2012). The auxiliary subunit composition

and stoichiometry of AMPARs varies, even within a single

neuronal type, and this imparts differential properties at specific

synaptic types (Coombs and Cull-Candy, 2009; Jackson and

Nicoll, 2011). Furthermore, the molecular composition of

neuronal AMPARs dynamically changes as part of synaptic plas-

ticity (Bats et al., 2013; Jackson and Nicoll, 2011). Molecular

mechanisms that control assembly of AMPARs remain poorly

understood.

The first identified auxiliary subunit, stargazin, is essential for

AMPAR function in cerebellar granule neurons (Hashimoto

et al., 1999). Subsequently, a family of six transmembrane

AMPAR regulatory proteins (TARPs) were defined that modify

channel trafficking, gating, and pharmacology (Kato and Bredt,

2007; Tomita et al., 2003). Cornichons (CNIH-2/3) are a family

of AMPAR auxiliary subunits that control export of AMPARs

from the endoplasmic reticulum (Harmel et al., 2012; Schwenk

et al., 2009) and associate with synaptic AMPARs to modulate

channel kinetics (Jackson and Nicoll, 2011; Kato et al., 2010;

Schwenk et al., 2009; Yan and Tomita, 2012). Recent proteomic

studies have further expanded the complement of AMPAR-

associated proteins. The cysteine-knot protein CKAMP44 mod-

ulates AMPAR biophysics to attenuate short-term synaptic plas-

ticity in the dentate gyrus (von Engelhardt et al., 2010). The germ

cell-specific gene 1-like (GSG1-l) modifies gating and kinetics of

receptor channels in a subunit-dependent manner (Schwenk

et al., 2012; Shanks et al., 2012). Furthermore, more than two

dozen proteins occur in AMPAR complexes (Schwenk et al.,

2012). These additional AMPAR partners include integral trans-

membrane, extracellular GPI-anchored, and secreted proteins.
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Figure 1. PORCN and ABHD6 Change GluA1 Expression and Steady-State Currents

(A) Immunoblotting of whole-cell lysates from HEK293T cells transfected with cDNAs encoding GluA1i alone or together with the cDNA indicated. b-actin serves

as loading control. In addition to previously characterized g-8, CNIH-2, and GSG1l, only PORCN and ABHD6 increase GluA1 levels.

(B) Quantification of glutamate-evoked calcium influxmeasured by FLIPR in HEK293T cells transfected with GluA1 alone or GluA1 + g-8 or g-2. Only PORCN (red)

and ABHD6 (blue) consistently affect the responses evoked by 100 mM glutamate. Data are shown as mean + SEM, n = 8–12. *p < 0.05, **p < 0.01, ***p < 0.001.

(C) Representative FLIPR traces. Arrows indicate the addition of 100 mM glutamate.
Some partners have enzymatic activities; some are cytoskeletal

elements; and others are secreted growth factor antagonists.

Understanding how this large and diverse protein collection

modulates AMPARs is an important challenge.

Here, we find that previously well-characterized AMPAR auxil-

iary subunits TARP, CNIH-2, and GSG1-l dramatically increase

GluA1 protein levels in heterologous cells. By systematically

evaluating each class of protein found in AMPAR immunoprecip-

itates (Schwenk et al., 2012), we demonstrate that porcupine

(PORCN) and ABHD6 also increase levels of co-transfected

GluA1. We find that PORCN controls hippocampal AMPARs,

as PORCN knockdown destabilizes AMPAR complexes and

thereby diminishes synaptic transmission. AMPAR complexes

in PORCN-deficient neurons have deficient TARP g-8 and

show accelerated decay kinetics. This work defines functional
C

roles for AMPAR partners in controlling stability and composition

of receptor complexes.

RESULTS

GluA1 Protein Levels Controlled by Transmembrane
AMPAR-Associated Proteins
TARP g-8 knockout diminishes AMPAR protein levels in neurons

(Rouach et al., 2005), and we found co-expression of g-8 or

CNIH-2 dramatically increases GluA1 levels in heterologous

HEK293T cells (Figure 1A). We asked whether this increase in

GluA1 occurs with other components identified in AMPAR immu-

noprecipitates. Accordingly, HEK cells were co-transfected with

GluA1 and a representative from each protein family identified in

neuronal AMPAR immunoprecipitates. Strikingly, we found that
ell Reports 14, 782–794, February 2, 2016 ª2016 The Authors 783
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Figure 2. PORCN and ABHD6 Reduce Glutamate-Evoked Currents and Surface GluA1 Levels

(A–E) Glutamate-evoked currents in whole-cell recordings from HEK293T cells transfected with (A) GluA1i ± PORCN or ABHD6; (B) GluA1i + g-8 ± PORCN or

ABHD6; (C) GluK2 ± PORCN or ABHD6; (D) GluA1o + g-2 ± PORCN or PORCN H341D; and (E) GluA1o + g-2 ± ABHD6 or ABHD6 S148A. The subscripts 1 and 2

show (1) calculated data and (2) representative traces. PORCN and ABHD6 reduce glutamate-evoked currents from AMPAR (with or without TARP, A and B), but

not from kainate receptors (C). Enzyme activity is not necessary for the observed effects of PORCN (D) or ABHD6 (E) on AMPAR currents.

(F) Whole-cell lysates of HEK293T cells expressing GluA1i alone or together with PORCN, PORCN H341D, ABHD6, or ABHD6 S148A. b-actin serves as loading

control.

(G) Quantification of GluA1i surface expression by a chemiluminescence assay using an anti-HA antibody. Extracellularly HA-tagged GluA1 flip was expressed

either alone or together with PORCN, PORCN H341D, ABHD6, or ABHD6 S148A. PORCN and ABHD6 WT as well as their mutants without enzymatic activity all

significantly reduced GluA1i surface expression.

Data are shown as mean + SEM, n = 5. ***p < 0.001 compared to control. See also Figures S1 and S3.
GSG1-l, PORCN, and ABHD6 but not seven other AMPAR-asso-

ciated proteins increased GluA1 levels (Figure 1A). These GluA1

increases were specific as b-actin levels were unchanged.

