

On Jacquet-Langlands isogeny over function fields
 Mihran Papikian ${ }^{1}$
 Department of Mathematics, Pennsylvania State University, University Park, PA 16802, United States

A R T I C L E I N F O

Article history:

Received 15 August 2010
Revised 31 December 2010
Accepted 3 January 2011
Available online 24 February 2011
Communicated by David Goss

MSC:

primary 11G18, 11G09
secondary 14 H 40

Keywords:

Drinfeld modules
\mathcal{D}-elliptic sheaves
Cuspidal divisor group
Jacquet-Langlands correspondence

Abstract

We propose a conjectural explicit isogeny from the Jacobians of hyperelliptic Drinfeld modular curves to the Jacobians of hyperelliptic modular curves of \mathcal{D}-elliptic sheaves. The kernel of the isogeny is a subgroup of the cuspidal divisor group constructed by examining the canonical maps from the cuspidal divisor group into the component groups.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let N be a square-free integer, divisible by an even number of primes. It is well known that the new part of the modular Jacobian $J_{0}(N)$ is isogenous to the Jacobian of a Shimura curve; see [33]. The existence of this isogeny can be interpreted as a geometric incarnation of the global JacquetLanglands correspondence over \mathbb{Q} between the cusp forms on $G L(2)$ and the multiplicative group of a quaternion algebra [24]. Jacquet-Langlands isogeny has important arithmetic applications, for example, to level lowering [35]. In this paper we are interested in the function field analogue of the Jacquet-Langlands isogeny.

Let \mathbb{F}_{q} be the finite field with q elements, and let $F=\mathbb{F}_{q}(T)$ be the field of rational functions on $\mathbb{P}_{\mathbb{F}_{q}}^{1}$. The set of places of F will be denoted by $|F|$. Let $A:=\mathbb{F}_{q}[T]$. This is the subring of F consisting of functions which are regular away from the place generated by $1 / T$ in $\mathbb{F}_{q}[1 / T]$. The place

[^0]generated by $1 / T$ will be denoted by ∞ and called the place at infinity; it will play a role similar to the archimedean place for \mathbb{Q}. The places in $|F|-\infty$ are the finite places.

Let $v \in|F|$. We denote by F_{v}, \mathcal{O}_{v} and \mathbb{F}_{v} the completion of F at v, the ring of integers in F_{v}, and the residue field of F_{v}, respectively. We assume that the valuation $\operatorname{ord}_{v}: F_{v} \rightarrow \mathbb{Z}$ is normalized by $\operatorname{ord}_{v}\left(\pi_{v}\right)=1$, where π_{v} is a uniformizer of \mathcal{O}_{v}. The degree of v is $\operatorname{deg}(v)=\left[\mathbb{F}_{v}: \mathbb{F}_{q}\right]$. Let $q_{v}:=$ $q^{\operatorname{deg}(v)}=\# \mathbb{F}_{v}$. If v is a finite place, then with an abuse of notation we denote the prime ideal of A corresponding to v by the same letter.

Given a field K, we denote by \bar{K} an algebraic closure of K.
Let $R \subset|F|-\infty$ be a nonempty finite set of places of even cardinality. Let D be the quaternion algebra over F ramified exactly at the places in R. Let X_{F}^{R} be the modular curve of \mathcal{D}-elliptic sheaves (see Section 2.2). This curve is the function field analogue of a Shimura curve parametrizing abelian surfaces with multiplication by a maximal order in an indefinite division quaternion algebra over \mathbb{Q}. Denote the Jacobian of X_{F}^{R} by J^{R}. The role of classical modular curves in this context is played by Drinfeld modular curves. With an abuse of notation, let R also denote the square-free ideal of A whose support consists of the places in R. Let $X_{0}(R)_{F}$ be the Drinfeld modular curve defined in Section 2.1. Let $J_{0}(R)$ be the Jacobian of $X_{0}(R)_{F}$. The same strategy as over \mathbb{Q} shows that J^{R} is isogenous to the new part of $J_{0}(R)$ (see Theorem 7.1 and Remark 7.4). The proof relies on Tate's conjecture, so it provides no information about the isogenies $J^{R} \rightarrow J_{0}(R)^{\text {new }}$ beyond their existence. In this paper we carefully examine the simplest non-trivial case, namely $R=\{x, y\}$ with $\operatorname{deg}(x)=1$ and $\operatorname{deg}(y)=2$. (When $R=\{x, y\}$ and $\operatorname{deg}(x)=\operatorname{deg}(y)=1$, both X_{F}^{R} and $X_{0}(R)_{F}$ have genus 0 .)

Notation 1.1. Unless indicated otherwise, throughout the paper x and y will be two fixed finite places of degree 1 and 2, respectively. When $R=\{x, y\}$, we write $X_{F}^{x y}$ for $X_{F}^{R}, J^{x y}$ for $J^{R}, X_{0}(x y)_{F}$ for $X_{0}(R)_{F}$, and $J_{0}(x y)$ for $J_{0}(R)$.

The genus of $X_{F}^{x y}$ is q, which is also the genus of $X_{0}(x y)_{F}$. Hence $J_{0}(x y)$ and $J^{x y}$ are q-dimensional Jacobian varieties, which are isogenous over F. We would like to construct an explicit isogeny $J_{0}(x y) \rightarrow J^{x y}$. A natural place to look for the kernel of an isogeny defined over F is in the cuspidal divisor group \mathcal{C} of $J_{0}(x y)$. To see which subgroup of \mathcal{C} could be the kernel, one needs to compute, besides \mathcal{C} itself, the component groups of $J_{0}(x y)$ and $J^{x y}$, and the canonical specialization maps of \mathcal{C} into the component groups of $J_{0}(x y)$. These calculations constitute the bulk of the paper. Based on these calculations, in Section 7 we propose a conjectural explicit isogeny $J_{0}(x y) \rightarrow J^{x y}$, and prove that the conjecture is true for $q=2$. We note that $X_{F}^{x y}$ is hyperelliptic, and in fact for odd q these are the only X_{F}^{R} which are hyperelliptic [31]. The curve $X_{0}(x y)_{F}$ is also hyperelliptic, and for levels which decompose into a product of two prime factors these are the only hyperelliptic Drinfeld modular curves [36]. Hence this paper can also be considered as a study of hyperelliptic modular Jacobians over F which interrelates [31] and [36].

The approach to explicating the Jacquet-Langlands isogeny through the study of component groups and cuspidal divisor groups was initiated in the classical context by Ogg. In [27], Ogg proposed in several cases conjectural explicit isogenies between the modular Jacobians and the Jacobians of Shimura curves (as far as I know, these conjectures are still mostly open, but see [19] and [23] for some advances).

We summarize the main results of the paper.

- The cuspidal divisor group $\mathcal{C} \subset J_{0}(x y)(F)$ is isomorphic to

$$
\mathcal{C} \cong \mathbb{Z} /(q+1) \mathbb{Z} \oplus \mathbb{Z} /\left(q^{2}+1\right) \mathbb{Z}
$$

- The component groups of $J_{0}(x y)$ and $J^{x y}$ at x, y, and ∞ are listed in Table 1. ($J_{0}(x y)$ and $J^{x y}$ have good reduction away from x, y and ∞, so the component groups are trivial away from these three places.)
- If we denote the component group of $J_{0}(x y)$ at $*$ by Φ_{*}, and the canonical map $\mathcal{C} \rightarrow \Phi_{*}$ by ϕ_{*}, then there are exact sequences

Table 1

	x	y	∞
$J_{0}(x y)$	$\mathbb{Z} /\left(q^{2}+1\right)(q+1) \mathbb{Z}$	$\mathbb{Z} /(q+1) \mathbb{Z}$	$\mathbb{Z} /\left(q^{2}+1\right)(q+1) \mathbb{Z}$
$J^{x y}$	$\mathbb{Z} /(q+1) \mathbb{Z}$	$\mathbb{Z} /\left(q^{2}+1\right)(q+1) \mathbb{Z}$	$\mathbb{Z} /(q+1) \mathbb{Z}$

$$
\begin{gathered}
0 \rightarrow \mathbb{Z} /(q+1) \mathbb{Z} \rightarrow \mathcal{C} \xrightarrow{\phi_{x}} \Phi_{x} \rightarrow \mathbb{Z} /(q+1) \mathbb{Z} \rightarrow 0 \\
0 \rightarrow \mathbb{Z} /\left(q^{2}+1\right) \mathbb{Z} \rightarrow \mathcal{C} \xrightarrow{\phi_{y}} \Phi_{y} \rightarrow 0, \\
\phi_{\infty}: \mathcal{C} \xrightarrow{\sim} \Phi_{\infty} \text { if } q \text { is even, } \\
0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathcal{C} \xrightarrow{\phi_{\infty}} \Phi_{\infty} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0 \text { if } q \text { is odd. }
\end{gathered}
$$

- The kernel $\mathcal{C}_{0} \cong \mathbb{Z} /\left(q^{2}+1\right) \mathbb{Z}$ of ϕ_{y} maps injectively into Φ_{x} and Φ_{∞}.

Conjecture 7.3 then states that there is an isogeny $J_{0}(x y) \rightarrow J^{x y}$ whose kernel is \mathcal{C}_{0}. As an evidence for the conjecture, we prove that the quotient abelian variety $J_{0}(x y) / \mathcal{C}_{0}$ has component groups of the same order as $J^{x y}$. This is a consequence of a general result (Theorem 4.3), which describes how the component groups of abelian varieties with toric reduction change under isogenies. Finally, we prove Conjecture 7.3 for $q=2$ (Theorem 7.12); the proof relies on the fact that $J_{0}(x y)$ in this case is isogenous to a product of two elliptic curves. Two other interesting consequences of our results are the following. First, we deduce the genus formula for X_{F}^{R} proven in [30] by a different argument (Corollary 6.3). Second, assuming q is even and Conjecture 7.3 is true, we are able to tell how the optimal elliptic curve with conductor $x y \infty$ changes in a given F-isogeny class when we change the modular parametrization from $X_{0}(x y)_{F}$ to $X_{F}^{x y}$ (Proposition 7.10).

2. Preliminaries

2.1. Drinfeld modular curves

Let K be an A-field, i.e., K is a field equipped with a homomorphism $\gamma: A \rightarrow K$. In particular, K contains \mathbb{F}_{q} as a subfield. The A-characteristic of K is the ideal $\operatorname{ker}(\gamma) \triangleleft A$. Let $K\{\tau\}$ be the twisted polynomial ring with commutation rule $\tau s=s^{q} \tau, s \in K$. A rank-2 Drinfeld A-module over K is a ring homomorphism $\phi: A \rightarrow K\{\tau\}, a \mapsto \phi_{a}$ such that $\operatorname{deg}_{\tau} \phi_{a}=-2 \operatorname{ord}_{\infty}(a)$ and the constant term of ϕ_{a} is $\gamma(a)$. A homomorphism of two Drinfeld modules $u: \phi \rightarrow \psi$ is $u \in K\{\tau\}$ such that $\phi_{a} u=u \psi_{a}$ for all a in $A ; u$ is an isomorphism if $u \in K^{\times}$. Note that ϕ is uniquely determined by the image of T :

$$
\phi_{T}=\gamma(T)+g \tau+\Delta \tau^{2}
$$

where $g \in K$ and $\Delta \in K^{\times}$. The j-invariant of ϕ is $j(\phi)=g^{q+1} / \Delta$. It is easy to check that if K is algebraically closed, then $\phi \cong \psi$ if and only if $j(\phi)=j(\psi)$.

Treating τ as the automorphism of K given by $k \mapsto k^{q}$, the field K acquires a new A-module structure via ϕ. Let $\mathfrak{a} \triangleleft A$ be an ideal. Since A is a principal ideal domain, we can choose a generator $a \in A$ of \mathfrak{a}. The A-module $\phi[\mathfrak{a}]=\operatorname{ker} \phi_{a}(\bar{K})$ does not depend on the choice of a and is called the \mathfrak{a}-torsion of ϕ. If \mathfrak{a} is coprime to the A-characteristic of K, then $\phi[\mathfrak{a}] \cong(A / \mathfrak{a})^{2}$. On the other hand, if $\mathfrak{p}=\operatorname{ker}(\gamma) \neq 0$, then $\phi[\mathfrak{p}] \cong(A / \mathfrak{p})$ or 0 ; when $\phi[\mathfrak{p}]=0, \phi$ is called supersingular.

Lemma 2.1. Up to isomorphism, there is a unique supersingular rank-2 Drinfeld A-module over $\overline{\mathbb{F}}_{x}$: it is the Drinfeld module with j-invariant equal to 0 . Up to isomorphism, there is a unique supersingular rank-2 Drinfeld A-module over $\overline{\mathbb{F}}_{y}$, and its j-invariant is non-zero.

Proof. This follows from [9, (5.9)] since $\operatorname{deg}(x)=1$ and $\operatorname{deg}(y)=2$.

Let $\operatorname{End}(\phi)$ denote the centralizer of $\phi(A)$ in $\bar{K}\{\tau\}$, i.e., the ring of all homomorphisms $\phi \rightarrow \phi$ over \bar{K}. The automorphism group $\operatorname{Aut}(\phi)$ is the group of units $\operatorname{End}(\phi)^{\times}$.

Lemma 2.2. If $j(\phi) \neq 0$, then $\operatorname{Aut}(\phi) \cong \mathbb{F}_{q}^{\times}$. If $j(\phi)=0$, then $\operatorname{Aut}(\phi) \cong \mathbb{F}_{q^{2}}^{\times}$.
Proof. If $u \in \bar{K}^{\times}$commutes with $\phi_{T}=\gamma(T)+g \tau+\Delta \tau^{2}$, then $u^{q^{2}-1}=1$ and $u^{q-1}=1$ if $g \neq 0$. This implies that $u \in \mathbb{F}_{q}^{\times}$if $j(\phi) \neq 0$, and $u \in \mathbb{F}_{q^{2}}^{\times}$if $j(\phi)=0$. On the other hand, we clearly have the inclusions $\mathbb{F}_{q}^{\times} \subset \operatorname{Aut}(\phi)$ and, if $j(\phi)=0, \mathbb{F}_{q^{2}}^{\times} \subset \operatorname{Aut}(\phi)$. This finishes the proof.

Lemma 2.3. Let $\mathfrak{p} \triangleleft A$ be a prime ideal and $\mathbb{F}_{\mathfrak{p}}:=A / \mathfrak{p}$. Let ϕ be a rank-2 Drinfeld A-module over $\overline{\mathbb{F}}_{\mathfrak{p}}$. Let $\mathfrak{n} \triangleleft A$ be an ideal coprime to \mathfrak{p}. Let $C_{\mathfrak{n}}$ be an A-submodule of $\phi[\mathfrak{n}]$ isomorphic to A / \mathfrak{n}. Denote by $\operatorname{Aut}\left(\phi, C_{\mathfrak{n}}\right)$ the subgroup of automorphisms of ϕ which map $C_{\mathfrak{n}}$ to itself. Then $\operatorname{Aut}\left(\phi, C_{\mathfrak{n}}\right) \cong \mathbb{F}_{q}^{\times}$or $\mathbb{F}_{q^{2}}^{\times}$. The second case is possible only if $j(\phi)=0$.

Proof. The action of \mathbb{F}_{q}^{\times}obviously stabilizes $C_{\mathfrak{n}}$, hence, using Lemma 2.2, it is enough to show that if $\operatorname{Aut}\left(\phi, C_{\mathfrak{n}}\right) \neq \mathbb{F}_{q}^{\times}$, then $\operatorname{Aut}\left(\phi, C_{\mathfrak{n}}\right) \cong \mathbb{F}_{q^{2}}^{\times}$. Let $u \in \operatorname{Aut}\left(\phi, C_{\mathfrak{n}}\right)$ be an element which is not in \mathbb{F}_{q}. Then $\operatorname{Aut}(\phi)=\mathbb{F}_{q}[u]^{\times} \cong \mathbb{F}_{q^{2}}^{\times}$, where $\mathbb{F}_{q}[u]$ is considered as a finite subring of $\operatorname{End}(\phi)$. It remains to show that $\alpha+u \beta$ stabilizes $C_{\mathfrak{n}}$ for any $\alpha, \beta \in \mathbb{F}_{q}$ not both equal to zero. But this is obvious since α and $u \beta$ stabilize $C_{\mathfrak{n}}$ and $C_{\mathfrak{n}} \cong A / \mathfrak{n}$ is cyclic.