PORCN and ABHD6 Diminish AMPAR Steady-State
Currents in Heterologous Cells
Wenext used a fluorescent imaging plate reader (FLIPR) assay to

rapidly and systematically assess functional effects of AMPAR

interacting proteins. This system (Molecular Devices) uses a

calcium-sensitive dye to quantify glutamate-evoked gating of

AMPARs transfected in HEK293T cells. In cells transfected

with GluA1 flip splice variant (GluA1i), glutamate evokes a sus-

tained increase in calcium influx, and this is significantly reduced

by GSG1-l, PORCN, ABHD6, or C9orf4 (Figures 1B and 1C).

Additional series of GluA1i co-transfections with g-2 or g-8

showed that only PORCN and ABHD6 reduced glutamate-

evoked gating in AMPARs containing these auxiliary subunits

(Figures 1B and 1C).
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PORCN and ABHD6 Restrict AMPAR Surface Trafficking
in Heterologous Cells
Next, we evaluated functional effects of PORCN and ABHD6 by

recording glutamate-evoked whole-cell currents in co-trans-

fected HEK cells. Whereas PORCN and ABHD6 increased total

AMPAR levels in these cells, glutamate-evoked whole-cell cur-

rents were dramatically reduced (Figure 2A). In HEK cells co-

transfected with ABHD6, AMPAR-mediated currents were

decreased by �90%, and essentially no currents could be de-

tected in cells co-transfected with PORCN (Figure 2A).

Next, we asked whether these effects of PORCN and ABHD6

could be reversed by TARPs. As previously reported, g-8 and

g-2 increased glutamate-evoked currents from GluA1 (cf. gray

bar in Figure 2A with Figures 2B1, 2D, and 2E). We found that

both PORCN and to a lesser extent ABHD6 reduced gluta-

mate-evoked currents in cells containing g-8 or g-2 (Figures

2B, 2D, and 2E) or in cells containing g-8 and g-2 (determined

by FLIPR assay, data not shown). GluA2was affected by PORCN



and ABHD6 co-expression similarly as GluA1 (data not shown).

These actions of PORCN and ABHD6 on AMPARs are specific,

as they have no effect on glutamate-evoked currents from cells

co-transfected with a kainate receptor (Figure 2C).

PORCN is a membrane-bound O-acyl transferase (MBOAT),

which mediates palmitoylation of Wg/WNT proteins within the

endoplasmic reticulum (ER) (Kadowaki et al., 1996; Lum and

Clevers, 2012). ABHD6 is an a-b-hydrolase domain-containing

postsynaptic protein, which controls the accumulation and effi-

cacy of 2-arachidonoylglycerol (2-AG) at cannabinoid receptors

(Marrs et al., 2010). Therefore, we asked whether enzymatic ac-

tivities of PORCN and ABHD6 mediate their effects on AMPARs.

Previous mutagenesis studies defined critical residues in

PORCN (Covey et al., 2012) and ABHD6 (Navia-Paldanius

et al., 2012) essential for enzymatic activity. Specifically, histi-

dine 341 occurs in the active site of PORCN, and mutation of

this residue to aspartic acid abolishes palmitoyl-transferase

activity (Galli et al., 2007). Analogously, serine 148 is critical for

hydrolase activity of ABHD6. We found that neither mutating

the critical histidine in PORCN nor mutating the critical serine

in ABHD6 blunts their effects on GluA1 (Figures 2D–2F). Further-

more, treating cells with the highly potent and specific PORCN

inhibitor, Wnt-C59 (Proffitt et al., 2013), did not prevent the

PORCN-mediated effects on GluA1 (Figure S3). These results

indicate that PORCN and ABHD6 regulation of AMPARs does

not involve their catalytic activities.

Because PORCN and ABHD6 increase total GluA1 protein

levels and decrease channel function, we asked whether they

control receptor surface expression. We quantified GluA1 sur-

face levels using an extracellular tagging approach (Harmel

et al., 2012). Strikingly, we found that co-transfection of GluA1

with either PORCN or ABHD6 reduces surface GluA1 by more

than 99% or 90%, respectively (Figure 2G). Enzymatic activity

of neither PORCN nor ABHD6 are necessary for the reduction

of GluA1 surface levels (Figure 2G).

We also assessed the effect of PORCN in oocytes, which

lack AMPAR components and have been widely used to study

effects of auxiliary subunits on channel trafficking and gating

(Tomita et al., 2005). Oocytes were injected with cRNA encod-

ing hemagglutinin-tagged GluA1 (HA-GluA1) alone or together

with PORCN or the kainate receptor auxiliary subunit Neto2

(Straub and Tomita, 2012). As previously reported (Zhang

et al., 2009), Neto2 had no significant effect on GluA1 currents

or surface trafficking (Figure S1A). By contrast, PORCN

abolished glutamate-evoked currents and dramatically

reduced GluA1 surface levels (Figure S1C). This effect of

PORCN is specific, as it had no effect on glutamate-evoked

currents from oocytes injected with NMDA receptor subunits

(Figure S1B).

Next, we asked whether the effect of PORCN in oocytes could

be reversed by TARP g-8. For these experiments, oocytes were

injected with only 0.1 ng HA-GluA1 cRNA. Using this paradigm,

g-8 dramatically increases both HA-GluA1-mediated currents

and HA-GluA1 surface expression (Figure S1D) (Tomita et al.,

2005). In the presence of g-8, PORCN suppresses both gating

and surface trafficking of HA-GluA1 (Figures S1D and S1E). All

of these effects are specific, as Neto2 does not affect GluA1

gating or trafficking (Figures S1D and S1E).
C

Overexpression of PORCN or ABHD6 Does Not Affect
AMPAR Currents in Neurons
In situ hybridization shows that PORCN and ABHD6 are uniquely

enriched in hippocampus (Lein et al., 2007). We therefore as-

sessed effects of PORCN or ABHD6 in hippocampal neurons.

We prepared hippocampal neurons from E18 Sprague Dawley

rats, transfected them after 6–8 days in vitro, and recorded gluta-

mate-evoked currents 14 days after transfection. We found that

neither overexpression of PORCN nor overexpression of ABHD6

affected isolated AMPAR-mediated whole-cell currents (Figures

3A and 3B). Also, neither PORCN nor ABHD6 affected isolated

NMDAR-mediated whole-cell currents. These experiments indi-

cate that increasing PORCN or ABHD6 levels in hippocampal

neurons does not affect AMPAR-mediated currents, which is

likely explained by endogenous saturating amounts of PORCN

and ABHD6.

PORCNKnockdown Selectively Blunts Neuronal AMPAR
Currents and Accelerates Desensitization
To assess potential functions for endogenous PORCN and

ABHD6, we employed short hairpin RNAs (shRNAs). We tested

several possible sequences (data not shown) and arrived upon

effective knockdown shRNAs for both PORCN and ABHD6.

Six days following infection of hippocampal neurons with lenti-

virus expressing these shRNAs, we purified mRNA and per-

formed qPCR. These experiments showed that the PORCN

and ABHD6 shRNA selectively reduced their respective mRNAs

without affecting b-actin or other mRNAs analyzed (Figure S2).

Next, we performed whole-cell recordings and measured

glutamate-evoked currents in neurons co-transfected with GFP

or with GFP plus shRNAs. We found that ABHD6 knockdown

had no significant effects on AMPAR-mediated currents (Figures

3A and 3B). By contrast, PORCN knockdown dramatically

reduced AMPAR-mediated currents (Figures 3A and 3B). When

normalized to NMDA receptor-mediated currents on the same

neurons, PORCN knockdown reduced AMPAR-mediated cur-

rents by >50%. Treating control neuronal cultures with the

PORCN inhibitor Wnt-C59 did not change AMPAR/NMDA ratio,

indicating that the effect on AMPAR-mediated currents was in-

dependent of PORCN activity (Figure S3B). In addition to

reducing specifically the magnitude of AMPAR-mediated cur-

rents (Figure 3B), PORCN knockdown significantly accelerated

channel desensitization (Figures 3C and 3D). This effect on

AMPAR kinetics was specific, as NMDA receptor gating was un-

affected (Figure 3E). As TARPs dramatically increase the ratio of

kainate- to glutamate-evoked currents (Shi et al., 2009; Tomita

et al., 2007), we quantified this ratio. In PORCN knockdown neu-

rons, the kainate/glutamate ratio was unchanged (Figure 3F),

suggesting the continued presence of a TARP. The acceleration

of AMPAR kinetics is consistent with an exchange of g-8 to g-2

with PORCN knockdown, as g-8 more profoundly slows desen-

sitization (Cho et al., 2007; Milstein et al., 2007). As neither

AMPAR kinetics (data not shown) nor AMPAR current ampli-

tudes were changed by modulation of ABHD6 expression in hip-

pocampal neurons, we focused on the PORCN-mediated effects

on AMPARs in the rest of the study.

Next, we assessed effects of PORCN knockdown on

synaptic AMPARs. In agreement with the effects on whole-cell
ell Reports 14, 782–794, February 2, 2016 ª2016 The Authors 785
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Figure 3. PORCN Knockdown Reduces Glutamate-Evoked Currents and Accelerates Desensitization in Hippocampal Neurons

(A and B) Neither overexpression (OE) of PORCN nor ABHD6 in hippocampal neurons changed glutamate-evoked currents from AMPARs. PORCN knockdown

(KD), but not ABHD6 knockdown reduced glutamate-evoked currents in cultured hippocampal neurons. Representative traces of Glu-evoked AMPAR-mediated

current and Glu/Gly-evoked NMDA receptor-mediated currents (recorded in the presence of 50 mM GIKY53655) from outside out patches from cultured

hippocampal neurons. *p < 0.05, **p < 0.01, ***p < 0.001.

(C–F) Representative normalized glutamate-evoked whole-cell currents (C), weighted tau decay (D), representative NMDA traces overlay (E), and KA to Glu ratio

(F) recorded from hippocampal neurons co-transfected with GFP and PORCN shRNA or control.

See also Figures S2 and S3.
AMPAR-mediated currents, PORCN knockdown reduced the

average mEPSC amplitude and accelerated the mEPSC decay

(Figure 4). The mEPSC frequency also decreased (Figures 4A

and 4C). As the shRNA transfection efficiency was <1% (data

not shown), the influence of PORCN shRNA on frequency in

the GFP-expressing neurons almost certainly reflects postsyn-

aptic effects. This postsynaptic influence on measured fre-

quency likely reflects reduced amplitude leading to miniature

events that do not reach threshold. Overexpression of g-8 in

neurons treated with PORCN shRNA failed to rescue the synap-

tic PORCN knockdown phenotype (Figure 4C).

PORCN Knockdown Selectively Impairs Stability and
Composition of Neuronal AMPARs
The reduction in AMPAR-mediated currents with PORCN knock-

down is consistent with a model in which PORCN overexpres-
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sion leads to a disproportionate increase in intracellular GluA1

with decreased surface expression (Figure 1A). Thus, we

assessed whether endogenous PORCN stabilizes neuronal

AMPAR protein complexes. Hippocampal neurons were in-

fected with lentivirus expressing GFP and PORCN shRNA or

GFP and control shRNA and protein lysates were then collected.

For these biochemical experiments, high multiplicity of lentivirus

infection was used, and >90% of neurons were GFP expressing

(data not shown). PORCN knockdown dramatically reduced the

amounts of all components of the AMPAR complex evaluated

including GluA1, GluA2, g-8, g-2, and CNIH-2 (Figure 5A). These

effects were specific, as levels of GluK2/3, calnexin, and b-actin

were unchanged (Figure 5A). Surface biotinylation showed that

PORCN knockdown reduced AMPAR complexes in both intra-

cellular and surface pools (Figure 5A) and strongly suggests

that the decreased protein expression underlies the dramatic
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Figure 4. PORCN Knockdown Reduces Hippocampal mEPSCs and Accelerates Their Decay

Hippocampal neurons were co-transfected with GFP and PORCN shRNA or control and mEPSCs were recorded.