One can generalize the notion of Drinfeld modules over an A-field to the notion of Drinfeld modules over an arbitrary A-scheme S [8]. The functor which associates to an A-scheme S the set of isomorphism classes of pairs ($\phi, C_{\mathfrak{n}}$), where ϕ is a Drinfeld A-module of rank 2 over S and $C_{\mathfrak{n}} \cong A / \mathfrak{n}$ is an A-submodule of $\phi[\mathfrak{n}]$, possesses a coarse moduli scheme $Y_{0}(\mathfrak{n})$ that is affine, flat and of finite type over A of pure relative dimension 1 . There is a canonical compactification $X_{0}(\mathfrak{n})$ of $Y_{0}(\mathfrak{n})$ over $\operatorname{Spec}(A)$; see [8, §9] or [41]. The finitely many points $X_{0}(\mathfrak{n})(\bar{F})-Y_{0}(\mathfrak{n})(\bar{F})$ are called the cusps of $X_{0}(\mathfrak{n})_{F}$.

Denote by \mathbb{C}_{∞} the completion of an algebraic closure of F_{∞}. Let $\Omega=\mathbb{C}_{\infty}-F_{\infty}$ be the Drinfeld upper half-plane; Ω has a natural structure of a smooth connected rigid-analytic space over F_{∞}. Denote by $\Gamma_{0}(\mathfrak{n})$ the Hecke congruence subgroup of level \mathfrak{n} :

$$
\Gamma_{0}(\mathfrak{n})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(A) \right\rvert\, c \in \mathfrak{n}\right\} .
$$

The group $\Gamma_{0}(\mathfrak{n})$ naturally acts on Ω via linear fractional transformations, and the action is discrete in the sense of [8, p. 582]. Hence we may construct the quotient $\Gamma_{0}(\mathfrak{n}) \backslash \Omega$ as a 1-dimensional connected smooth analytic space over F_{∞}.

The following theorem can be deduced from the results in [8]:
Theorem 2.4. $X_{0}(\mathfrak{n})$ is a proper flat scheme of pure relative dimension 1 over $\operatorname{Spec}(A)$, which is smooth away from the support of \mathfrak{n}. There is an isomorphism of rigid-analytic spaces $\Gamma_{0}(\mathfrak{n}) \backslash \Omega \cong Y_{0}(\mathfrak{n})_{F_{\infty}}^{\mathrm{a}}$.

There is a genus formula for $X_{0}(\mathfrak{n})_{F}$ which depends on the prime decomposition of \mathfrak{n}; see [16, Thm. 2.17]. By this formula, the genera of $X_{0}(x)_{F}, X_{0}(y)_{F}$ and $X_{0}(x y)_{F}$ are 0,0 and q, respectively.

2.2. Modular curves of \mathcal{D}-elliptic sheaves

Let D be a quaternion algebra over F. Let $R \subset|F|$ be the set of places which ramify in D, i.e., $D \otimes F_{v}$ is a division algebra for $v \in R$. It is known that R is finite of even cardinality, and, up to isomorphism, this set uniquely determines D; see [42]. Assume $R \neq \emptyset$ and $\infty \notin R$. In particular, D is
a division algebra. Let $C:=\mathbb{P}_{\mathbb{F}_{q}}^{1}$. Fix a locally free sheaf \mathcal{D} of \mathcal{O}_{C}-algebras with stalk at the generic point equal to D and such that $\mathcal{D}_{v}:=\mathcal{D} \otimes_{\mathcal{O}_{c}} \mathcal{O}_{v}$ is a maximal order in $D_{v}:=D \otimes_{F} F_{v}$.

Let S be an \mathbb{F}_{q}-scheme. Denote by Frob_{S} its Frobenius endomorphism, which is the identity on the points and the q th power map on the functions. Denote by $C \times S$ the fibered product $C \times{ }_{\operatorname{Spec}\left(\mathbb{F}_{q}\right)} S$. Let $z: S \rightarrow C$ be a morphism of \mathbb{F}_{q}-schemes. A \mathcal{D}-elliptic sheaf over S, with pole ∞ and zero z, is a sequence $\mathbb{E}=\left(\mathcal{E}_{i}, j_{i}, t_{i}\right)_{i \in \mathbb{Z}}$, where each \mathcal{E}_{i} is a locally free sheaf of $\mathcal{O}_{C \times S}$-modules of rank 4 equipped with a right action of \mathcal{D} compatible with the \mathcal{O}_{C}-action, and where

$$
\begin{aligned}
& j_{i}: \mathcal{E}_{i} \rightarrow \mathcal{E}_{i+1}, \\
& t_{i}:{ }^{\tau} \mathcal{E}_{i}:=\left(\mathrm{Id}_{\mathrm{C}} \times \mathrm{Frob}_{S}\right)^{*} \mathcal{E}_{i} \rightarrow \mathcal{E}_{i+1}
\end{aligned}
$$

are injective $\mathcal{O}_{C \times S}$-linear homomorphisms compatible with the \mathcal{D}-action. The maps j_{i} and t_{i} are sheaf modifications at ∞ and z, respectively, which satisfy certain conditions, and it is assumed that for each closed point w of S, the Euler-Poincare characteristic $\chi\left(\left.\mathcal{E}_{0}\right|_{C \times w}\right)$ is in the interval $[0,2)$; we refer to [26, §2] and [22, §1] for the precise definition. Moreover, to obtain moduli schemes with good properties at the closed points w of S such that $z(w) \in R$ one imposes an extra condition on \mathbb{E} to be "special" [22, p. 1305]. Note that, unlike the original definition in [26], ∞ is allowed to be in the image of S; here we refer to [1, §4.4] for the details. Denote by $\mathcal{E} \ell \ell^{\mathcal{D}}(S)$ the set of isomorphism classes of \mathcal{D}-elliptic sheaves over S. The following theorem can be deduced from some of the main results in [26] and [22]:

Theorem 2.5. The functor $S \mapsto \mathcal{E} \ell \ell^{\mathcal{D}}(S)$ has a coarse moduli scheme X^{R}, which is proper and flat of pure relative dimension 1 over C and is smooth over $C-R-\infty$.

Remark 2.6. Theorems 2.4 and 2.5 imply that $J_{0}(R)$ and J^{R} have good reduction at any place $v \in$ $|F|-R-\infty$; cf. [2, Ch. 9].

3. Cuspidal divisor group

For a field K, we represent the elements of $\mathbb{P}^{1}(K)$ as column vectors $\binom{u}{v}$ where $u, v \in K$ are not both zero and $\binom{u}{v}$ is identified with $\binom{\alpha u}{\alpha v}$ if $\alpha \in K^{\times}$. We assume that $\mathrm{GL}_{2}(K)$ acts on $\mathbb{P}^{1}(K)$ on the left by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{u}{v}=\binom{a u+b v}{c u+d v}
$$

Let $\mathfrak{n} \triangleleft A$ be an ideal. The cusps of $X_{0}(\mathfrak{n})_{F}$ are in natural bijection with the orbits of $\Gamma_{0}(\mathfrak{n})$ acting from the left on $\mathbb{P}^{1}(F)$.

Lemma 3.1. If \mathfrak{n} is square-free, then there are 2^{s} cusps on $X_{0}(\mathfrak{n})_{F}$, where s is the number of prime divisors of \mathfrak{n}. All the cusps are F-rational.

Proof. See Proposition 3.3 and Corollary 3.4 in [11].
For every $\mathfrak{m} \mid \mathfrak{n}$ with $(\mathfrak{m}, \mathfrak{n} / \mathfrak{m})=1$ there is an Atkin-Lehner involution $W_{\mathfrak{m}}$ on $X_{0}(\mathfrak{n})_{F}$, cf. [36]. Its action is given by multiplication from the left with any matrix $\left(\begin{array}{cc}m a & b \\ n & m\end{array}\right)$ whose determinant generates \mathfrak{m}, and where $a, b, m, n \in A,(n)=\mathfrak{n},(m)=\mathfrak{m}$.

From now on assume $\mathfrak{n}=x y$. Recall that we denote by x and y the prime ideals of A corresponding to the places x and y, respectively. With an abuse of notation, we will denote by x also the monic irreducible polynomial in A generating the ideal x, and similarly for y. It should be clear from the
context in which capacity x and y are being used. With this notation, $X_{0}(x y)_{F}$ has 4 cusps, which can be represented by

$$
[\infty]:=\binom{1}{0}, \quad[0]:=\binom{0}{1}, \quad[x]:=\binom{1}{x}, \quad[y]:=\binom{1}{y}
$$

cf. [36, p. 333] and [15, p. 196].
There are 3 non-trivial Atkin-Lehner involutions $W_{x}, W_{y}, W_{x y}$ which generate a group isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$: these involutions commute with each other and satisfy

$$
W_{x} W_{y}=W_{x y}, \quad W_{x}^{2}=W_{y}^{2}=W_{x y}^{2}=1
$$

By [36, Prop. 9], none of these involutions fixes a cusp. In fact, a simple direct calculation shows that

$$
\begin{align*}
W_{x y}([\infty]) & =[0], & & W_{x y}([x])=[y] \\
W_{x}([\infty]) & =[y], & & W_{x}([0])=[x] \\
W_{y}([\infty]) & =[x], & & W_{y}([0])=[y] \tag{3.1}
\end{align*}
$$

Let $\Delta(z), z \in \Omega$, denote the Drinfeld discriminant function; see [11] or [15] for the definition. This is a holomorphic and nowhere vanishing function on Ω. In fact, $\Delta(z)$ is a type- 0 and weight- $\left(q^{2}-1\right)$ cusp form for $\mathrm{GL}_{2}(A)$. Its order of vanishing at the cusps of $X_{0}(\mathfrak{n})_{F}$ can be calculated using [15]. When $\mathfrak{n}=x y$, $[15,(3.10)]$ implies

$$
\begin{equation*}
\operatorname{ord}_{[\infty]} \Delta=1, \quad \operatorname{ord}_{[0]} \Delta=q_{x} q_{y}, \quad \operatorname{ord}_{[x]} \Delta=q_{y}, \quad \operatorname{ord}_{[y]} \Delta=q_{x} \tag{3.2}
\end{equation*}
$$

The functions

$$
\Delta_{x}(z):=\Delta(x z), \quad \Delta_{y}(z):=\Delta(y z), \quad \Delta_{x y}(z):=\Delta(x y z)
$$

are type-0 and weight- $\left(q^{2}-1\right)$ cusp forms for $\Gamma_{0}(x y)$. Hence the fractions $\Delta / \Delta_{x}, \Delta / \Delta_{y}, \Delta / \Delta_{x y}$ define rational functions on $X_{0}(x y)_{\mathbb{C}_{\infty}}$. We compute the divisors of these functions.

The matrix $W_{x y}=\left(\begin{array}{rr}0 & 1 \\ x y & 0\end{array}\right)$ normalizes $\Gamma_{0}(x y)$ and interchanges $\Delta(z)$ and $\Delta_{x y}(z)$. Thus by (3.1) and (3.2)

$$
\operatorname{ord}_{[\infty]} \Delta_{x y}=q_{x} q_{y}, \quad \operatorname{ord}_{[0]} \Delta_{x y}=1, \quad \operatorname{ord}_{[x]} \Delta_{x y}=q_{x}, \quad \operatorname{ord}_{[y]} \Delta_{x y}=q_{y}
$$

A similar argument involving the actions of W_{x} and W_{y} gives

$$
\begin{array}{lll}
\operatorname{ord}_{[\infty]} \Delta_{x}=q_{x}, & \operatorname{ord}_{[0]} \Delta_{x}=q_{y}, & \operatorname{ord}_{[x]} \Delta_{x}=q_{x} q_{y}, \quad \operatorname{ord}_{[y]} \Delta_{x}=1 \\
\operatorname{ord}_{[\infty]} \Delta_{y}=q_{y}, & \operatorname{ord}_{[0]} \Delta_{y}=q_{x}, & \operatorname{ord}_{[x]} \Delta_{y}=1, \quad \operatorname{ord}_{[y]} \Delta_{y}=q_{x} q_{y}
\end{array}
$$

From these calculations we obtain

$$
\begin{aligned}
\operatorname{div}\left(\Delta / \Delta_{x y}\right) & =\left(1-q_{x} q_{y}\right)[\infty]+\left(q_{x} q_{y}-1\right)[0]+\left(q_{y}-q_{x}\right)[x]+\left(q_{x}-q_{y}\right)[y] \\
& =\left(q^{3}-1\right)([0]-[\infty])+\left(q^{2}-q\right)([x]-[y])
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
& \operatorname{div}\left(\Delta / \Delta_{x}\right)=(q-1)([y]-[\infty])+\left(q^{3}-q^{2}\right)([0]-[x]) \\
& \operatorname{div}\left(\Delta / \Delta_{y}\right)=\left(q^{2}-1\right)([x]-[\infty])+\left(q^{3}-q\right)([0]-[y])
\end{aligned}
$$

Next, by [15, p. 200], the largest positive integer k such that $\Delta / \Delta_{x y}$ has a k th root in the field of modular functions for $\Gamma_{0}(x y)$ is $(q-1)^{2} /(q-1)=(q-1)$. We can apply the same argument to Δ / Δ_{x} as a modular function for $\Gamma_{0}(x)$ to deduce that Δ / Δ_{x} has $(q-1)^{2} /(q-1)$ th root. Similarly, Δ / Δ_{y} has $(q-1)\left(q^{2}-1\right) /(q-1)$ th root. Therefore, the following relations hold in $\operatorname{Pic}^{0}\left(X_{0}(x y)_{F}\right)$:

$$
\begin{align*}
\left(q^{2}+q+1\right) & ([0]-[\infty])+q([x]-[y])
\end{align*}=0, ~([y]-[\infty])+q^{2}([0]-[x])=0, ~([x]-[\infty])+q([0]-[y])=0 .
$$

There is one more relation between the cuspidal divisors which comes from the fact that $X_{0}(x y)_{F}$ is hyperelliptic. By a theorem of Schweizer [36, Thm. 20], $X_{0}(x y)_{F}$ is hyperelliptic, and $W_{x y}$ is the hyperelliptic involution. Consider the degree-2 covering

$$
\pi: X_{0}(x y)_{F} \rightarrow X_{0}(x y)_{F} / W_{x y} \cong \mathbb{P}_{F}^{1}
$$

Denote $P:=\pi([\infty]), Q:=\pi([x])$. Since $W_{x y}([\infty]) \neq[x], P \neq Q$. There is a function f on \mathbb{P}_{F}^{1} with divisor $P-Q$. Now

$$
\begin{aligned}
\operatorname{div}\left(\pi^{*} f\right) & =\pi^{*}(\operatorname{div}(f))=\pi^{*}(P-Q) \\
& =\left([\infty]+W_{x y}([\infty])\right)-\left([x]+W_{x y}([x])\right)=[\infty]+[0]-[x]-[y]
\end{aligned}
$$

This gives the relation in $\operatorname{Pic}^{0}\left(X_{0}(x y)_{F}\right)$

$$
\begin{equation*}
[\infty]+[0]-[x]-[y]=0 . \tag{3.4}
\end{equation*}
$$

Fixing $[\infty] \in X_{0}(x y)(F)$ as an F-rational point, we have the Abel-Jacobi map $X_{0}(x y)_{F} \rightarrow J_{0}(x y)$ which sends a point $P \in X_{0}(x y)_{F}$ to the linear equivalence class of the degree- 0 divisor $P-[\infty]$.

Definition 3.2. Let $c_{0}, c_{x}, c_{y} \in J_{0}(x y)(F)$ be the classes of $[0]-[\infty],[x]-[\infty]$, and $[y]-[\infty]$, respectively. These give F-rational points on the Jacobian since the cusps are F-rational. The cuspidal divisor group is the subgroup $\mathcal{C} \subset J_{0}(x y)$ generated by c_{0}, c_{x}, and c_{y}.

From (3.3) and (3.4) we obtain the following relations:

$$
\begin{aligned}
\left(q^{2}+q+1\right) c_{0}+q c_{x}-q c_{y} & =0 \\
q^{2} c_{0}-q^{2} c_{x}+c_{y} & =0 \\
q c_{0}+c_{x}-q c_{y} & =0 \\
c_{0}-c_{x}-c_{y} & =0
\end{aligned}
$$

Lemma 3.3. The cuspidal divisor group \mathcal{C} is generated by c_{x} and c_{y}, which have orders dividing $q+1$ and $q^{2}+1$, respectively.