(A) Representative traces.

(B) Averaged trace (50 events each) from PORCN-shRNA-transfected or control shRNA-transfected neurons.

(C) Quantification of peak currents, tau decay, and frequency.
reduction in channel function. To visualize this reduction in sur-

face AMPARs, we performed immunofluorescence on hippo-

campal neurons infected with GFP and either PORCN shRNA

or control. This revealed a dramatic reduction in surface GluA1

labeling despite no obvious effects on the dendritic arborization

of PORCN shRNA-expressing neurons (Figure 5B).

The acceleration of channel decay kinetics in PORCN knock-

down neurons (Figures 3C, 3D, 4B, and 4C) suggests altered

composition of the AMPAR complex. One possibility is that

PORCN knockdown changes GluA subunit composition such

that the more rapidly desensitizing GluA2-lacking receptors

become dominant. However, AMPAR channels in PORCN

knockdown neurons remain GluA2-containing, as they show

typical non-rectifying I/V properties and are not blocked by phi-

lanthotoxin (data not shown).

Other possibilities include changes in TARP or CNIH-2 auxil-

iary subunits, which also slow desensitization (Coombs and

Cull-Candy, 2009; Jackson and Nicoll, 2011). To evaluate

this, we infected hippocampal neurons with high-titer PORCN

shRNA lentivirus. Six days post-infection, we solubilized the

neurons, performed AMPAR immunoprecipitations, and immu-

noblotted for associated and unbound proteins. Immunopre-
C

cipitation with a mixture of GluA1–4 antibodies fully bound all

AMPAR proteins. Using control cultures, eluates from the

GluA1–4 immunoprecipitates contained GluA1, GluA2, g-8,

g-2, and CNIH-2, whereas b-actin was unbound (Figure 5C).

In cultures expressing PORCN shRNA, total levels of all com-

ponents of the AMPAR complex were decreased (Figure 5C),

similar to the results in Figure 5A. In the GluA1–4 immunopre-

cipitations from PORCN shRNA-expressing neurons, relative

partitioning of the remaining g-2 and CNIH-2 was unaffected,

whereas the remaining g-8 shifted to the unbound fraction (Fig-

ure 5C). We repeated this experiment by immunoprecipitating

specifically GluA1 from control and PORCN shRNA-treated cul-

tures. Again, we found in PORCN shRNA-expressing cultures

that g-8 was detectable only in the GluA1-unbound fraction,

whereas g-2 remained bound to GluA1 (Figure 5C). Immuno-

precipitations from hippocampal lysates performed with either

PORCN or TARP g-8 antibodies demonstrate that there is

only a minimal overlapping AMPAR population that contains

both PORCN and g-8 (Figure S4). Together these data suggest

that reduced interaction between GluAs and g-8 may underlie

the kinetic effects measured with decreased PORCN

expression.
ell Reports 14, 782–794, February 2, 2016 ª2016 The Authors 787
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Figure 5. PORCN Knockdown Reduces Levels of AMPAR Components and Dissociates g-8

(A) Surface biotinylation of hippocampal neurons after infection with PORCN shRNA or control lentivirus. The ER protein calnexin serves as negative control for

surface biotinylation, b-actin serves as loading control. PORCN knockdown reduces total and surface levels of AMPAR principal and auxiliary subunits.

(B) Immunolabeling of surface GluA1 in hippocampal neurons DIV 22, 7 days after infection with PORCN shRNA (green arrow) or control (gray arrow) virus.

Dendritic regions of infected (green, KD) and non-infected (gray, CONT) neurons are at higher magnification. Quantification of dendritic regions is on the bottom

(mean + SEM, n = 18–20, ***p < 0.001).

(C) Immunoprecipitation of AMPAR complexes using a mixture of GluA1–4 antibodies (left) or GluA1 antibody alone (right). Following PORCN knockdown, g-8 is

undetectable in AMPAR complexes, whereas g-2 remains in the complex.

See also Figure S4.
PORCN Knockout Reduces Synaptic and Extrasynaptic
AMPAR Complexes
We further assessed the subcellular distribution of PORCN in

mouse hippocampus.We found themajority of PORCN accumu-

lated in the P200 fraction, which contains intracellular mem-

branes (Figure 6A). Only a small amount of PORCN was present

in the synaptosomal and PSD fractions (Figure 6A) indicating that

PORCN is likely shed from AMPARs when the receptors move to

the surface.

To investigate further the role of PORCN in brain, we crossed

Emx1(Cre) with conditional PORCN knockout mice (Liu et al.,

2012) to generate forebrain-specific inducible PORCN knockout
788 Cell Reports 14, 782–794, February 2, 2016 ª2016 The Authors
mice (PORCN KO), which are viable and without obvious behav-

ioral phenotype though complete PORCN knockout mice die

during embryonic development (Barrott et al., 2011). Using

hippocampi from thesemice, we first conducted amore detailed

assessment of the reduced AMPAR complex components

measured in Figure 5. Immunoblotting showed that PORCN

levels are reduced by about 80% in crude membrane fractions

from the KO mice (Figure 6B). Consistent with our previous

data, AMPAR components, GluA1, GluA2/3, and g-8 levels

were also reduced in the PORCN KO forebrain, whereas other

synaptic proteins, including synaptophysin, PSD-95, and NR1,

were unaffected. Similarly, we found selective reduction in



Figure 6. PORCN Fractionates with Intracellular Membranes and Increases AMPAR Levels

(A) Subcellular fractionation of hippocampus shows that PORCN concentrates within intracellular membranes (P200), AMPAR components, and NR1 fractionate

with the PSD and synpatophysin occurs in synaptosomes.

(B andC) Quantitative immunoblotting shows that levels of PORCN, GluA1, GluA2/3, and g-8, but not other synaptic proteins are decreased in both crude extracts

(B) and P200 membranes (C) of PORCN KO mice (gray bars, WT; black bars, KO).