Proof. Substituting $c_{0}=c_{x}+c_{y}$ into the first three equations above, we see that \mathcal{C} is generated by c_{x} and c_{y} subject to relations:

$$
\begin{array}{r}
(q+1) c_{x}=0 \\
\left(q^{2}+1\right) c_{y}=0
\end{array}
$$

The following simple lemma, which will be used later on, shows that the factors $\left(q^{2}+1\right)$ and ($q+1$) appearing in Lemma 3.3 are almost coprime.

Lemma 3.4. Let n be a positive integer. Then

$$
\operatorname{gcd}\left(n^{2}+1, n+1\right)= \begin{cases}1, & \text { if } n \text { is even } \\ 2, & \text { if } n \text { is odd }\end{cases}
$$

Proof. Let $d=\operatorname{gcd}\left(n^{2}+1, n+1\right)$. Then d divides $\left(n^{2}+1\right)-(n+1)=n(n-1)$. Since n is coprime to $n+1$, d must divide $n-1$, hence also must divide $(n+1)-(n-1)=2$. For n even, d is obviously odd, so $d=1$. For n odd, $n+1$ and $n^{2}+1$ are both even, so $d=2$.

4. Néron models and component groups

4.1. Terminology and notation

The notation in this section will be somewhat different from the rest of the paper. Let R be a complete discrete valuation ring, with fraction field K and algebraically closed residue field k.

Let A_{K} be an abelian variety over K. Denote by A its Néron model over R and denote by A_{k}^{0} the connected component of the identity of the special fiber A_{k} of A. There is an exact sequence

$$
0 \rightarrow A_{k}^{0} \rightarrow A_{k} \rightarrow \Phi_{A} \rightarrow 0
$$

where Φ_{A} is a finite (abelian) group called the component group of A_{K}. We say that A_{K} has semiabelian reduction if A_{k}^{0} is an extension of an abelian variety A_{k}^{\prime} by an affine algebraic torus T_{A} over k (cf. [2, p. 181]):

$$
0 \rightarrow T_{A} \rightarrow A_{k}^{0} \rightarrow A_{k}^{\prime} \rightarrow 0
$$

We say that A_{K} has toric reduction if $A_{k}^{0}=T_{A}$. The character group

$$
M_{A}:=\operatorname{Hom}\left(T_{A}, \mathbb{G}_{m, k}\right)
$$

is a free abelian group contravariantly associated to A.
Let X_{K} be a smooth, proper, geometrically connected curve over K. We say that X is a semi-stable model of X_{K} over R if (cf. [2, p. 245]):
(i) X is a proper flat R-scheme.
(ii) The generic fiber of X is X_{K}.
(iii) The special fiber X_{k} is reduced, connected, and has only ordinary double points as singularities.

We will denote the set of irreducible components of X_{k} by $C(X)$ and the set of singular points of X_{k} by $S(X)$. Let $G(X)$ be the dual graph of X : The set of vertices of $G(X)$ is the set $C(X)$, the set of edges is the set $S(X)$, the end points of an edge x are the two components containing x. Locally at $x \in S(X)$ for the étale topology, X is given by the equation $u v=\pi^{m(x)}$, where π is a uniformizer of R. The integer $m(x) \geqslant 1$ is well defined, and will be called the thickness of x. One obtains from $G(X)$ a graph with length by assigning to each edge $x \in S(X)$ the length $m(x)$.

Fig. 1. \widetilde{X}_{k} for $n=5$ and $m=4$.

4.2. Raynaud's theorem

Let X_{K} be a curve over K with semi-stable model X over R. Let J_{K} be the Jacobian of X_{K}, let J be the Néron model of J_{K} over R, and $\Phi:=J_{k} / J_{k}^{0}$. Let $\widetilde{X} \rightarrow X$ be the minimal resolution of X. Let $B(\widetilde{X})$ be the free abelian group generated by the elements of $C(\widetilde{X})$. Let $B^{0}(\widetilde{X})$ be the kernel of the homomorphism

$$
B(\widetilde{X}) \rightarrow \mathbb{Z}, \quad \sum_{C_{i} \in C(\widetilde{X})} n_{i} C_{i} \mapsto \sum n_{i}
$$

The elements of $C(\widetilde{X})$ are Cartier divisors on \widetilde{X}, hence for any two of them, say C and C^{\prime}, we have an intersection number $\left(C \cdot C^{\prime}\right)$. The image of the homomorphism

$$
\alpha: B(\tilde{X}) \rightarrow B(\tilde{X}), \quad C \mapsto \sum_{C^{\prime} \in C(\tilde{X})}\left(C \cdot C^{\prime}\right) C^{\prime}
$$

lies in $B^{0}(\underset{X}{\tilde{X}})$. A theorem of Raynaud [2, Thm. 9.6/1] says that Φ is canonically isomorphic to $B^{0}(\widetilde{X}) / \alpha(B(\widetilde{X}))$.

The homomorphism $\phi: J_{K}(K) \rightarrow \Phi$ obtained from the composition

$$
J_{K}(K)=J(R) \rightarrow J_{k}(k) \rightarrow \Phi
$$

will be called the canonical specialization map. Let $D=\sum_{Q} n_{Q} Q$ be a degree- 0 divisor on X_{K} whose support is in the set of K-rational points. Let $P \in J_{K}(K)$ be the linear equivalence class of D. The image $\phi(P)$ can be explicitly described as follows. Since X and \widetilde{X} are proper, $X(K)=X(R)=\widetilde{X}(R)$. Since \widetilde{X} is regular, each point $Q \in X(K)$ specializes to a unique element $c(Q)$ of $C(\widetilde{X})$. With this notation, $\phi(P)$ is the image of $\sum_{Q} n_{Q} c(Q) \in B^{0}(\widetilde{X})$ in Φ.

We apply Raynaud's theorem to compute Φ explicitly for a special type of X. Assume that X_{k} consists of two components Z and Z^{\prime} crossing transversally at $n \geqslant 2$ points x_{1}, \ldots, x_{n}. Denote $m_{i}:=m\left(x_{i}\right)$. Let $r: \widetilde{X} \rightarrow X$ denote the resolution morphism; it is a composition of blow-ups at the singular points. It is well known that $r^{-1}\left(x_{i}\right)$ is a chain of $m_{i}-1$ projective lines. More precisely, the special fiber \widetilde{X}_{k} consists of Z and Z^{\prime} but now, instead of intersecting at x_{i}, these components are joined by a chain $E_{1}, \ldots, E_{m_{i}-1}$ of projective lines, where E_{i} intersect E_{i+1}, E_{1} intersects Z at x_{i} and $E_{m_{i}-1}$ intersects Z^{\prime} at x_{i}. All the singularities are ordinary double points.

Assume $m_{1}=m_{n}=\underset{\widetilde{X}}{m} \geqslant 1$ and $m_{2}=\cdots=m_{n-1}=1$ if $n \geqslant 3$.
If $m=1$, then $X=\widetilde{X}$, so $B^{0}(\widetilde{X})$ is freely generated by $z:=Z-Z^{\prime}$. In this case Raynaud's theorem implies that Φ is isomorphic to $B^{0}(\widetilde{X})$ modulo the relation $n z=0$.

If $m \geqslant 2$, let E_{1}, \ldots, E_{m-1} be the chain of projective lines at x_{1} and G_{1}, \ldots, G_{m-1} be the chain of projective lines at x_{n}, with the convention that Z in \widetilde{X}_{k} intersects E_{1} and G_{1}, cf. Fig. 1. The elements $z:=Z-Z^{\prime}, e_{i}:=E_{i}-Z^{\prime}, g_{i}:=G_{i}-Z^{\prime}, 1 \leqslant i \leqslant m-1$ form a \mathbb{Z}-basis of $B^{0}(\widetilde{X})$. By Raynaud's theorem, Φ is isomorphic to $B^{0}(\widetilde{X})$ modulo the following relations:
if $m=2$,

$$
-n z+e_{1}+g_{1}=0, \quad z-2 e_{1}=0, \quad z-2 g_{1}=0
$$

if $m=3$,

$$
\begin{gathered}
-n z+e_{1}+g_{1}=0, \quad z-2 e_{1}+e_{2}=0, \quad z-2 g_{1}+g_{2}=0, \\
e_{1}-2 e_{2}=0, \quad g_{1}-2 g_{2}=0
\end{gathered}
$$

if $m \geqslant 4$

$$
\begin{gathered}
-n z+e_{1}+g_{1}=0, \quad z-2 e_{1}+e_{2}=0, \quad z-2 g_{1}+g_{2}=0, \\
e_{i}-2 e_{i+1}+e_{i+2}=0, \quad g_{i}-2 g_{i+1}+g_{i+2}=0, \quad 1 \leqslant i \leqslant m-3, \\
e_{m-2}-2 e_{m-1}=0, \quad g_{m-2}-2 g_{m-1}=0 .
\end{gathered}
$$

Theorem 4.1. Denote the images of z, e_{i}, g_{i} in Φ by the same letters, and let $\langle z\rangle$ be the cyclic subgroup generated by z in Φ. Then for any $n \geqslant 2$ and $m \geqslant 1$:
(i) $\Phi \cong \mathbb{Z} / m(m(n-2)+2) \mathbb{Z}$.
(ii) If $m \geqslant 2$, then Φ is generated by e_{m-1}. Explicitly, for $1 \leqslant i \leqslant m-1$,

$$
\begin{aligned}
e_{i} & =(m-i) e_{m-1}, \\
g_{i} & =(i(n m+1)-(2 i-1) m) e_{m-1}, \\
z & =m e_{m-1} .
\end{aligned}
$$

(iii) $\Phi /\langle z\rangle \cong \mathbb{Z} / m \mathbb{Z}$.

Proof. When $m=1$ the claim is obvious, so assume $m \geqslant 2$. By [2, Prop. 9.6/10], Φ has order

$$
\sum_{i=1}^{n} \prod_{j \neq i} m_{j}=m^{2}(n-2)+2 m
$$

From the relations

$$
\begin{aligned}
e_{m-2}-2 e_{m-1} & =0, \\
e_{i}-2 e_{i+1}+e_{i+2} & =0, \quad 1 \leqslant i \leqslant m-3, \\
z-2 e_{1}+e_{2} & =0
\end{aligned}
$$

it follows inductively that $e_{i}=(m-i) e_{m-1}$ for $1 \leqslant i \leqslant m-1$, and $z=m e_{m-1}$. Next, from the relations

$$
-n z+e_{1}+g_{1}=0 \quad \text { and } \quad z-2 g_{1}+g_{2}=0
$$

we get $g_{1}=(n m-m+1) e_{m-1}$ and $g_{2}=(2 n m-3 m+2) e_{m-1}$. Finally, if $m \geqslant 4$, the relations $g_{i}-$ $2 g_{i+1}+g_{i+2}=0,1 \leqslant i \leqslant m-3$, show inductively that

$$
g_{i}=(i(n m+1)-(2 i-1) m) e_{m-1}, \quad 1 \leqslant i \leqslant m-1 .
$$

This proves (i) and (ii), and (iii) is an immediate consequence of (ii).

Remark 4.2. Note that by the formula in Theorem 4.1

$$
g_{m-1}=\left(m^{2}(n-2)+2 m-(m(n-2)+1)\right) e_{m-1}=-(m(n-2)+1) e_{m-1}
$$

It is easy to see that $m(n-2)+1$ is coprime to the order $m(m(n-2)+2)$ of Φ. Hence g_{m-1} is also a generator. This is of course not surprising since the relations defining Φ remain the same if we interchange e_{i} 's and g_{i} 's.

4.3. Grothendieck's theorem

Grothendieck gave another description of Φ in [20]. This description will be useful for us when studying maps between the component groups induced by isogenies of abelian varieties.

Let A_{K} be an abelian variety over K with semi-abelian reduction. Denote by \hat{A}_{K} the dual abelian variety of A_{K}. As discussed in [20], there is a non-degenerate pairing $u_{A}: M_{A} \times M_{\hat{A}} \rightarrow \mathbb{Z}$ (called monodromy pairing) having nice functorial properties, which induces an exact sequence

$$
\begin{equation*}
0 \rightarrow M_{\hat{A}} \xrightarrow{u_{A}} \operatorname{Hom}\left(M_{A}, \mathbb{Z}\right) \rightarrow \Phi_{A} \rightarrow 0 \tag{4.1}
\end{equation*}
$$

Let $H \subset A_{K}(K)$ be a finite subgroup of order coprime to the characteristic of k. Since $A(R)=$ $A_{K}(K), H$ extends to a constant étale subgroup-scheme \mathcal{H} of A. The restriction to the special fiber gives a natural injection $\mathcal{H}_{k} \cong H \hookrightarrow A_{k}(k)$, cf. [2, Prop. 7.3/3]. Composing this injection with $A_{k} \rightarrow \Phi_{A}$, we get the canonical homomorphism $\phi: H \rightarrow \Phi_{A}$. Denote $H_{0}:=\operatorname{ker}(\phi)$ and $H_{1}:=\operatorname{im}(\phi)$, so that there is a tautological exact sequence

$$
0 \rightarrow H_{0} \rightarrow H \xrightarrow{\phi} H_{1} \rightarrow 0 .
$$

Let B_{K} be the abelian variety obtained as the quotient of A_{K} by H. Let $\varphi_{K}: A_{K} \rightarrow B_{K}$ denote the isogeny whose kernel is H. By the Néron mapping property, φ_{K} extends to a morphism $\varphi: A \rightarrow B$ of the Néron models. On the special fibers we get a homomorphism $\varphi_{k}: A_{k} \rightarrow B_{k}$, which induces an isogeny $\varphi_{k}^{0}: A_{k}^{0} \rightarrow B_{k}^{0}$ and a homomorphism $\varphi_{\Phi}: \Phi_{A} \rightarrow \Phi_{B}$. The isogeny φ_{k}^{0} restricts to an isogeny $\varphi_{t}: T_{A} \rightarrow T_{B}$, which corresponds to an injective homomorphisms of character groups $\varphi^{*}: M_{B} \rightarrow M_{A}$ with finite cokernel.

Theorem 4.3. Assume A_{K} has toric reduction. There is an exact sequence

$$
0 \rightarrow H_{1} \rightarrow \Phi_{A} \xrightarrow{\varphi_{\Phi}} \Phi_{B} \rightarrow H_{0} \rightarrow 0 .
$$

Proof. The kernel of φ_{k} is $\mathcal{H}_{k} \cong H$. It is clear that $\operatorname{ker}\left(\varphi_{\Phi}\right)=H_{1}$. Let $\hat{\varphi}_{K}: \hat{B}_{K} \rightarrow \hat{A}_{K}$ be the isogeny dual to φ_{K}. Using (4.1), one obtains a commutative diagram with exact rows (cf. [34, p. 8]):

From this diagram we get the exact sequence

$$
0 \rightarrow \operatorname{ker}\left(\varphi_{\Phi}\right) \rightarrow M_{\hat{B}} / \hat{\varphi}^{*}\left(M_{\hat{A}}\right) \rightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(M_{A} / \varphi^{*}\left(M_{B}\right), \mathbb{Z}\right) \rightarrow \operatorname{coker}\left(\varphi_{\Phi}\right) \rightarrow 0
$$

Using the exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0$, it is easy to show that

$$
\operatorname{Ext}_{\mathbb{Z}}^{1}\left(M_{A} / \varphi^{*}\left(M_{B}\right), \mathbb{Z}\right) \cong \operatorname{Hom}\left(M_{A} / \varphi^{*}\left(M_{B}\right), \mathbb{Q} / \mathbb{Z}\right)=:\left(M_{A} / \varphi^{*}\left(M_{B}\right)\right)^{\vee}
$$

so there is an exact sequence of abelian groups

$$
\begin{equation*}
0 \rightarrow \operatorname{ker}\left(\varphi_{\Phi}\right) \rightarrow M_{\hat{B}} / \hat{\varphi}^{*}\left(M_{\hat{A}}\right) \rightarrow\left(M_{A} / \varphi^{*}\left(M_{B}\right)\right)^{\vee} \rightarrow \operatorname{coker}\left(\varphi_{\Phi}\right) \rightarrow 0 . \tag{4.2}
\end{equation*}
$$

So far we have not used the assumption that A_{K} has toric reduction. Under this assumption, B_{K} also has toric reduction, and H_{0} is the kernel of $\varphi_{t}: T_{A} \rightarrow T_{B}$. Hence $\left(M_{A} / \varphi^{*}\left(M_{B}\right)\right)^{\vee} \cong H_{0}$. Next, [5, Thm. 8.6] implies that $M_{\hat{B}} / \hat{\varphi}^{*}\left(M_{\hat{A}}\right) \cong H_{1}$. Thus, we can rewrite (4.2) as

$$
0 \rightarrow \operatorname{ker}\left(\varphi_{\Phi}\right) \rightarrow H_{1} \rightarrow H_{0} \rightarrow \operatorname{coker}\left(\varphi_{\Phi}\right) \rightarrow 0
$$

Since $\operatorname{ker}\left(\varphi_{\Phi}\right)=H_{1}$, this implies that $\operatorname{coker}\left(\varphi_{\Phi}\right) \cong H_{0}$.

5. Component groups of $\boldsymbol{J}_{0}(x y)$

5.1. Component groups at x and y

We return to the notation in Section 3. As we mentioned in Section 2.1, $X_{0}(x y)$ is smooth over $A[1 / x y]$.

Proposition 5.1.

(i) $X_{0}(x y)_{F_{x}}$ has a semi-stable model over \mathcal{O}_{x} such that $X_{0}(x y)_{\mathbb{F}_{x}}$ consists of two irreducible components both isomorphic to $X_{0}(y)_{\mathbb{F}_{x}} \cong \mathbb{P}_{\mathbb{F}_{q}}^{1}$ intersecting transversally in $q+1$ points. Two of these singular points have thickness $q+1$, and the other $q-1$ points have thickness 1 .
(ii) $X_{0}(x y)_{F_{y}}$ has a semi-stable model over \mathcal{O}_{y} such that $X_{0}(x y)_{\mathbb{F}_{y}}$ consists of two irreducible components both isomorphic to $X_{0}(x)_{\mathbb{F}_{y}} \cong \mathbb{P}_{\mathbb{F}_{q^{2}}}^{1}$ intersecting transversally in $q+1$ points. All these singular points have thickness 1.

Proof. The fact that $X_{0}(x y)_{F}$ has a model over \mathcal{O}_{x} and \mathcal{O}_{y} with special fibers of the stated form follows from the same argument as in the case of $X_{0}(v)_{F}$ over $\mathcal{O}_{v}(v \in|F|-\infty)$ discussed in [11, §5]. We only clarify why the number of singular points and their thickness are as stated.
(i) The special fiber $X_{0}(x y)_{\mathbb{F}_{x}}$ consists of two copies of $X_{0}(y)_{\mathbb{F}_{x}}$. The set of points $Y_{0}(y)\left(\overline{\mathbb{F}}_{x}\right)$ is in bijection with the isomorphism classes of pairs $\left(\phi, C_{y}\right)$, where ϕ is a rank-2 Drinfeld A-module over $\overline{\mathbb{F}}_{x}$ and $C_{y} \cong A / y$ is a cyclic subgroup of ϕ. The two copies of $X_{0}(y)_{\mathbb{F}_{x}}$ intersect exactly at the points corresponding to (ϕ, C_{y}) with ϕ supersingular; more precisely, (ϕ, C_{y}) on the first copy is identified with ($\phi^{(x)}, C_{y}^{(x)}$) on the second copy where $\phi^{(x)}$ is the image of ϕ under the Frobenius isogeny and $C_{y}^{(x)}$ is subgroup of $\phi^{(x)}$ which is the image of C_{y}, cf. [11].

Now, by Lemma 2.1, up to an isomorphism over $\overline{\mathbb{F}}_{x}$, there is a unique supersingular Drinfeld module ϕ in characteristic x and $j(\phi)=0$. It is easy to see that ϕ has $q_{y}+1=q^{2}+1$ cyclic subgroups isomorphic to A / y, so the set $S=\left\{\left(\phi, C_{y}\right) \mid C_{y} \subset \phi[y]\right\}$ has cardinality $q^{2}+1$. By Lemma 2.2, $\operatorname{Aut}(\phi) \cong \mathbb{F}_{q^{2}}^{\times}$. This group naturally acts S, and the orbits are in bijection with the singular points of $X_{0}(x y)_{\mathbb{F}_{x}}$. Since the genus of $X_{0}(x y)_{F}$ is q, the arithmetic genus of $X_{0}(x y)_{\mathbb{F}_{x}}$ is also q due to the flatness of $X_{0}(x y) \rightarrow \operatorname{Spec}(A)$; see [21, Cor. III.9.10]. Using the fact that the genus of $X_{0}(y)_{F}$ is zero, a simple calculation shows that the number of singular points of $X_{0}(x y)_{\mathbb{F}_{x}}$ is $q+1$, cf. [21, p. 298]. Next, by Lemma 2.3, the stabilizer in $\operatorname{Aut}(\phi)$ of $\left(\phi, C_{y}\right)$ is either \mathbb{F}_{q}^{\times}or $\mathbb{F}_{q^{2}}^{\times}$. Let s be the number of
pairs $\left(\phi, C_{y}\right)$ with stabilizer $\mathbb{F}_{q^{2}}^{\times}$. Let t be the number of orbits of pairs with stabilizers \mathbb{F}_{q}^{\times}; each such orbit consists of $\#\left(\mathbb{F}_{q^{2}}^{\times} / \mathbb{F}_{q}^{\times}\right)=q+1$ pairs $\left(\phi, C_{y}\right)$. Hence we have

$$
(q+1) t+s=q^{2}+1 \text { and } t+s=q+1
$$

This implies that $t=q-1$ and $s=2$. Finally, as is explained in [11], the thickness of the singular point corresponding to an isomorphism class of $\left(\phi, C_{y}\right)$ is equal to $\#\left(\operatorname{Aut}\left(\phi, C_{y}\right) / \mathbb{F}_{q}^{\times}\right)$.
(ii) Similar to the previous case, $X_{0}(x y)_{\mathbb{F}_{y}}$ consists of two copies of $X_{0}(x)_{\mathbb{F}_{y}} \cong \mathbb{P}_{\mathbb{F}^{2}}^{1}$. The two copies of $X_{0}(x)_{\mathbb{F}_{y}}$ intersect exactly at the points corresponding to the isomorphism classes of pairs (ϕ, C_{X}) with ϕ supersingular. Again by Lemma 2.1 , up to an isomorphism over $\overline{\mathbb{F}}_{y}$, there is a unique supersingular ϕ and $j(\phi) \neq 0$. Hence, by Lemma 2.3, $\operatorname{Aut}\left(\phi, C_{x}\right) \cong \mathbb{F}_{q}^{\times}$for any C_{x}. There are $q_{x}+1=q+1$ cyclic subgroups in ϕ isomorphic to A / x. The rest of the argument is the same as in the previous case.

Theorem 5.2. Let Φ_{v} denote the group of connected components of $J_{0}(x y)$ at $v \in|F|$. Let Z and Z^{\prime} be the irreducible components in Proposition 5.1 with the convention that the reduction of $[\infty]$ lies on Z^{\prime}. Let $z=$ $Z-Z^{\prime}$.
(i) $\Phi_{\chi} \cong \mathbb{Z} /\left(q^{2}+1\right)(q+1) \mathbb{Z}$.
(ii) $\Phi_{y} \cong \mathbb{Z} /(q+1) \mathbb{Z}$.
(iii) Under the canonical specialization map $\phi_{x}: \mathcal{C} \rightarrow \Phi_{x}$ we have

$$
\phi_{x}\left(c_{x}\right)=0 \quad \text { and } \quad \phi_{x}\left(c_{y}\right)=z
$$

In particular, $q^{2}+1$ divides the order of c_{y}.
(iv) Under the canonical specialization map $\phi_{y}: \mathcal{C} \rightarrow \Phi_{y}$ we have

$$
\phi_{y}\left(c_{x}\right)=z \quad \text { and } \quad \phi_{y}\left(c_{y}\right)=0 .
$$

In particular, $q+1$ divides the order of c_{x}.
Proof. (i) and (ii) follow from Theorem 4.1 and Proposition 5.1.
(iii) The cusps reduce to distinct points in the smooth locus of $X_{0}(x y)_{\mathbb{F}_{x}}$, cf. [41]. Since by Theorem 4.1 we know that z has order $q^{2}+1$ in the component group Φ_{x}, it is enough to show that the reductions of $[y]$ and $[\infty]$ lie on distinct components Z and Z^{\prime} in $X_{0}(x y)_{\mathbb{F}_{x}}$, but the reductions of $[x]$ and $[\infty]$ lie on the same component. The involution W_{x} interchanges the two components $X_{0}(y){ }_{\mathbb{F}_{x}}$, cf. [11, (5.3)]. Since $W_{x}([\infty])=[y]$, the reductions of $[\infty]$ and $[y]$ lie on distinct components. On the other hand, W_{y} acts on $X_{0}(x y)_{\mathbb{F}_{y}}$ by acting on each component $X_{0}(y)_{\mathbb{F}_{x}}$ separately, without interchanging them. Since $W_{y}([\infty])=[x]$, the reductions of $[\infty]$ and $[x]$ lie on the same component.
(iv) The argument is similar to (iii). Here W_{y} interchanges the two components $X_{0}(x)_{\mathbb{F}_{y}}$ of $X_{0}(x y)_{\mathbb{F}_{y}}$ and W_{x} maps the components to themselves. Hence $[\infty]$ and $[y]$ lie on one component and $[0]$ and $[x]$ on the other component.

Theorem 5.3. The cuspidal divisor group

$$
\mathcal{C} \cong \mathbb{Z} /(q+1) \mathbb{Z} \oplus \mathbb{Z} /\left(q^{2}+1\right) \mathbb{Z}
$$

is the direct sum of the cyclic subgroups generated by c_{x} and c_{y}, which have orders $(q+1)$ and $\left(q^{2}+1\right)$, respectively. (Note that \mathcal{C} is cyclic if q is even, but it is not cyclic if q is odd.)

Proof. By Lemma 3.3 and Theorem 5.2, \mathcal{C} is generated by c_{x} and c_{y}, which have orders $(q+1)$ and $\left(q^{2}+1\right)$, respectively. If the subgroup of \mathcal{C} generated by c_{x} non-trivially intersects with the subgroup generated by c_{y}, then, by Lemma 3.4, q must be odd and $\frac{q+1}{2} c_{x}=\frac{q^{2}+1}{2} c_{y}$. Applying ϕ_{y} to both sides of this equality, we get $\frac{q+1}{2} z=0$, which is a contradiction since z generates $\Phi_{y} \cong \mathbb{Z} /(q+1) \mathbb{Z}$.

Remark 5.4. The divisor class c_{0} has order $(q+1)\left(q^{2}+1\right)\left(\right.$ resp. $\left.(q+1)\left(q^{2}+1\right) / 2\right)$ if q is even (resp. odd).

5.2. Component group at ∞

To obtain a model of $X_{0}(x y)_{F_{\infty}}$ over \mathcal{O}_{∞}, instead of relying on the moduli interpretation of $X_{0}(x y)$, one has to use the existence of analytic uniformization for this curve; see [28, §4.2]. As far as the structure of the special fiber $X_{0}(x y)_{\mathbb{F}_{\infty}}$ is concerned, it is more natural to compute the dual graph of $X_{0}(x y)_{\mathbb{F}_{\infty}}$ directly using the quotient $\Gamma_{0}(x y) \backslash \mathcal{T}$ of the Bruhat-Tits tree \mathcal{T} of $\operatorname{PGL}_{2}\left(F_{\infty}\right)$. For the definition of \mathcal{T}, and more generally for the basic theory of trees and groups acting on trees, we refer to [40].

The quotient graph $\Gamma_{0}(x y) \backslash \mathcal{T}$ was first computed by Gekeler [10, (5.2)]. For our purposes we will need to know the relative position of the cusps on $\Gamma_{0}(x y) \backslash \mathcal{T}$ and also the stabilizers of the edges. To obtain this more detailed information, and for the general sake of completeness, we recompute $\Gamma_{0}(x y) \backslash \mathcal{T}$ in this subsection using the method in [16].

Denote

$$
G_{0}=\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)
$$

and

$$
G_{i}=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \in \operatorname{GL}_{2}(A) \right\rvert\, \operatorname{deg}(b) \leqslant i\right\}, \quad i \geqslant 1 .
$$

As is explained in [16], $\Gamma_{0}(x y) \backslash \mathcal{T}$ can be constructed in "layers", where the vertices of the i th layer (in [16] called type-i vertices) are the orbits

$$
X_{i}:=G_{i} \backslash \mathbb{P}^{1}(A / x y)
$$

and the edges connecting type-i vertices to type- $(i+1)$ vertices, called type-i edges, are the orbits

$$
Y_{i}:=\left(G_{i} \cap G_{i+1}\right) \backslash \mathbb{P}^{1}(A / x y)
$$

There are obvious maps $Y_{i} \rightarrow X_{i}, Y_{i} \rightarrow X_{i+1}$ and $X_{i} \rightarrow X_{i+1}$ which are used to define the adjacencies of vertices in X_{i} and X_{i+1}; see [16, 1.7]. The graph $\Gamma_{0}(x y) \backslash \mathcal{T}$ is isomorphic to the graph with set of vertices $\bigsqcup_{i \geqslant 0} X_{i}$ and set of edges $\bigsqcup_{i \geqslant 0} Y_{i}$ with the adjacencies defined by these maps.

Note that $\mathbb{P}^{1}(A / x y)=\mathbb{P}^{1}\left(\mathbb{F}_{x}\right) \times \mathbb{P}^{1}\left(\mathbb{F}_{y}\right)$. We will represent the elements of $\mathbb{P}^{1}(A / x y)$ as couples [$P ; Q$] where $P \in \mathbb{P}^{1}\left(\mathbb{F}_{x}\right)$ and $Q \in \mathbb{P}^{1}\left(\mathbb{F}_{y}\right)$. With this notation, G_{i} acts diagonally on $[P ; Q]$ via its images in $\mathrm{GL}_{2}\left(\mathbb{F}_{x}\right)$ and $\mathrm{GL}_{2}\left(\mathbb{F}_{y}\right)$, respectively.

The group G_{0} acting on $\mathbb{P}^{1}(A / x y)$ has 3 orbits, whose representatives are

$$
\left[\binom{1}{0} ;\binom{1}{0}\right], \quad\left[\binom{1}{0} ;\binom{0}{1}\right], \quad\left[\binom{1}{0} ;\binom{x}{1}\right],
$$

where in the last element we write x for the image in \mathbb{F}_{y} of the monic generator of x under the canonical homomorphism $A \rightarrow A / y$. The orbit of $\left[\binom{1}{0} ;\binom{1}{0}\right]$ has length $q+1$, the orbit of $\left[\binom{1}{0} ;\binom{0}{1}\right]$ has length $q(q+1)$, and the orbit of $\left[\binom{1}{0} ;\binom{x}{1}\right]$ has length $q\left(q^{2}-1\right)$, cf. [16, Prop. 2.10]. Next, note

Fig. 2. $\Gamma_{0}(x y) \backslash \mathcal{T}$.
that $G_{0} \cap G_{1}$ is the subgroup B of the upper-triangular matrices in $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$. The G_{0}-orbit of $\left[\binom{1}{0} ;\binom{1}{0}\right]$ splits into two B-orbits with representatives:

$$
\begin{equation*}
\left[\binom{1}{0} ;\binom{1}{0}\right] \text { and }\left[\binom{0}{1} ;\binom{0}{1}\right] \tag{5.1}
\end{equation*}
$$

The lengths of these B-orbits are 1 and q, respectively. The G_{0}-orbit of $\left[\binom{1}{0} ;\binom{0}{1}\right]$ splits into three B-orbits with representatives:

$$
\begin{equation*}
\left[\binom{1}{0} ;\binom{0}{1}\right], \quad\left[\binom{0}{1} ;\binom{1}{0}\right], \quad\left[\binom{1}{1} ;\binom{0}{1}\right] . \tag{5.2}
\end{equation*}
$$

The lengths of these B-orbits are $q, q, q(q-1)$, respectively. Finally, the G_{0}-orbit of $\left[\binom{1}{0} ;\binom{x}{1}\right.$] splits into $(q+1) B$-orbits each of length $q(q-1)$. The previous statements can be deduced from Proposition 2.11 in [16]. It turns out that the elements of $\mathbb{P}^{1}\left(\mathbb{F}_{x}\right) \times \mathbb{P}^{1}\left(\mathbb{F}_{y}\right)$ listed in (5.1) and (5.2) combined form a complete set of G_{1}-orbit representatives. For $i \geqslant 1$, the set of G_{i}-orbit representatives obviously contains a complete set of G_{i+1}-orbit representatives. A small calculation shows that

$$
\begin{equation*}
\left[\binom{1}{0} ;\binom{1}{0}\right], \quad\left[\binom{0}{1} ;\binom{0}{1}\right], \quad\left[\binom{1}{0} ;\binom{0}{1}\right], \quad\left[\binom{0}{1} ;\binom{1}{0}\right] \tag{5.3}
\end{equation*}
$$

is a complete set of G_{i}-orbit representatives for any $i \geqslant 2$. Moreover, the elements $\left[\binom{1}{1} ;\binom{0}{1}\right]$ and $\left[\binom{0}{1} ;\binom{0}{1}\right]$ are in the same G_{2}-orbit. We recognize the elements in (5.3) as the cusps $[\infty],[0],[x],[y]$, respectively. Overall, the structure of $\Gamma_{0}(x y) \backslash \mathcal{T}$ is described by the diagram in Fig. 2. In the diagram
the broken line --- indicates that there are $(q-1)$ distinct edges joining the corresponding vertices, and an arrow \rightarrow indicates an infinite half-line.