(D) GluA2/3 and g-8 are specifically reduced in the PSD of PORCN KO animals (gray bars, WT; black bars, KO).

See also Figure S5.
components of the AMPAR protein complex in intracellular

(P200) membranes from the PORCN KO hippocampus (Fig-

ure 6C). In the PSD fraction, GluA2/3 and g-8 levels were

modestly reduced, whereas GluA1 levels were not (Figure 6D).

To investigate further the role for PORCN in stabilizing

AMPARs, we treated hippocampal lysates from wild-type and

PORCN KO mice with EndoH, which selectively affects AMPA

receptors that have notmatured fromER throughGolgi complex.

Interestingly, we found that PORCN KO reduces both the

EndoH-sensitive and -resistant GluA2/3 populations proportion-

ately (Figure S5). This differs fundamentally from knockout or

overexpression of AMPA receptor auxiliary subunits g-8 (Rouach

et al., 2005) and CNIH-2 (Shi et al., 2010), respectively, which

only affect the EndoH-resistant pool of AMPA receptors. These

results are consistent with our model that PORCN stabilizes

the collective AMPAR pool at the level of the ER.

PORCNKnockout ReducesBasal Synaptic Transmission
but Not LTP
We next used acute hippocampal slices from PORCN KO mice

to assess basal synaptic function. We recorded extracellular
C

field potentials from stratum radiatum in response to increasing

the number of stimulated Schaffer collateral fibers. The slope of

the field EPSP (sfEPSP) represents the postsynaptic response

and the fiber volley (FV) amplitude provides a measure of the

number of active fibers. Consistent with a reduction in AMPAR

surface expression, the maximal sfEPSP showed an �30%

reduction in slices from PORCN KO mice (sfEPSPmax = 501.5 ±

74.7 and 757.8 ± 119.7 mV/ms in KO and control slices, respec-

tively; n = 13 each, p < 0.05, one-way ANOVA with Sidak’s

multiple comparison test, Figure 7A). In addition, EPSCs from

whole-cell recordings of hippocampal CA1 pyramidal cells re-

vealed accelerated decay kinetics in the KO (Figure 7B), which

is consistent with results from PORCN shRNA studies in cultured

neurons. Evoked synaptic currents from the KOs also had

decreased AMPA/NMDA current ratio that fits with the specificity

for PORCN in regulating AMPARs (Figure 7C). AMPA/NMDA cur-

rent ratio in control slices was not changed by a 2 hr incubation

with the PORCN inhibitor Wnt-C59 (100 nM), indicating that the

effect on AMPA/NMDA ratio is independent of PORCN’s

enzymatic activity (control: 0.54 ± 0.04, n = 9; Wnt-C59: 0.45 ±

0.07, n = 11; p > 0.3). Paired-pulse stimulation showed no
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Figure 7. PORCN KO Mice Show Decreased AMPAR-Mediated Transmission and Intact LTP

(A) fEPSP slope plotted against presynaptic fiber volley shows reduced synaptic responses in stratum radiatum of PORCN KO mice. Dotted line denotes least-

squares fit of maximal sfEPSP (see Experimental Procedures). WT: n = 23 slices. KO: n = 17 slices, p < 0.0001, two-way ANOVA with Sidak’s multiple

comparison test.

(B) EPSCs in PORCN KO mice show faster decay kinetics compared to WT littermate controls. Superimposed red lines represent least-squares fits of repre-

sentative traces. (WT: 10.6 ± 0.4 and KO: 9.2 ± 0.2 ms; n = 12 cells each, p = 0.0065).

(C) The ratio of AMPA/NMDA current is decreased in PORCN KO mice (WT: 0.64 ± 0.06 and KO: 0.34 ± 0.02, respectively; WT: n = 17 and KO: n = 15 cells.

p = 0.0002).

(D) Paired-pulse facilitation is not affected by PORCN KO (WT: 1.6 ± 0.07 and KO: 1.4 ± 0.06; n = 12 cells each, p = 0.1612).

(E) Slope of extracellular fEPSPs in slices from WT (white) and PORCN KO (green) mice before and after tetanic stimulation (high-frequency stimulation [HFS] at

arrow; 2 3 1 s at 100 Hz) of Schaffer collaterals. Inset: averaged representative responses �10 and +30 min HFS (WT: black and gray traces and PORCN KO:

green and dark green traces). The magnitude of plasticity was similar in WT and KO slices (35.2% ± 9.4% and 29.8% ± 8.0%, respectively; n = 5 animals each,

p > 0.05).
difference between PORCN KO and wild-type mice, suggesting

that presynaptic function is not altered (Figure 7D). Finally, to

assess possible roles for PORCN in regulating synaptic

plasticity, we induced LTP using a high-frequency stimulation

protocol. As shown in Figure 7E, there was no difference in the

normalized fEPSP slope over time between PORCN KO and

wild-type animals.

DISCUSSION

This study defines additional functions for PORCN in controlling

the stability and the composition of hippocampal AMPARs at the

level of the ER. By regulating the number and subunit compo-

sition of hippocampal AMPARs, PORCN also controls basal

synaptic transmission in vivo. Induction of LTP, however, is

independent of PORCN expression. In heterologous cell trans-

fections, in cultured hippocampal neurons and in mouse hippo-
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campus, PORCN expression dramatically increases AMPAR

protein levels. In transfected cell lines, PORCN retains AMPARs

intracellularly, whereas in neurons PORCN is crucial for main-

taining proper assembly and stability of the AMPAR complex

and thus, synaptic transmission.