Now we compute the stabilizers of the edges. Let e be an edge in $\Gamma_{0}(x y) \backslash \mathcal{T}$ of type i. Let

$$
O(e)=\left(G_{i} \cap G_{i+1}\right)[P ; Q]
$$

be its corresponding orbit in $\left(G_{i} \cap G_{i+1}\right) \backslash \mathbb{P}^{1}(A / x y)$. Then for a preimage \tilde{e} of e in \mathcal{T} we have

$$
\# \operatorname{Stab}_{\Gamma_{0}(x y)}(\tilde{e})=\# \operatorname{Stab}_{G_{i} \cap G_{i+1}}([P ; Q])=\frac{\#\left(G_{i} \cap G_{i+1}\right)}{\# O(e)}
$$

Using this observation, we conclude from our previous discussion that the edges connecting $\left[\binom{1}{0} ;\binom{x}{1}\right] \in X_{0}$ to any vertex in X_{1} have preimages whose stabilizers have order $\# B / q(q-1)=q-1$. The preimages of the edges connecting $\left[\binom{1}{0} ;\binom{0}{1}\right] \in X_{0}$ to $\left[\binom{1}{1} ;\binom{0}{1}\right] \in X_{1}$ and $\left[\binom{1}{0} ;\binom{0}{1}\right] \in X_{1}$ have stabilizers of orders $q-1$ and $(q-1)^{2}$, respectively. (Note that if a stabilizer has order ($q-1$) then it is equal to the center $Z\left(\Gamma_{0}(x y)\right) \cong \mathbb{F}_{q}^{\times}$of $\Gamma_{0}(x y)$, as the center is a subgroup of any stabilizer.) The valency of a vertex v in a graph without loops is the number of distinct edges having v as an endpoint. (A loop is an edge whose endpoints are the same.) Consider the vertex $v=\left[\binom{1}{1} ;\binom{0}{1}\right] \in X_{1}$. Its valency is $(q+1)$. Let \tilde{v} be a preimage of v in \mathcal{T}. Since the valency of \tilde{v} is also $q+1, \operatorname{Stab}_{\Gamma_{0}(x y)}(\tilde{v})$ acts trivially on all edges having \tilde{v} as an endpoint. Hence the stabilizer of any such edge is equal to $\operatorname{Stab}_{\Gamma_{0}(x y)}(\tilde{v})$. We already determined that the stabilizer of a preimage of an edge connecting v to a type-0 vertex is \mathbb{F}_{q}^{\times}. This implies that the stabilizer in $\Gamma_{0}(x y)$ of a preimage of the edge connecting v to $\left[\binom{0}{1} ;\binom{0}{1}\right] \in X_{2}$ is also \mathbb{F}_{q}^{\times}. Finally, consider the vertex $w=\left[\binom{0}{1} ;\binom{0}{1}\right] \in X_{1}$. Its valency is 3 . Let S, S_{1}, S_{2}, S_{3} be the orders of stabilizers in $\Gamma_{0}(x y)$ of a preimage \tilde{w} of w in \mathcal{T}, and the edges connecting w to $\left[\binom{1}{0} ;\binom{1}{0}\right] \in X_{0},\left[\binom{1}{0} ;\binom{x}{1}\right] \in X_{0},\left[\binom{0}{1} ;\binom{0}{1}\right] \in X_{2}$, respectively. From our discussion of the lengths of orbits of type-0 edges, we have $S_{1}=(q-1)^{2}$ and $S_{2}=(q-1)$. Obviously, S_{i} 's divide S. On the other hand, counting the lengths of orbits of $\operatorname{Stab}_{\Gamma_{0}(x y)}(\tilde{w})$ acting on the set of (non-oriented) edges in \mathcal{T} having \tilde{w} as an endpoint, we get

$$
q+1=\frac{S}{S_{1}}+\frac{S}{S_{2}}+\frac{S}{S_{3}}=\frac{S}{(q-1)^{2}}+\frac{S}{(q-1)}+\frac{S}{S_{3}}
$$

This implies $S=S_{3}=(q-1)^{2}$. To summarize, in Fig. 2 a wavy line \sim indicates that a preimage of the corresponding edge in \mathcal{T} has a stabilizer in $\Gamma_{0}(x y)$ of order $(q-1)^{2}$. The edges connecting $\left[\binom{1}{0} ;\binom{x}{1}\right]$ or $\left[\binom{1}{1} ;\binom{0}{1}\right]$ to any other vertex have preimages in \mathcal{T} whose stabilizers in $\Gamma_{0}(x y)$ are isomorphic to \mathbb{F}_{q}^{\times}.

Now from [28, §4.2] one deduces the following. The quotient graph $\Gamma_{0}(x y) \backslash \mathcal{T}$, without the infinite half-lines, is the dual graph of the special fiber of a semi-stable model of $X_{0}(x y)_{F_{\infty}}$ over $\operatorname{Spec}\left(\mathcal{O}_{\infty}\right)$. The special fiber $X_{0}(x y)_{\mathbb{F}_{\infty}}$ has 6 irreducible components $Z, Z^{\prime}, E, E^{\prime}, G, G^{\prime}$, all isomorphic to $\mathbb{P}_{\mathbb{F}_{q}}^{1}$, such that Z and Z^{\prime} intersect in $q-1$ points, E intersects Z and E^{\prime}, E^{\prime} intersects Z^{\prime} and E, G intersects Z and G^{\prime}, G^{\prime} intersects Z^{\prime} and G. Moreover, all intersection points are ordinary double singularities. By [28, Prop. 4.3], the thickness of the singular point corresponding to an edge $e \in \Gamma_{0}(x y) \backslash \mathcal{T}$ is

$$
\#\left(\operatorname{Stab}_{\Gamma_{0}(x y)}(\tilde{e}) / \mathbb{F}_{q}^{\times}\right),
$$

hence all intersection points on Z or Z^{\prime} have thickness 1, but the intersection points of E and E^{\prime}, and of G and G^{\prime} have thickness ($q-1$), cf. Fig. 3. From the structure of $\Gamma_{0}(x y) \backslash \mathcal{T}$, one also concludes that the reductions of the cusps are smooth points in $X_{0}(x y)_{\mathbb{F}_{\infty}}$. Moreover, $[\infty],[0],[x],[y]$ reduce to points on $E, E^{\prime}, G, G^{\prime}$ respectively.

Fig. 3. $X_{0}(x y)_{\mathbb{F}_{\infty}}$ for $q=3$.
Blowing up $X_{0}(x y)_{\mathcal{O}_{\infty}}$ at the intersection points of E, E^{\prime}, and $G, G^{\prime},(q-2)$-times each, we obtain the minimal regular model of $X_{0}(x y)_{F}$ over $\operatorname{Spec}\left(\mathcal{O}_{\infty}\right)$. This is a curve of the type discussed in Section 4.2 with $m=n=(q+1)$, and we enumerate its irreducible components so that $E_{1}=E, E_{q}=E^{\prime}$, $G_{1}=G, G_{q}=G^{\prime}$.

Theorem 5.5. Let $\phi_{\infty}: \mathcal{C} \rightarrow \Phi_{\infty}$ denote the canonical specialization map.
(i) $\Phi_{\infty} \cong \mathbb{Z} /\left(q^{2}+1\right)(q+1) \mathbb{Z}$.
(ii) $\phi_{\infty}\left(c_{x}\right)=\left(q^{2}+1\right) e_{q}$ and $\phi_{\infty}\left(c_{y}\right)=-q(q+1) e_{q}=\left(q^{3}+1\right) e_{q}$.
(iii) If q is even, then $\phi_{\infty}: \mathcal{C} \xrightarrow{\sim} \Phi_{\infty}$ is an isomorphism.
(iv) If q is odd, then there is an exact sequence

$$
0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathcal{C} \xrightarrow{\phi_{\infty}} \Phi_{\infty} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0
$$

Proof. Part (i) is an immediate consequence of the preceding discussion and Theorem 4.1. We have determined the reductions of the cusps at ∞, so using Theorem 4.1, we get

$$
\phi_{\infty}\left(c_{\chi}\right)=g_{1}-e_{1}=\left(q^{2}+q+1\right) e_{q}-q e_{q}=\left(q^{2}+1\right) e_{q}
$$

and

$$
\phi_{\infty}\left(c_{y}\right)=g_{q}-e_{1}=-q^{2} e_{q}-q e_{q}=-q(q+1) e_{q}
$$

which proves (ii). Since $\operatorname{gcd}\left(q^{2}+1, q(q+1)\right)=1$ (resp. 2) if q is even (resp. odd), cf. Lemma 3.4, the subgroup of Φ_{∞} generated by $\phi_{\infty}\left(c_{x}\right)$ and $\phi_{\infty}\left(c_{y}\right)$ is $\left\langle e_{q}\right\rangle$ (resp. $\left\langle 2 e_{q}\right\rangle$) if q is even (resp. odd). On the other hand, we know that e_{q} generates Φ_{∞}. Therefore, if q is even, then ϕ_{∞} is surjective, and if q is odd, then the cokernel of ϕ_{∞} is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$. The claims (iii) and (iv) now follow from Theorem 5.3.

Remark 5.6. We note that (iii) and a slightly weaker version of (iv) in Theorem 5.5 can be deduced from Theorem 5.3 and a result of Gekeler [14]. In fact, in [14, p. 366] it is proven that for an arbitrary \mathfrak{n} the kernel of the canonical homomorphism from the cuspidal divisor group of $X_{0}(\mathfrak{n})_{F}$ to Φ_{∞} is a quotient of $(\mathbb{Z} /(q-1) \mathbb{Z})^{c-1}$, where c is the number of cusps of $X_{0}(\mathfrak{n})_{F}$. In our case, this result says that $\operatorname{ker}\left(\phi_{\infty}\right)$ is a quotient of $(\mathbb{Z} /(q-1) \mathbb{Z})^{3}$. Now suppose q is even. Then $\mathcal{C} \cong \mathbb{Z} /\left(q^{2}+1\right)(q+1) \mathbb{Z}$. Since for even $q, \operatorname{gcd}\left(q-1,\left(q^{2}+1\right)(q+1)\right)=1, \phi_{\infty}$ must be injective. But by $(i), \# \Phi_{\infty}=\left(q^{2}+1\right)(q+1)=\# \mathcal{C}$, so ϕ_{∞} is also surjective. When $q=2$, the fact that $\# \Phi_{\infty}=15$ and ϕ_{∞} is an isomorphism is already contained in [14, (5.3.1)].

Now suppose q is odd. Then $\mathcal{C} \cong \mathbb{Z} /\left(q^{2}+1\right) \mathbb{Z} \oplus \mathbb{Z} /(q+1) \mathbb{Z}$. Since

$$
\operatorname{gcd}(q-1, q+1)=\operatorname{gcd}\left(q-1, q^{2}+1\right)=2
$$

$\operatorname{ker}\left(\phi_{\infty}\right) \subset(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Since Φ_{∞} is cyclic but \mathcal{C} is not, $\operatorname{ker}\left(\phi_{\infty}\right)$ is not trivial, hence it is either $\mathbb{Z} / 2 \mathbb{Z}$ or $(\mathbb{Z} / 2 \mathbb{Z})^{2}$. (Theorem 5.5 implies that the second possibility does not occur.)

Notation 5.7. Let \mathcal{C}_{0} be the subgroup of \mathcal{C} generated by c_{y}.

Corollary 5.8. The cyclic group \mathcal{C}_{0} has order $q^{2}+1$. Under the canonical specializations \mathcal{C}_{0} maps injectively into Φ_{x} and Φ_{∞}, and \mathcal{C}_{0} is the kernel of ϕ_{y}.

Proof. The claims easily follow from Theorems 5.2, 5.3 and 5.5.

6. Component groups of $J^{x y}$

6.1. A class number formula

Let H be a quaternion algebra over F. Let Ram $\subset|F|$ be the set of places where H ramifies. Assume $\infty \in \operatorname{Ram}$. Denote $\mathcal{R}=\operatorname{Ram}-\infty$. Note that $\mathcal{R} \neq \emptyset$ since \#Ram is even.

Let Θ be a hereditary A-order in H. Let I_{1}, \ldots, I_{h} be the isomorphism classes of left Θ-ideals. It is known that $h(\Theta):=h$, called the class number of Θ, is finite. For $i=1, \ldots, h$ we denote by Θ_{i} the right order of the respective I_{i}. (For the definitions see [42].) Denote

$$
M(\Theta)=\sum_{i=1}^{h}\left(\Theta_{i}^{\times}: \mathbb{F}_{q}^{\times}\right)^{-1}
$$

It is not hard to show that each Θ_{i}^{\times}is isomorphic to either \mathbb{F}_{q}^{\times}or $\mathbb{F}_{q^{2}}^{\times}$; see [7, p. 383]. Let $U(\Theta)$ be the number of right orders Θ_{i} such that $\Theta_{i}^{\times} \cong \mathbb{F}_{q^{2}}^{\times}$. In particular,

$$
h(\Theta)=M(\Theta)+U(\Theta)\left(1-\frac{1}{q+1}\right) .
$$

Definition 6.1. For a subset S of $|F|$, let

$$
\operatorname{Odd}(S)= \begin{cases}1, & \text { if all places in } S \text { have odd degrees; } \\ 0, & \text { otherwise }\end{cases}
$$

Let $\mathcal{S} \subset|F|-\infty$ be a finite (possibly empty) set of places such that $\mathcal{R} \cap \mathcal{S}=\emptyset$. Let $\mathfrak{n} \triangleleft A$ be the square-free ideal whose support is \mathcal{S}. Let Θ be an Eichler A-order of level \mathfrak{n}. (When $\mathcal{S}=\emptyset, \Theta$ is a maximal A-order in H.) The formulae that follow are special cases of (1), (4) and (6) in [7]:

$$
\begin{aligned}
M^{\mathcal{S}}(H) & :=M(\Theta)=\frac{1}{q^{2}-1} \prod_{v \in \mathcal{R}}\left(q_{v}-1\right) \prod_{w \in \mathcal{S}}\left(q_{w}+1\right) \\
U^{\mathcal{S}}(H) & :=U(\Theta)=2^{\# \mathcal{R}+\# \mathcal{S}-1} \operatorname{Odd}(\mathcal{R}) \prod_{w \in \mathcal{S}}(1-\operatorname{Odd}(w))
\end{aligned}
$$

Denote

$$
h^{\mathcal{S}}(H)=M^{\mathcal{S}}(H)+U^{\mathcal{S}}(H) \frac{q}{q+1}
$$

6.2. Component groups at x and y

Let D and R be as in Section 2.2. Recall that we assume $\infty \notin R$. Fix a place $w \in R$. Let D^{w} be the quaternion algebra over F which is ramified at $(R-w) \cup \infty$. Fix a maximal A-order \mathfrak{D} in D^{w}, and denote

$$
\begin{aligned}
A^{w} & =A\left[w^{-1}\right] \\
\mathfrak{D}^{w} & =\mathfrak{D} \otimes_{A} A^{w} ; \\
\Gamma^{w} & =\left\{\gamma \in\left(\mathfrak{D}^{w}\right)^{\times} \mid \operatorname{ord}_{w}(\operatorname{Nr}(\gamma)) \in 2 \mathbb{Z}\right\}
\end{aligned}
$$

here w^{-1} denotes the inverse of a generator of the ideal in A corresponding to w, and Nr denotes the reduced norm on D^{w}.

By fixing an isomorphism $D^{w} \otimes_{F} F_{w} \cong \mathbb{M}_{2}\left(F_{w}\right)$, one can consider Γ^{w} as a subgroup of $\mathrm{GL}_{2}\left(F_{w}\right)$ whose image in $\mathrm{PGL}_{2}\left(F_{w}\right)$ is discrete and cocompact. Hence Γ^{w} acts on the Bruhat-Tits tree \mathcal{T}^{w} of $\mathrm{PGL}_{2}\left(F_{w}\right)$. It is not hard to show that Γ^{w} acts without inversions, so the quotient graph $\Gamma^{w} \backslash \mathcal{T}^{w}$ is a finite graph without loops. We make $\Gamma^{w} \backslash \mathcal{T}^{w}$ into a graph with lengths by assigning to each edge e of $\Gamma^{w} \backslash \mathcal{T}^{w}$ the length $\#\left(\operatorname{Stab}_{\Gamma^{w}}(\tilde{e}) / \mathbb{F}_{q}^{\times}\right)$, where \tilde{e} is a preimage of e in \mathcal{T}^{w}. The graph with lengths $\Gamma^{w} \backslash \mathcal{T}^{w}$ does not depend on the choice of isomorphism $D^{w} \otimes_{F} F_{w} \cong \mathbb{M}_{2}\left(F_{w}\right)$, since such isomorphisms differ by conjugation.

As follows from the analogue of Cherednik-Drinfeld uniformization for $X_{F_{w}}^{R}$, proven in this context by Hausberger [22], $X_{F_{w}}^{R}$ is a twisted Mumford curve: Denote by $\mathcal{O}_{w}^{(2)}$ the quadratic unramified extension of \mathcal{O}_{w} and denote by $\mathbb{F}_{w}^{(2)}$ the residue field of $\mathcal{O}_{w}^{(2)}$. Then X_{F}^{R} has a semi-stable model $X_{\mathcal{O}_{w}^{(2)}}^{R}$ over $\mathcal{O}_{w}^{(2)}$ such that the irreducible components of $X_{\mathbb{F}_{w}^{(2)}}^{R}$ are projective lines without self-intersections, and the dual graph $G\left(X_{\mathcal{O}_{w}^{(2)}}^{R}\right)$, as a graph with lengths, is isomorphic to $\Gamma^{w} \backslash \mathcal{T}^{w}$.

On the other hand, as is done in [25] for the quaternion algebras over \mathbb{Q}, the structure of $\Gamma^{w} \backslash \mathcal{T}^{w}$ can be related to the arithmetic to D^{w} : The number of vertices of $\Gamma^{w} \backslash \mathcal{T}^{w}$ is $2 h^{\natural}\left(D^{w}\right)$, the number of edges is $h^{w}\left(D^{w}\right)$, each edge has length 1 or $q+1$, and the number of edges of length $q+1$ is $U^{w}\left(D^{w}\right)$ (the notation here is as in Section 6.1). Hence, using the formulae in Section 6.1, we get the following:

Proposition 6.2. X_{F}^{R} has a semi-stable model $X_{\mathcal{O}_{w}^{(2)}}^{R}$ over $\mathcal{O}_{w}^{(2)}$ such that $X_{\mathbb{F}_{w}^{(2)}}^{R}$ is a union of projective lines without self-intersections. The number of vertices of the dual graph $G\left(X_{\mathcal{O}_{w}^{(2)}}^{R}\right)$ is

$$
\frac{2}{q^{2}-1} \prod_{v \in R-w}\left(q_{v}-1\right)+2^{\# R-1} \operatorname{Odd}(R-w) \frac{q}{q+1}
$$

the number of edges is

$$
\frac{\left(q_{w}+1\right)}{q^{2}-1} \prod_{v \in R-w}\left(q_{v}-1\right)+2^{\# R-1} \operatorname{Odd}(R-w)(1-\operatorname{Odd}(w)) \frac{q}{q+1}
$$

The edges of $G\left(X_{\mathcal{O}_{w}^{(2)}}^{R}\right)$ have length 1 or $q+1$. The number of edges of length $q+1$ is

$$
2^{\# R-1} \operatorname{Odd}(R-w)(1-\operatorname{Odd}(w))
$$

This proposition has an interesting corollary:
Corollary 6.3. Let $g(R)$ be the genus of X_{F}^{R}. Then

$$
g(R)=1+\frac{1}{q^{2}-1} \prod_{v \in R}\left(q_{v}-1\right)-\frac{q}{q+1} 2^{\# R-1} \operatorname{Odd}(R) .
$$

Fig. 4.

Proof. Let h_{1} be the dimension of the first simplicial homology group of $G\left(X_{\mathcal{O}_{w}^{(2)}}^{R}\right)$ with \mathbb{Q}-coefficients. Let V, E be the number of vertices and edges of this graph, respectively. By Euler's formula, $h_{1}=$ $E-V+1$. Proposition 6.2 gives formulae for V and E from which it is easy to see that h_{1} is given by the above expression. Since the irreducible components of $X_{\mathbb{F}_{w}^{(2)}}^{R}$ are projective lines, it is not hard to show that h_{1} is the arithmetic genus of $X_{\mathbb{F}_{w}^{(2)}}^{R}$; cf. [21, p. 298]. On the other hand, $X_{\mathcal{O}_{w}^{(2)}}^{R}$ is flat over $\mathcal{O}_{w}^{(2)}$, so the genus $g(R)$ of its generic fiber is equal to the arithmetic genus of the special fiber; see [21, p. 263]. (Note that the special role of w in the formulae for V and E disappears in $g(R)$, as expected. This formula for $g(R)$ was obtained in [30] by a different argument.)

Theorem 6.4. Let Φ_{v}^{\prime} denote the group of connected components of $J^{x y}$ at $v \in|F|$.
(i) $\Phi_{x}^{\prime} \cong \mathbb{Z} /(q+1) \mathbb{Z}$;
(ii) $\Phi_{y}^{\prime} \cong \mathbb{Z} /\left(q^{2}+1\right)(q+1) \mathbb{Z}$.

Proof. In general, the information supplied by Proposition 6.2 is not sufficient for determining the graph $G\left(X_{\mathcal{O}_{w}^{(2)}}^{R}\right)$ uniquely. Nevertheless, in the case when $R=\{x, y\}$ Proposition 6.2 does uniquely determine $G\left(X_{\mathcal{O}_{w}^{(2)}}^{R}\right)$: $G\left(X_{\mathcal{O}_{x}^{(2)}}^{x y}\right)$ is a graph without loops, which has 2 vertices, $q+1$ edges, and all edges have length 1 . Similarly, $G\left(X_{\mathcal{O}_{y}^{(2)}}^{x y}\right)$ is a graph without loops, which has 2 vertices, $q+1$ edges, two of the edges have length $q+1$ and all others have length 1 . Hence, in both cases, the dual graph is the graph with two vertices and $q+1$ edges connecting them, cf. Fig. 4.

Now Theorem 4.1 can be used to conclude that the component groups are as stated.

6.3. Component group at ∞

Here we again rely on the existence of analytic uniformization. Let Λ be a maximal A-order in D. Let

$$
\Gamma^{\infty}:=\Lambda^{\times}
$$

Since D splits at ∞, by fixing an isomorphism $D \otimes F_{\infty} \cong \mathbb{M}_{2}\left(F_{\infty}\right)$, we get an embedding $\Gamma^{\infty} \hookrightarrow$ $\mathrm{GL}_{2}\left(F_{\infty}\right)$. The group Γ^{∞} is a discrete, cocompact subgroup of $\mathrm{GL}_{2}\left(F_{\infty}\right)$, well defined up to conjugation. Let \mathcal{T}^{∞} be the Bruhat-Tits tree of $\mathrm{PGL}_{2}\left(F_{\infty}\right)$. The group Γ^{∞} acts on \mathcal{T}^{∞} without inversions, so the quotient $\Gamma^{\infty} \backslash \mathcal{T}^{\infty}$ is a finite graph without loops which we make into a graph with lengths by assigning to an edge e of $\Gamma^{\infty} \backslash \mathcal{T}^{\infty}$ the length $\#\left(\operatorname{Stab}_{\Gamma^{\infty}}(\tilde{e}) / \mathbb{F}_{q}^{\times}\right)$, where \tilde{e} is a preimage of e in \mathcal{T}^{∞}. By a theorem of Blum and Stuhler [1, Thm. 4.4.11],

$$
\left(X_{F_{\infty}}^{R}\right)^{\mathrm{an}} \cong \Gamma^{\infty} \backslash \Omega
$$

From this one deduces that X_{F}^{R} has a semi-stable model $X_{\mathcal{O}_{\infty}}^{R}$ over \mathcal{O}_{∞} such that the dual graph of $X_{\mathcal{O}_{\infty}}^{R}$, as a graph with lengths, is isomorphic to $\Gamma^{\infty} \backslash \mathcal{T}^{\infty}$, cf. [25]. The structure of $\Gamma^{\infty} \backslash \mathcal{T}^{\infty}$ can be related to the arithmetic of D; see [32].

Proposition 6.5. X_{F}^{R} has a semi-stable model $X_{\mathcal{O}_{\infty}}^{R}$ over \mathcal{O}_{∞} such that the special fiber $X_{\mathbb{F}_{\infty}}^{R}$ is a union of projective lines without self-intersections. The number of vertices of the dual graph $G\left(X_{\mathcal{O}_{\infty}}^{R}\right)$ is

$$
\frac{2}{q-1}(g(R)-1)+\frac{q}{q-1} 2^{\# R-1} \operatorname{Odd}(R)
$$

the number of edges is

$$
\frac{q+1}{q-1}(g(R)-1)+\frac{q}{q-1} 2^{\# R-1} \operatorname{Odd}(R)
$$

All edges have length 1.
Proof. See Proposition 5.2 and Theorem 5.5 in [32].
Theorem 6.6. $\Phi_{\infty}^{\prime} \cong \mathbb{Z} /(q+1) \mathbb{Z}$.
Proof. Applying Proposition 6.5 in the case $R=\{x, y\}$, one easily concludes that $X_{F}^{x y}$ has a semi-stable model over \mathcal{O}_{∞} whose dual graph looks like Fig. 4: it has 2 vertices, $q+1$ edges, and all edges have length 1. The structure of Φ_{∞}^{\prime} now follows from Theorem 4.1.

7. Jacquet-Langlands isogeny

Let D and R be as in Section 2.2. Let $X:=X_{F}^{R}, X^{\prime}:=X_{0}(R)_{F}, J:=J^{R}, J^{\prime}:=J_{0}(R)$. Fix a separable closure $F^{\text {sep }}$ of F and let $G_{F}:=\operatorname{Gal}\left(F^{\text {sep }} / F\right)$. Let p be the characteristic of F and fix a prime $\ell \neq p$. Denote by $V_{\ell}(J)$ the Tate vector space of J; this is a \mathbb{Q}_{ℓ}-vector space of dimension $2 g(R)$ naturally equipped with a continuous action of G_{F}. Let $V_{\ell}(J)^{*}$ be the linear dual of $V_{\ell}(J)$.

Theorem 7.1. There is a surjective homomorphism $J^{\prime} \rightarrow J$ defined over F.
Proof. Let $\mathbb{A}=\prod_{v \in|F|}^{\prime} F_{v}$ denote the Adele ring of F and let $\mathbb{A}^{\infty}=\prod_{v \in|F|-\infty}^{\prime} F_{v}$, so $\mathbb{A}=\mathbb{A}^{\infty} \times F_{\infty}$. Fix a uniformizer π_{∞} at ∞. Let $\mathcal{A}\left(D^{\times}(F) \backslash D^{\times}(\mathbb{A}) / \pi_{\infty}^{\mathbb{Z}}\right)$ be the space of $\overline{\mathbb{Q}}_{\ell}$-valued locally constant functions on $D^{\times}(\mathbb{A}) / \pi_{\infty}^{\mathbb{Z}}$ which are invariant under the action of $D^{\times}(F)$ on the left. This space is equipped with the right regular representation of $D^{\times}(\mathbb{A}) / \pi_{\infty}^{\mathbb{Z}}$. Since D is a division algebra, the coset space $D^{\times}(F) \backslash D^{\times}(\mathbb{A}) / \pi_{\infty}^{\mathbb{Z}}$ is compact and decomposes as a sum of irreducible admissible representations Π with finite multiplicities $m(\Pi)>0$, cf. [26, §13]:

$$
\begin{equation*}
\mathcal{A}_{D}:=\mathcal{A}\left(D^{\times}(F) \backslash D^{\times}(\mathbb{A}) / \pi_{\infty}^{\mathbb{Z}}\right)=\bigoplus_{\Pi} m(\Pi) \cdot \Pi . \tag{7.1}
\end{equation*}
$$

Moreover, as follows from the Jacquet-Langlands correspondence and the multiplicity-one theorem for automorphic cuspidal representations of $\mathrm{GL}_{2}(\mathbb{A})$, the multiplicities $m(\Pi)$ are all equal to 1 ; see [18, Thm. 10.10]. The representations appearing in the sum (7.1) are called automorphic. Each automorphic representation Π decomposes as a restricted tensor product $\Pi=\otimes_{v \in|F|} \Pi_{v}$ of admissible irreducible representations of $D^{\times}\left(F_{v}\right)$. We denote $\Pi^{\infty}=\bigotimes_{v \neq \infty} \Pi_{v}$, so $\Pi=\Pi^{\infty} \otimes \Pi_{\infty}$. If Π is finite dimensional, then it is of the form $\Pi=\chi \circ \mathrm{Nr}$, where χ is a Hecke character of \mathbb{A}^{\times}and Nr is the reduced norm on D^{\times}, cf. [26, Lem. 14.8]. If Π is infinite dimensional, then Π_{v} is infinite dimensional for every $v \notin R$.

Let ψ_{v} be a character of F_{v}^{\times}. Denote by $\mathrm{Sp}_{v} \otimes \psi_{v}$ the unique irreducible quotient of the induced representation

$$
\operatorname{Ind}_{B}^{\mathrm{GL}_{2}}\left(|\cdot|_{v}^{-\frac{1}{2}} \psi_{v} \oplus|\cdot|_{v}^{\frac{1}{2}} \psi_{v}\right)
$$

where B is the subgroup of upper-triangular matrices in GL_{2}. The representation $\mathrm{Sp}_{v} \otimes \psi_{v}$ is called the special representation of $\mathrm{GL}_{2}\left(F_{v}\right)$ twisted by ψ_{v}. If $\psi_{v}=1$, then we simply write Sp_{v}.