Our focus on PORCN derived from a simple and specific pro-

tein stabilization assay coupledwith a facile FLIPR assay. That is,

we found that three other classes of transmembrane AMPAR-

associated proteins, TARPs, CNIH-2, and GSG1-l, all increase

GluA1 levels in transfected HEK cells. Using this assay, we sur-

veyed representatives from seven classes of uncharacterized

proteins in AMPAR immunoprecipitates and found that both

PORCN and ABHD6 increase GluA1 levels. Whereas this stabili-

zation assay may miss some functional interacting proteins, we

also performed FLIPR experiments. These studies confirmed

that precisely those proteins that increase GluA1 protein levels

also modulate GluA1 channel activity. This correlation suggests



utility of the stabilization/FLIPR assay pair, which may enable

rapid surveys of other receptor complexes identified by prote-

omics. As antibodies are not available for all tested protein fam-

ilies, false negative results cannot be excluded.

The stabilizing effect of PORCN on AMPARs also occurs in

neurons. Indeed, PORCN knockdown in hippocampal neurons

dramatically and specifically decreases levels of all measured

components of the AMPAR complex. In parallel, knockout of

PORCN in mouse hippocampus results in decreased protein

levels of GluA1, GluA2/3, and g-8. Interestingly, our AMPAR

deglycosylation experiments demonstrate that PORCN KO re-

duces both the EndoH-sensitive and -resistant GluA2/3 popula-

tions proportionately, suggesting that PORCN controls the

collective AMPAR pool at the level of the ER. This finding is

distinct from AMPAR auxiliary subunits like TARPs and CNIHs

that preferentially control the EndoH-resistant/mature AMPAR

pool (Rouach et al., 2005; Shi et al., 2010). Thus, PORCN is an

AMPAR interacting protein that stabilizes the collective AMPAR

pool. These findings underscore the unique role of PORCN as an

ER chaperone for stabilization and assembly of AMPARs.

In addition to reducing extrasynaptic AMPAR components,

PORCN KO also significantly decreases synaptic GluA2/3 and

g-8 levels, which likely explains the reduction in synaptic trans-

mission. Nevertheless, these mutant mice are still competent in

LTP induction and maintenance. Our subcellular fractionation

and EndoH glycosidase experiments suggest that PORCN stabi-

lizes the collective AMPAR pool at the level of the ER. As PORCN

knockout reduces both the surface AMPARpool and the AMPAR

pool for LTP, the mutant mice have proportionate decreases of

both basal and potentiated transmission. This results in LTP ap-

pearing normal in PORCN KO animals. Similar observations

were made in the TARP-g8-D4 knockin mice, which also show

reduced synaptic transmission, but no changes in LTP (Sumioka

et al., 2011). In contrast, knockout of PSD-95 decreases synaptic

transmission and increases LTP (Migaud et al., 1998), as PSD-95

anchors synaptic AMPARs but does not regulate the AMPAR

pool for LTP. On the other hand, CaMKII is important for induc-

tion of LTP but does not control the number of synaptic AMPARs

under basal conditions. Accordingly, CaMKII mutant mice show

normal basal transmission but decreased LTP (Silva et al., 1992).

Besides the described changes in protein expression and thus

in current amplitudes, deletion of PORCN also leads to ac-

celerated decay kinetics of evoked and spontaneous AMPAR

currents. These changes in channel kinetics are most likely a

secondary effect due to the selective depletion of g-8 but not

g-2 from AMPAR complexes in the absence of PORCN, as g-8

has greater effects on AMPAR desensitization (Cho et al.,

2007; Milstein et al., 2007). However, decay kinetics could not

be rescued by overexpression of g-8. Changes in the synaptic

current decay kinetics could also be explained by the selective

reduction of GluA2/3 protein levels in the PSD fraction of PORCN

KOmice, leaving faster desensitizing GluA2-lacking receptors at

the synapse. Experiments in dissociated neuronal cultures, how-

ever, did not show significant changes in rectification properties

or block by philanthotoxin demonstrating that most neuronal

AMPARs are still GluA2 containing. A direct effect of PORCN

on AMPAR kinetics is alternatively possible, but unlikely as

PORCN levels in the PSD are minimal.
C

Both ABHD6 and PORCN have transmembrane domains, and

both have well-characterized enzyme activities. ABHD6 serves

as the rate-limiting enzyme in degrading the endocannabinoid

2-AG and localizes postsynaptically (Marrs et al., 2010). Knock-

down of ABHD6 or pharmacological inhibition augments endo-

cannabinoid signaling and thereby modulates synaptic plasticity

(Zhong et al., 2011). However, these properties are not essential

for actions described here, as a catalytically inactive ABHD6

mutant (Navia-Paldanius et al., 2012) continued to modulate

AMPARs.

Porcupine was discovered genetically as acting upstream of

the segment polarity gene wingless (Wg), a DrosophilaWnt fam-

ily member (Kadowaki et al., 1996). Elegant genetic and

biochemical studies later showed that PORCN mediates palmi-

toylation of a specific serine on Wg and mammalian Wnt iso-

forms (Galli et al., 2007). These Wg/Wnt palmitoylations occur

in the lumen of the ER and are therefore categorically distinct

from cytoplasmic palmitoylations catalyzed by DHHC enzymes

that modify the C-terminal tail of AMPARs, PSD-95, and many

other synaptic proteins (El-Husseini and Bredt, 2002; Hayashi

et al., 2005).

Palmitoyl-transferase activity of PORCN does not mediate its

effects on AMPARs, as a catalytically dead mutant (Galli et al.,

2007) showed full activity to control GluA1 stability. Additionally,

a highly specific and potent PORCN inhibitor did not abolish the

PORCN-mediated effects on AMPARs in HEK cells or neurons.

Importantly, recent genetic studies found that PORCN effects

on a subset of cancer cell lines are independent of its enzyme ac-

tivity. Indeed, PORCN mutated at the same His used here was

fully effective in controlling cell growth in multiple breast cancer

cell lines (Covey et al., 2012). Thus, PORCN’s functional interac-

tion with AMPARs occurs in a ‘‘moonlighting’’ role independent

of Wnt signaling. Another multi-functional ion channel modulator

is gephyrin, which both clusters glycine/GABA receptors in neu-

rons and catalyzes the last step in molybdenum cofactor biosyn-

thesis throughout the body (Feng et al., 1998). Like gephyrin,

PORCN is a single gene subject to complex alternative splicing.