For $v \in R$, let \mathcal{D}_{v} be the maximal order in $D\left(F_{v}\right)$. Let

$$
\mathcal{K}:=\prod_{v \in R} \mathcal{D}_{v}^{\times} \times \prod_{v \in|F|-R-\infty} \mathrm{GL}_{2}\left(\mathcal{O}_{v}\right) \subset D^{\times}\left(\mathbb{A}^{\infty}\right)
$$

Taking the \mathcal{K}-invariants in Theorems 14.9 and 14.12 in [26], we get an isomorphism of G_{F}-modules

$$
\begin{equation*}
V_{\ell}(J)^{*} \otimes_{\mathbb{Q}_{\ell}} \overline{\mathbb{Q}}_{\ell}=H_{\mathrm{ett}}^{1}\left(X \otimes_{F} F^{\mathrm{sep}}, \overline{\mathbb{Q}}_{\ell}\right)=\bigoplus_{\substack{\Pi \in \mathcal{A}_{D} \\ \Pi_{\infty}=S_{p_{\infty}}}}\left(\Pi^{\infty}\right)^{\mathcal{K}} \otimes \sigma(\Pi), \tag{7.2}
\end{equation*}
$$

where $\sigma(\Pi)$ is a 2-dimensional irreducible representation of G_{F} over $\overline{\mathbb{Q}}_{\ell}$ with the following property: If $\left(\Pi^{\infty}\right)^{\mathcal{K}} \neq 0$, then for all $v \in|F|-R-\infty, \sigma(\Pi)$ is unramified at v and there is an equality of L-functions

$$
L\left(s-\frac{1}{2}, \Pi_{v}\right)=L\left(s, \sigma(\Pi)_{v}\right)
$$

here $\sigma(\Pi)_{v}$ denotes the restriction of $\sigma(\Pi)$ to a decomposition group at v. This uniquely determines $\sigma(\Pi)$ by the Chebotarev density theorem [39, Ch. I, pp. 8-11]. Next, we claim that the dimension of $\left(\Pi^{\infty}\right)^{\mathcal{K}}$ is at most one. Indeed, if $v \in|F|-R-\infty$, then $\Pi_{v}^{\mathrm{GL}_{2}\left(\mathcal{O}_{v}\right)}$ is at most one-dimensional by [3, Thm. 4.6.2]. On the other hand, note that \mathcal{D}_{v}^{\times}is normal in $D^{\times}\left(F_{v}\right)$ and $D^{\times}\left(F_{v}\right) / \mathcal{D}_{v}^{\times} \cong \mathbb{Z}$ for $v \in R$. Hence $\Pi_{v}^{\mathcal{D}^{\times}} \neq 0$ implies $\Pi_{v}=\psi_{v} \circ \mathrm{Nr}$ for some unramified character of $F_{v}^{\times}\left(\psi_{v}\right.$ is unramified because the reduced norm maps \mathcal{D}_{v}^{\times}surjectively onto \mathcal{O}_{v}^{\times}).

Let \mathcal{I}_{v} be the Iwahori subgroup of $\mathrm{GL}_{2}\left(\mathcal{O}_{v}\right)$, i.e., the subgroup of matrices which maps to $B\left(\mathbb{F}_{v}\right)$ under the reduction map $\mathrm{GL}_{2}\left(\mathcal{O}_{v}\right) \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{v}\right)$. Let

$$
\mathcal{I}=\prod_{v \in R} \mathcal{I}_{v} \times \prod_{v \in|F|-R-\infty} \operatorname{GL}_{2}\left(\mathcal{O}_{v}\right) \subset \operatorname{GL}_{2}\left(\mathbb{A}^{\infty}\right)
$$

Let $\mathcal{A}_{0}:=\mathcal{A}_{0}\left(\mathrm{GL}_{2}(F) \backslash \mathrm{GL}_{2}(\mathbb{A})\right)$ be the space of $\overline{\mathbb{Q}}_{\ell}$-valued cusp forms on $\mathrm{GL}_{2}(\mathbb{A})$; see [17, §4] or [3, §3.3] for the definition. Taking the \mathcal{I}-invariants in Theorem 2 of [8], we get an isomorphism of G_{F}-modules

$$
\begin{equation*}
V_{\ell}\left(J^{\prime}\right)^{*} \otimes_{\mathbb{Q}_{\ell}} \overline{\mathbb{Q}}_{\ell}=H_{\mathrm{êt}}^{1}\left(X^{\prime} \otimes_{F} F^{\mathrm{sep}}, \overline{\mathbb{Q}}_{\ell}\right)=\bigoplus_{\substack{\Pi \in \mathcal{A}_{0} \\ \Pi_{\infty} \equiv \mathrm{Sp}_{\infty}}}\left(\Pi^{\infty}\right)^{\mathcal{I}} \otimes \rho(\Pi), \tag{7.3}
\end{equation*}
$$

where $\rho(\Pi)$ is 2-dimensional irreducible representation of G_{F} over $\overline{\mathbb{Q}}_{\ell}$ with the following property: If $\left(\Pi^{\infty}\right)^{\mathcal{I}} \neq 0$, then for all $v \in|F|-R-\infty, \rho(\Pi)$ is unramified at v and

$$
L\left(s-\frac{1}{2}, \Pi_{v}\right)=L\left(s, \rho(\Pi)_{v}\right)
$$

In this case, $\left(\Pi^{\infty}\right)^{\mathcal{I}}$ is finite dimensional, but its dimension might be larger than one (due to the existence of old forms).

The global Jacquet-Langlands correspondence [24, Ch. III] associates to each infinite dimensional automorphic representation Π of $D^{\times}(\mathbb{A})$ a cuspidal representation $\Pi^{\prime}=\mathrm{JL}(\Pi)$ of $\mathrm{GL}_{2}(\mathbb{A})$ with the following properties:
(1) if $v \notin R$ then $\Pi_{v} \cong \Pi_{v}^{\prime}$;
(2) if $v \in R$ and $\Pi_{v} \cong \psi_{v} \circ \mathrm{Nr}$ for a character ψ of $F_{v} \times$, then

$$
\Pi_{v}^{\prime} \cong \operatorname{Sp}_{v} \otimes \psi_{v}
$$

As we observed above, for $\Pi \in \mathcal{A}_{D}$ such that $\left(\Pi^{\infty}\right)^{\mathcal{K}} \neq 0$, the characters ψ_{v} at the places in R are unramified. Thus, for $v \in R, \Pi_{v}^{\prime}$ is a twist of Sp_{v} by an unramified character. On the other hand, the representations of the form $\mathrm{Sp}_{v} \otimes \psi_{v}$, with ψ_{v} unramified, can be characterized by the property that they have a unique 1 -dimensional \mathcal{I}_{v}-fixed subspace; see [4]. Hence if $\left(\Pi^{\infty}\right)^{\mathcal{K}} \neq 0$, then $\left(\left(\Pi^{\prime}\right)^{\infty}\right)^{\mathcal{I}} \neq 0$.

Now using (7.2) and (7.3), one concludes that $V_{\ell}(J)$ is isomorphic with a quotient of $V_{\ell}\left(J^{\prime}\right)$ as a G_{F}-module. On the other hand, by a theorem of Zarhin (for $p>2$) and Mori (for $p=2$)

$$
\begin{equation*}
\operatorname{Hom}_{F}\left(J^{\prime}, J\right) \otimes \mathbb{Q}_{\ell} \cong \operatorname{Hom}_{G_{F}}\left(V_{\ell}\left(J^{\prime}\right), V_{\ell}(J)\right) \tag{7.4}
\end{equation*}
$$

Thus, there is a surjective homomorphism $J^{\prime} \rightarrow J$ defined over F.
Corollary 7.2. $J_{0}(x y)$ and $J^{x y}$ are isogenous over F.
Proof. Since $\operatorname{dim}\left(J^{x y}\right)=q=\operatorname{dim}\left(J_{0}(x y)\right)$, the claim follows from Theorem 7.1.
Conjecture 7.3. There exists an isogeny $J_{0}(x y) \rightarrow J^{x y}$ whose kernel is \mathcal{C}_{0}.
As an initial evidence for the conjecture, note that $J_{0}(x y) / \mathcal{C}_{0}$ has component groups at x, y, ∞ of the same order as those of $J^{x y}$. This follows from Theorem 4.3, Corollary 5.8 , and Table 1 in the introduction. We will show below that Conjecture 7.3 is true for $q=2$.

Remark 7.4. The statement of Theorem 7.1 can be refined. The abelian variety J has toric reduction at every $v \in R$, so it is isogenous to an abelian subvariety of J^{\prime} having the same reduction property. The new subvariety of $J^{\prime}, J^{\prime \text { new }}$, defined as in the case of classical modular Jacobians (cf. [35], [13, p. 248]), is the abelian subvariety of J^{\prime} of maximal dimension having toric reduction at every $v \in R$. Hence J is isogenous to a subvariety of $J^{\text {new }}$. By computing the dimension of $J^{\text {new }}$, one concludes that J and $J^{\prime \text { new }}$ are isogenous over F.

Remark 7.5. There is just one other case, besides the case which is the focus of this paper, when J and J^{\prime} are actually isogenous. As one easily shows by comparing the genera of modular curves X^{R} and $X_{0}(R)$, the genera of these curves are equal if and only if $R=\{x, y\}$ and $\{\operatorname{deg}(x), \operatorname{deg}(y)\}=$ $\{1,1\},\{1,2\},\{2,2\}$. Assume $\operatorname{deg}(x)=\operatorname{deg}(y)=2$. Then the genus of both $X^{x y}$ and $X_{0}(x y)$ is q^{2}, but neither of these curves is hyperelliptic. The curve $X_{0}(x y)$ again has 4 cusps which can be represented as in Section 3. Calculations similar to those we have carried out in earlier sections lead to the following result:
(1) The cuspidal divisor group \mathcal{C} is generated by c_{0} and c_{x}. The order of c_{0} is $q^{2}+1$. The order of c_{x} is divisible by $q^{2}+1$ and divides $q^{4}-1$. The order of c_{y} is divisible by $q^{2}+1$ and divides $q^{4}-1$.
(2) $\Phi_{x} \cong \Phi_{x}^{\prime} \cong \mathbb{Z} /\left(q^{2}+1\right) \mathbb{Z}$.
(3) $\Phi_{y} \cong \Phi_{y}^{\prime} \cong \mathbb{Z} /\left(q^{2}+1\right) \mathbb{Z}$.
(4) The canonical map $\phi_{x}: \mathcal{C} \rightarrow \Phi_{x}$ is surjective, and

$$
\phi_{x}\left(c_{0}\right)=z, \quad \phi_{x}\left(c_{x}\right)=0, \quad \phi_{x}\left(c_{y}\right)=z
$$

(5) The canonical map $\phi_{y}: \mathcal{C} \rightarrow \Phi_{y}$ is surjective, and

$$
\phi_{x}\left(c_{0}\right)=z, \quad \phi_{y}\left(c_{x}\right)=z, \quad \phi_{y}\left(c_{y}\right)=0 .
$$

The fact that $X_{0}(x y)$ is not hyperelliptic complicates the calculation of \mathcal{C} : just the relations between the cuspidal divisors arising from the Drinfeld discriminant function are not sufficient for pinning down the orders of c_{x} and c_{y}, cf. (3.3). Next, the calculations required for determining $\Phi_{\infty}, \Phi_{\infty}^{\prime}$, and ϕ_{∞} appear to be much more complicated than those in Sections 5.2 and 6.3. Nevertheless, based on the facts that we are able to prove, and in analogy with the case $\operatorname{deg}(x)=1, \operatorname{deg}(y)=2$, we make the following prediction: The cuspidal divisor group $\mathcal{C} \cong\left(\mathbb{Z} /\left(q^{2}+1\right) \mathbb{Z}\right)^{2}$ is the direct sum of the cyclic subgroups generated by c_{x} and c_{y} both of which have order $q^{2}+1$, and there is an isogeny $J_{0}(x y) \rightarrow J^{x y}$ whose kernel is \mathcal{C}.

Definition 7.6. It is known that every elliptic curve E over F with conductor $\mathfrak{n}_{E}=\mathfrak{n} \cdot \infty, \mathfrak{n} \triangleleft A$, and split multiplicative reduction at ∞ is isogenous to a subvariety of $J_{0}(\mathfrak{n})$; see [17]. This follows from (7.3), (7.4), and the fact [6, p. 577] that the representation $\rho_{E}: G_{F} \rightarrow \operatorname{Aut}\left(V_{\ell}(E)^{*}\right)$ is automorphic (i.e., $\rho_{E}=\rho(\Pi)$ for some $\Pi \in \mathcal{A}_{0}$). The multiplicity-one theorem can be used to show that in the F-isogeny class of E there exists a unique curve E^{\prime} which is isomorphic to a one-dimensional abelian subvariety of $J_{0}(\mathfrak{n})$, thus maps "optimally" into $J_{0}(\mathfrak{n})$. We call E^{\prime} the $J_{0}(\mathfrak{n})$-optimal curve. Theorem 7.1 and Remark 7.4 imply that E with square-free conductor $R \cdot \infty$ and split multiplicative reduction at ∞ is also isogenous to a subvariety of J^{R}. Moreover, in the F-isogeny class of E there is a unique elliptic curve $E^{\prime \prime}$ which is isomorphic to a one-dimensional abelian subvariety of J^{R}. We call $E^{\prime \prime}$ the J^{R}-optimal curve.

Notation 7.7. Let E be an elliptic curve over F given by a Weierstrass equation

$$
E: Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6} .
$$

Let $E^{(p)}$ be the elliptic curve given by the equation

$$
E^{(p)}: Y^{2}+a_{1}^{p} X Y+a_{3}^{p} Y=X^{3}+a_{2}^{p} X^{2}+a_{4}^{p} X+a_{6}^{p} .
$$

There is a Frobenius morphism $\mathrm{Frob}_{p}: E \rightarrow E^{(p)}$ which maps a point (x_{0}, y_{0}) on E to the point $\left(x_{0}^{p}, y_{0}^{p}\right)$ on $E^{(p)}$. It is clear that the j-invariants of these elliptic curves are related by the equation $j\left(E^{(p)}\right)=j(E)^{p}$. If E has semi-stable reduction at $v \in|F|$, then $\Phi_{E, v} \cong \mathbb{Z} / n \mathbb{Z}$, where $\Phi_{E, v}$ denotes the component group of E at v and $n=-\operatorname{ord}_{v}(j(E)) \geqslant 1$. In this case, $\Phi_{E^{(p)}, v} \cong \mathbb{Z} / p n \mathbb{Z}$.

Definition 7.8. An elliptic curve E over F with j-invariant $j(E) \notin \mathbb{F}_{q}$ is said to be Frobenius minimal if it is not isomorphic to $\widetilde{E}^{(p)}$ for some other elliptic curve \widetilde{E} over F. It is easy to check that this is equivalent to $j(E) \notin F^{p}$, cf. [38].

For q even, Schweizer has completely classified the elliptic curves over F having conductor of degree 4 in terms of explicit Weierstrass equations; see [37]. We are particularly interested in those curves which have conductor $x y \infty$ and split multiplicative reduction at ∞.

Theorem 7.9. Assume $q=2^{s}$. Elliptic curves over F with conductor xy ∞ exist only if there exists an \mathbb{F}_{q}-automorphism of F that transforms the conductor into $(T+1)\left(T^{2}+T+1\right) \infty$. In particular, s must be odd.

If s is odd, then there exists two isogeny classes of elliptic curves over F with conductor $(T+1)\left(T^{2}+\right.$ $T+1) \infty$ and split multiplicative reduction at ∞. The Frobenius minimal curves in each isogeny class are listed in Tables 2 and 3; the last three columns in the tables give the orders of the component groups $\Phi_{E, v}$ of the corresponding curve E at $v=x, y, \infty$.

Proof. Theorem 4.1 in [37].

Table 2
Isogeny class I.

	Equation	x	y	∞
E_{1}	$Y^{2}+T X Y+Y=X^{3}+T^{3}+1$	3	3	3
E_{1}^{\prime}	$Y^{2}+T X Y+Y=X^{3}+T^{2}\left(T^{3}+1\right)$	9	1	1
$E_{1}^{\prime \prime}$	$Y^{2}+T X Y+Y=X^{3}$	1	1	9

Table 3
Isogeny class II.

	Equation	x	y	∞
E_{2}	$Y^{2}+T X Y+Y=X^{3}+X^{2}+T$	5	1	5
E_{2}^{\prime}	$Y^{2}+T X Y+Y=X^{3}+X^{2}+T^{5}+T^{2}+T$	1	5	1

Next, [37, Prop. 3.5] describes explicitly the isogenies between the curves in classes I and II: There is an isomorphism of étale group-schemes over F

$$
E_{1}[3] \cong H_{1} \oplus H_{2},
$$

where $H_{1} \cong \mathbb{Z} / 3 \mathbb{Z}$ and $H_{2} \cong \mu_{3}$. The subgroup-scheme H_{1} is generated by $(T+1,1)$ and H_{2} is generated by ($T^{2}, s T^{3}+s^{2}$), where s is a third root of unity. Then $E_{1} / H_{1} \cong E_{1}^{\prime}$ and $E_{1} / H_{2} \cong E_{1}^{\prime \prime}$. (It is well known that an elliptic curve over F with conductor of degree 4 has rank 0 , so in fact $E_{1}(F)=H_{1} \cong \mathbb{Z} / 3 \mathbb{Z}$.) Similarly, the subgroup-scheme H_{3} of E_{2} generated by (1,1) is isomorphic to $\mathbb{Z} / 5 \mathbb{Z}, E_{2} / H_{3} \cong E_{2}^{\prime}$, and $E_{2}(F)=H_{3} \cong \mathbb{Z} / 5 \mathbb{Z}$.