It will be important to understand how these alternative forms

may specify PORCN actions on Wnt and non-Wnt pathways.

PORCN has differential effects on AMPARs in heterologous

cells and neurons. Whereas PORCN expression dramatically

increases levels of AMPARs in both systems, PORCN reduces

receptor functionality in non-neuronal cells. This reduced func-

tionality is due to PORCN-dependent retention of GluA subunits

in intracellular compartments as demonstrated by biotinylation

experiments, and it is not due to an increased cytoplasmic poly-

amine block as shown by rectification experiments (data not

shown). As AMPARs are expressed almost exclusively in neu-

rons and glial cells, this intracellular trapping in HEK293T cells

may be artificial. Alternatively, PORCNmay physiologically retain

GluA subunits in the ER and release them following proper as-

sembly of the AMPAR complex. Co-expression of TARPs did

not overcome PORCN-mediated intracellular retention of

GluA1 (data not shown), so other neuronal factors or other

AMPAR auxiliary subunits must contribute. Cellular context is

also critical in function of CNIH-2, which promotes ER export

of AMPARs in mammalian neurons (Harmel et al., 2012) but re-

duces AMPAR surface levels in oocytes (Brockie et al., 2013).
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Furthermore, in C. elegans muscle cells, CNIH-2 or its worm

homolog CNI-1 blocks ER export and CNIH-2 reduces surface

AMPAR levels (Brockie et al., 2013).

The expanding catalog of glutamate receptor auxiliary sub-

units and associated transmembrane proteins underscores the

importance and complexity of the receptor complexes. Whereas

the interactions described here specifically control AMPARs,

distinct auxiliary subunits, Neto-1/2, modulate neuronal kainate

receptors (Tomita and Castillo, 2012). The evolutionary conser-

vation of these interacting proteins emphasizes that they serve

fundamental roles (Wang et al., 2008). In C. elegans, the mixed

AMPA/kainate receptor GLR-1 associates with STG (TARP-

like), CNI (CNIH-2-like), and SOL (NETO-like). Elegant genetic

studies in C. elegans have defined how these subunits globally

regulate glutamate receptor number and function at worm syn-

apses (Brockie et al., 2013). Analogous studies of the larger

mammalian AMPAR complex represent a major challenge.

Selective enrichment of PORCN in principal cells in hippocam-

pus fits with its role in controlling incorporation of g-8, which also

has highest expression in these neurons. Similarly, CNIH-2 is

concentrated in hippocampal neurons, where it specifically con-

trols g-8-containing AMPAR complexes (Herring et al., 2013;

Kato et al., 2010). As hippocampal neurons play especially

important roles in spatial navigation and memory consolidation,

they may require multiple and complex mechanisms for control-

ling AMPAR trafficking and gating. Defining how this molecular

ensemble orchestrates development and plasticity of hippocam-

pal synapses will provide insights for understanding memory

formation and how it goes awry in neuropsychiatric disorders.

EXPERIMENTAL PROCEDURES

FLIPR Assay

HEK293T cells were seeded into poly-D-lysine-coated, clear-bottom black 96-

well plates (BD Biosciences) at a density of 50,000 cells/well. Forty-eight hours

after transfection with Fugene HD (Promega), cells were washed three times

in assay buffer (in mM: 137 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES,

5 D-Glucose [pH 7.4]). Cells were incubated with 1 3 FLIPR Calcium 5 Assay

Kit (Molecular Devices) in assay buffer supplemented with 1.25mMprobenicid

for 1 hr. After washing the cells, plates were transferred to the FLIPR Tetra Sys-

tem (Molecular Devices). Glutamate responses (100 mM) were calculated as

max–min between 8 and 160 s. Experiments were run as triplicates or quadru-

plicates on each plate.

Quantification of GluA Surface Expression inHEKCells andCultured

Hippocampal Neurons

Surface expression of extracellularly hemagglutinin-tagged (HA-tagged)

GluA1 was performed as described previously (Harmel et al., 2012). In brief,

cells were fixed in 4% paraformaldehyde, blocked with 10% normal goat

serum in PBS, followed by incubation with an anti-HA antibody (1:100, Santa

Cruz Biotechnology) and a secondary goat-anti-mouse-HRP antibody

(1:10,000, Santa Cruz). Chemiluminescence was quantified in a GloMax

20/20 luminometer (Promega) using SuperSignal ELISA Femto Maximum

Sensitivity Substrate (Pierce). Surface expression of extracellularly stained

AMPARs in cultured hippocampal neurons was quantified by fluorescence

intensity measurements of anti-GluA1 immunocytochemistry without use of

detergents. Hippocampal neurons were incubated with primary antibody

(1:100, mouse anti-GluA1-NT, Millipore) in culture medium for 30 min at

37�C. Cells were washed three times with ice-cold PBS and fixed with 4%

paraformaldehyde in PBS for 10 min at 4�C. Cells were blocked for 30 min in

10%normal goat serum in PBS before incubationwith an Alexa Fluor 555-con-

jugated goat-anti-mouse antibody (1:500 in 10% normal goat serum in PBS,
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Molecular Probes) for 30 min at room temperature. To identify dendrites, cells

were permeabilizedwith 0.04%Triton X-100 in PBS and stainedwith a chicken

anti-MAP2 antibody (1:1,000, Millipore) and a secondary goat-anti-chicken

antibody conjugated to Alexa Fluor 647 (Molecular Probes). Nuclei were

stained using the NucBlue Fixed Cell Stain DAPI (Molecular Probes). Neurons

weremounted and imaged using a confocal LSM710 fromZeiss. Test and con-

trol groups were processed in parallel. Mean intensity values of surface stain-

ing were measured after background correction for 18–20 different secondary

dendrites from four different coverslips. Data were quantified using ImageJ

software (NIH).

Immunoprecipitation

Crude membrane fractions of cultured hippocampal neurons were solubilized

in ComplexioLyte buffer CL-91 (LogopharmGmbH) for 30 min on ice and incu-

bated with immobilized antibodies for 2 hr at 4�C. The following mixture of an-

tibodies was used: 30% of anti-GluA1 (AB1504, Millipore), 35% of anti-GluA2

(AB1768, Millipore), 25% of anti-GluA2/3 (07-598, Millipore), and 10% of anti-

GluA4 (AB1508, Millipore). After brief washing with 0.1% CL-91, bound pro-

teins were eluted with 50 mM glycine (pH 2.8) for 10 min at 37�C. Bolt LDS
Sample Buffer and Bolt Sample Reducing Agent (Life Technologies) were

added before denaturation at 37�C for 10 min.

Electrophysiology in HEK293T Cells and Cultured Primary Neurons

Agonist-evoked currents were recorded from transfected HEK293T cells or

outside out patches from cultured primary hippocampal neurons. Recordings

were made using thick-walled boroscillicate glass electrodes pulled to a resis-

tance of 2–5 MU. All cells were voltage-clamped at �60 mV, and data were

collected and digitized using an Axopatch 200B and Clampex 9.2 software

(Molecular Devices). For whole-cell recordings, the transfected HEK293T cells

were bathed in external solution containing (in mM): 137 NaCl, 4 KCl, 2 CaCl2,
1 MgCl2, 5 glucose, and 10 Na-HEPES (pH 7.4),�300 mOsm. For cultured pri-

mary neurons, 10 mM CPP, 10 mM bicuculline, and 0.3 mM TTX were added to

the external solution. The intracellular electrode solution contained (in mM):

90 KF, 30 KCl, 5 EGTA, and 10 Na-HEPES (pH 7.4), �290 mOsm. Data were

acquired at 20 kHz and filtered at 2 kHz. Whole-cell responses were measured

by rapidly transitioning to the external solution containing agonist for 500 ms

using glass perfusion barrels driven by a SF-77B Perfusion Fast-Step (Warner

Instruments). Agonist-evoked currents were quantified using Clampfit soft-

ware (Molecular Devices) to calculate the mean current amplitude using the

last five sweeps after the agonist response was stable.

SpontaneousAMPAR-mediatedminiature excitatory post-synaptic currents

(mEPSC) from hippocampal neurons (days in vitro [DIV] 20–26) were recorded

in the presence of 10 mM bicuculline, 10 mM CPP, 300 nM TTX, in whole-cell

configuration at a holding potential of �60 mV. Typically, 50 consecutive

events of mEPSCs were used for analysis. They were inspected visually and

were selected with a lower limit amplitude cutoff of greater than 10 pA. Ampli-

tude and frequency of events were analyzed using Minianalysis (Synaptosoft).

mEPSCs were fitted with bi-exponential functions to determine decay kinetics

(weighted tau).

Electrophysiology and Chemiluminescence Assay Using Xenopus

laevis Oocytes

Two electrode voltage clamp recordings and chemiluminescence assay of

surface proteins were performed as described (Morimoto-Tomita et al.,

2009). In brief, cRNAs were injected into Xenopus laevis oocytes and defollicu-

lated, and experiments were performed at 4–5 days after injection. Two-elec-

trode voltage-clamp analysis (Vh = �70 mV) was done at room temperature.

Glutamate was bath applied in recording solution (90 mM NaCl, 1.0 mM KCl,

1.5 mM CaCl2, and 10 mM HEPES [pH 7.4]). For surface labeling, oocytes

were incubated with rat anti-HA antibody (3F10, Roche) followed by incubation

with HRP-conjugated anti-rat Ig. Chemiluminescence was quantified with

SuperSignal ELISA Femto Maximum Sensitivity Substrate (Pierce).

Slice Electrophysiology

Schaeffer collaterals were stimulated at 0.1 Hz with a bipolar nickel-chromate

wire electrode. The fiber volley and EPSP (fEPSP) were recorded from stratum

radiatum using 1–2 MU pipettes filled with ACSF. fEPSPs were quantified by



measuring the initial slope (by linear regression sfEPSP) following the fiber

volley (FV). Each input-output curve was fitted with the equation.

sfEPSPFV ðiÞ= sfEPSPmax 3 FVhOðsfEPSPh
50 +FVhÞ where sfEPSPFV ðiÞ is

the sfEPSP with fiber volley amplitude FV, sfEPSP50 is the sfEPSP yielding

the half maximal response, sfEPSPmax is the maximal sfEPSP, and h is the

slope of the input-output curve. Whole-cell voltage clamp recordings from

CA1 pyramidal neurons were made using 2- to 4-MU pipettes filled with intra-

cellular solution containing (in mM) 135 CsMeSO3, 10 CsCl, 10 HEPES,

1 EGTA, 4 MgATP, 0.4 NaGTP, and extracellular ACSF with the addition of

picrotoxin (100 mM) and (R)-CPP (100 mM; Tocris Bioscience) unless otherwise

specified. To minimize epileptiform activity, a cut was made between CA1 and

CA3. Data were collected usingMulticlamp 700B amplifier, filtered at 2–4 KHz,

and digitized at 10–50 kHz (Digidata 1440, Molecular Devices).

Paired-pulse stimulation (50-ms inter-stimulus interval) was assessed

at �60 mV. AMPAR/NMDAR ratio was determined by first recording EPSCs

at +40 mV followed by AMPAR currents in the presence of (R)-CPP. NMDAR

currents were then obtained by digital off-line subtraction of AMPAR current.

LTP experiments were performed in coronal sections bathed in ACSF

(2.5 mM Ca2+/ 1.3 mM Mg2+) warmed to 28�C. A stable 20-min baseline of

fEPSPs in response to half-maximal stimulation was obtained followed by

LTP induction using a high-frequency protocol: 100 Hz train for 1 s, delivered

twice, 20 s apart.

Data were analyzed using AxoGraphX software and displayed as means ±

SEM. Significance was analyzed either with two-tailed Student’s t tests or a

one- or two-way ANOVAs with a Sidak’s multiple comparison test (Microsoft

Excel and GraphPad Prism). n values indicate number of cells or slices.
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