Proposition 7.10. Assume $q=2^{s}$ and s is odd.
(i) E_{1} and E_{2} are the $J_{0}(x y)$-optimal curves in the isogeny classes I and II.
(ii) E_{2}^{\prime} is the $J^{x y}$-optimal curve in the isogeny class II.
(iii) If Conjecture 7.3 is true, then E_{1} is the $J^{x y}$-optimal curve in the isogeny class I.

Proof. (i) There is a method due to Gekeler and Reversat [12, Cor. 3.19] which can be used to determine $\# \Phi_{E, \infty}$ of the $J_{0}(\mathfrak{n})$-optimal curve in a given isogeny class. This method is based on the study of the action of Hecke algebra on $H_{1}\left(\Gamma_{0}(\mathfrak{n}) \backslash \mathcal{T}, \mathbb{Z}\right)$. For $\operatorname{deg}(\mathfrak{n})=3$ the Gekeler-Reversat method can be further refined [38, Cor. 1.2]. Applying this method for $\mathfrak{n}=x y$, one obtains $\# \Phi_{E, \infty}=3$ (resp. $\# \Phi_{E, \infty}=5$) for the $J_{0}(x y)$-optimal elliptic curve E in the isogeny class I (resp. II). Since there is a unique curve with this property in each isogeny class, we conclude that E_{1} and E_{2} are the $J_{0}(x y)$-optimal elliptic curves. (For $q=2$, this is already contained in [12, Ex. 4.4].)
(ii) Assume q is arbitrary. Let E be an elliptic curve over F which embeds into $J^{x y}$. Since $J^{x y}$ has split toric reduction at ∞, [29, Cor. 2.4] implies that the kernel of the natural homomorphism

$$
\Phi_{E, \infty} \rightarrow \Phi_{\infty}^{\prime} \cong \mathbb{Z} /(q+1) \mathbb{Z}
$$

is a subgroup of $\mathbb{Z} /\left(q_{\infty}-1\right) \mathbb{Z}$. Hence $\# \Phi_{E, \infty}$ divides $\left(q^{2}-1\right)$. First, this implies that $\# \Phi_{E, \infty}$ is coprime to p, so E must be Frobenius minimal in its isogeny class. Second, if $q=2^{s}$ and s is odd, then 5 does not divide ($q^{2}-1$), so E_{2} is not $J^{x y}$-optimal. This leaves E_{2}^{\prime} as the only possible $J^{x y}$-optimal curve in the isogeny class II.
(iii) Let E be the $J^{x y}$-optimal curve in the isogeny class I. By the discussion in (ii), this curve is one of the curves in Table 2. Suppose there is an isogeny $\varphi: J_{0}(x y) \rightarrow J^{x y}$ whose kernel is \mathcal{C}_{0}. Restricting φ to $E_{1} \hookrightarrow J_{0}(x y)$, we get an isogeny $\varphi^{\prime}: E_{1} \rightarrow E$ defined over F whose kernel is a subgroup of $\mathcal{C}_{0} \cong \mathbb{Z} /\left(q^{2}+1\right) \mathbb{Z}$. Note that 3 does not divide $q^{2}+1$. On the other hand, any isogeny from E_{1} to E_{1}^{\prime} or $E_{1}^{\prime \prime}$ must have kernel whose order is divisible by 3 . This implies that φ^{\prime} has trivial kernel, so $E=E_{1}$.

Remark 7.11. In the notation of the proof of Proposition 7.10, consider the restriction of φ to $E_{2} \hookrightarrow J o(x y)$. By part (ii) of the proposition, there results an isogeny $\varphi^{\prime \prime}: E_{2} \rightarrow E_{2}^{\prime}$ whose kernel is a subgroup of $\mathbb{Z} /\left(q^{2}+1\right) \mathbb{Z}$. Since 5 divides $q^{2}+1$ when s is odd, part (ii) of Proposition 7.10 is compatible with Conjecture 7.3.

Theorem 7.12. Conjecture 7.3 is true for $q=2$.
Proof. Assume $q=2$. By Proposition 7.10, E_{1} and E_{2} are the $J_{0}(x y)$-optimal curves. Since the genus of $X_{0}(x y)$ is 2 , it is hyperelliptic (this is true for general q by Schweizer's theorem which we used in Section 3). The genus being 2 also implies that a quotient of $X_{0}(x y)$ by an involution has genus 0 or 1 . The Atkin-Lehner involutions form a subgroup in $\operatorname{Aut}\left(X_{0}(x y)\right)$ isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Since the hyperelliptic involution is unique, each E_{1} and E_{2} can be obtained as a quotient of $X_{0}(x y)$ under the action of an Atkin-Lehner involution. Thus, there are degree-2 morphisms $\pi_{i}: X_{0}(x y) \rightarrow E_{i}$, $i=1,2$. In fact, one obtains the closed immersions $\pi_{i}^{*}: E_{i} \rightarrow J_{0}(x y)$ from these morphisms by Picard functoriality. Let $\widehat{\pi_{i}^{*}}: J_{0}(x y) \rightarrow E_{i}$ be the dual morphism. It is easy to show that the composition $\widehat{\pi_{i}^{*}} \circ \pi_{i}^{*}: E_{i} \rightarrow E_{i}$ is the isogeny given by multiplication by $2=\operatorname{deg}\left(\pi_{i}\right)$. This implies that E_{1} and E_{2} intersect in $J_{0}(x y)$ in their common subgroup-scheme of 2-division points $S:=\pi_{1}^{*}\left(E_{1}\right)[2]=\pi_{2}^{*}\left(E_{2}\right)[2]$, so

$$
J_{0}(x y)(F)=H_{1} \oplus H_{3} \cong \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z}=\mathcal{C} .
$$

Let $\psi: J_{0}(x y) \rightarrow E_{1} \times E_{2}$ be the isogeny with kernel S. Note that S is characterized by the non-split exact sequence of group-schemes over F :

$$
0 \rightarrow \mu_{2} \rightarrow S \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0
$$

By Proposition 7.10, E_{2}^{\prime} is the $J^{x y}$-optimal elliptic curve in the isogeny class II. Let E be the $J^{x y}$-optimal elliptic curves in class I. From the proof of Proposition 7.10 , we know that E is Frobenius minimal, so it is one of the curves listed in Table 2. There are also Atkin-Lehner involutions acting on $X^{x y}$ and they form a subgroup in $\operatorname{Aut}\left(X^{x y}\right)$ isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$; see [31]. Now exactly the same argument as above implies that E and E_{2}^{\prime} intersect in $J^{x y}$ along their common subgroup-scheme of 2-division points $S^{\prime} \cong S$. Let $v: J^{x y} \rightarrow E \times E_{2}^{\prime}$ be the isogeny with kernel S^{\prime}. Let $\hat{v}: E \times E_{2}^{\prime} \rightarrow J^{x y}$ be the dual isogeny.

The following argument is motivated by [19]. Consider the composition

$$
\phi: J_{0}(x y) \xrightarrow{\psi} E_{1} \times E_{2} \xrightarrow{\phi_{1} \times \phi_{2}} E \times E_{2}^{\prime} \xrightarrow{\hat{M}} J^{x y},
$$

where ϕ_{1} is either the identity morphism or has kernel H_{1}, H_{2}, and ϕ_{2} has kernel H_{3}. Since $\phi_{1} \times \phi_{2}$ has odd degree, this morphism maps the kernel of $\hat{\psi}$ to the kernel of \hat{v}. Indeed, both are the "diagonal" subgroups isomorphic to S in the corresponding group-schemes $\left(E_{1} \times E_{2}\right)[2]$ and $\left(E \times E_{2}^{\prime}\right)[2]$. More precisely, $\mathcal{H}:=\operatorname{ker}(\hat{\psi})$ is uniquely characterized as the subgroup-scheme of $\mathcal{G}:=\left(E_{1} \times E_{2}\right)[2]$ having the following properties: \mathcal{H}^{0} is the image of the diagonal morphism $\mu_{2} \rightarrow \mu_{2} \times \mu_{2}=\mathcal{G}^{0}$ and the image of \mathcal{H} in $\mathcal{G}^{\text {et }}$ under the natural morphism $\mathcal{G} \rightarrow \mathcal{G}^{\text {et }}$ is the image of the diagonal morphism $\mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. A similar description applies to $\operatorname{ker}(\hat{v}) \subset\left(E \times E_{2}^{\prime}\right)[2]$. Thus, there is an isogeny $\phi^{\prime}: J_{0}(x y) \rightarrow J^{x y}$ such that $\phi=\phi^{\prime}[2]$ and $\operatorname{ker}\left(\phi^{\prime}\right) \cong \operatorname{ker}\left(\phi_{1} \times \phi_{2}\right)$. We conclude that $J^{x y}$ is isomorphic to the quotient of $J_{0}(x y)$ by one of the following subgroups

$$
H_{3}, \quad H_{1} \oplus H_{3}, \quad H_{2} \oplus H_{3} .
$$

Now note that H_{1} and H_{3} under the specialization map ϕ_{∞} inject into Φ_{∞}, but H_{2} maps to 0 (indeed, $H_{2} \cong \mu_{3}$ has non-trivial action by $\operatorname{Gal}\left(\overline{\mathbb{F}}_{\infty} / \mathbb{F}_{\infty}\right)$ whereas Φ_{∞} is constant). Hence Theorem 4.3 implies that the quotients of $J_{0}(x y)$ by the subgroups listed above have component groups at ∞ of orders 3 ,

1 , 9, respectively. Since $\Phi_{\infty}^{\prime} \cong \mathbb{Z} / 3 \mathbb{Z}$, we see that $J^{x y}$ is the quotient of $J_{0}(x y)$ by H_{3} which is \mathcal{C}_{0} in this case.

References

[1] A. Blum, U. Stuhler, Drinfeld modules and elliptic sheaves, in: M.S. Narasimhan (Ed.), Vector Bundles on Curves - New Directions, in: Lecture Notes in Math., vol. 1649, Springer, 1997, pp. 110-188.
[2] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Springer-Verlag, 1990.
[3] D. Bump, Automorphic Forms and Representations, Cambridge University Press, 1998.
[4] W. Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973) 301-314.
[5] B. Conrad, W. Stein, Component groups of purely toric quotients, Math. Res. Lett. 8 (2001) 745-766.
[6] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, in: P. Deligne, W. Kuyk (Eds.), Modular Functions of One Variable II, in: Lecture Notes in Math., vol. 349, Springer, 1973, pp. 501-598.
[7] M. Denert, J. Van Geel, The class number of hereditary orders in non-Eichler algebras over global function fields, Math. Ann. 282 (1988) 379-393.
[8] V. Drinfeld, Elliptic modules, Math. USSR Sbornik 23 (1974) 561-592.
[9] E.-U. Gekeler, Zur arithmetik von Drinfeld-moduln, Math. Ann. 262 (1983) 167-182.
[10] E.-U. Gekeler, Automorphe Formen über $\mathbb{F}_{q}(T)$ mit kleinem Führer, Abh. Math. Semin. Univ. Hambg. 55 (1985) $111-146$.
[11] E.-U. Gekeler, Über Drinfeldsche Modulkurven vom Hecke-Typ, Compos. Math. 57 (1986) 219-236.
[12] E.-U. Gekeler, Analytic construction of Weil curves over function fields, J. Théor. Nombres Bordeaux 7 (1995) 27-49.
[13] E.-U. Gekeler, Jacquet-Langlands theory over K and relations with elliptic curves, in: E.-U. Gekeler, M. van der Put, M. Reversat, J. Van Geel (Eds.), Drinfeld Modules, Modular Schemes, Applications, World Scientific, 1997, pp. $224-257$.
[14] E.-U. Gekeler, On the cuspidal divisor class group of a Drinfeld modular curve, Doc. Math. 2 (1997) 351-374.
[15] E.-U. Gekeler, On the Drinfeld discriminant function, Compos. Math. 106 (1997) 181-202.
[16] E.-U. Gekeler, U. Nonnengardt, Fundamental domains of some arithmetic groups over function fields, Internat. J. Math. 6 (1995) 689-708.
[17] E.-U. Gekeler, M. Reversat, Jacobians of Drinfeld modular curves, J. Reine Angew. Math. 476 (1996) 27-93.
[18] S. Gelbart, Automorphic Forms on Adele Groups, Princeton University Press, 1975.
[19] J. González, V. Rotger, Equations of Shimura curves of genus two, Int. Math. Res. Not. IMRN 14 (2004) 661-674.
[20] A. Grothendieck, Modèles de Néron et monodromie, SGA 7, Exposé IX, in: Lecture Notes in Math., vol. 288, Springer-Verlag, 1972, pp. 313-523.
[21] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
[22] T. Hausberger, Uniformisation des variétés de Laumon-Rapoport-Stuhler et conjecture de Drinfeld-Carayol, Ann. Inst. Fourier 55 (2005) 1285-1371.
[23] D. Helm, On maps between modular Jacobians and Jacobians of Shimura curves, Israel J. Math. 160 (2007) 61-117.
[24] H. Jacquet, R. Langlands, Automorphic Forms on GL(2), Lecture Notes in Math., vol. 114, Springer-Verlag, 1970.
[25] A. Kurihara, On some examples of equations defining Shimura curves and the Mumford uniformization, J. Fac. Sci. Univ. Tokyo 25 (1979) 277-300.
[26] G. Laumon, M. Rapoport, U. Stuhler, D-elliptic sheaves and the Langlands correspondence, Invent. Math. 113 (1993) 217338.
[27] A. Ogg, Mauvaise réduction des courbes de Shimura, Sémin. Théor. Nombres Paris (1983/1984) 199-217.
[28] M. Papikian, On component groups of Jacobians of Drinfeld modular curves, Ann. Inst. Fourier 54 (2004) 2163-2199.
[29] M. Papikian, Analogue of the degree conjecture over function fields, Trans. Amer. Math. Soc. 359 (2007) 3483-3503.
[30] M. Papikian, Genus formula for modular curves of \mathcal{D}-elliptic sheaves, Arch. Math. 92 (2009) 237-250.
[31] M. Papikian, On hyperelliptic modular curves over function fields, Arch. Math. 92 (2009) 291-302.
[32] M. Papikian, Local diophantine properties of modular curves of \mathcal{D}-elliptic sheaves, J. Reine Angew. Math., in press.
[33] K. Ribet, Sur les variétés abéliennes à multiplications réelles, C. R. Acad. Sci. Paris 291 (1980) 121-123.
[34] K. Ribet, On the component groups and the Shimura subgroup of $J_{0}(N)$, Sémin. Théor. Nombres Bordeaux (1987/1988), Exposé 6.
[35] K. Ribet, On modular representations of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ arising from modular forms, Invent. Math. 100 (1990) 431-476.
[36] A. Schweizer, Hyperelliptic Drinfeld modular curves, in: E.-U. Gekeler, M. van der Put, M. Reversat, J. Van Geel (Eds.), Drinfeld Modules, Modular Schemes, Applications, World Scientific, 1997, pp. 330-343.
[37] A. Schweizer, On elliptic curves over function fields of characteristic two, J. Number Theory 87 (2001) 31-53.
[38] A. Schweizer, Strong Weil curves over $\mathbb{F}_{q}(T)$ with small conductor, J. Number Theory 131 (2011) 285-299.
[39] J.-P. Serre, Abelian ℓ-Adic Representations and Elliptic Curves, W.A. Benjamin, 1968.
[40] J.-P. Serre, Trees, Springer, 2003.
[41] M. van der Put, J. Top, Algebraic compactification and modular interpretation, in: E.-U. Gekeler, M. van der Put, M. Reversat, J. Van Geel (Eds.), Drinfeld Modules, Modular Schemes and Applications, World Scientific, 1997, pp. 141-166.
[42] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Math., vol. 800, Springer-Verlag, 1980.

[^0]: E-mail address: papikian@math.psu.edu.
 1 The author was supported in part by NSF grant DMS-0801208.

