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1. Introduction

Let N be a square-free integer, divisible by an even number of primes. It is well known that the
new part of the modular Jacobian J0(N) is isogenous to the Jacobian of a Shimura curve; see [33].
The existence of this isogeny can be interpreted as a geometric incarnation of the global Jacquet–
Langlands correspondence over Q between the cusp forms on GL(2) and the multiplicative group
of a quaternion algebra [24]. Jacquet–Langlands isogeny has important arithmetic applications, for
example, to level lowering [35]. In this paper we are interested in the function field analogue of the
Jacquet–Langlands isogeny.

Let Fq be the finite field with q elements, and let F = Fq(T ) be the field of rational functions
on P1

Fq
. The set of places of F will be denoted by |F |. Let A := Fq[T ]. This is the subring of F con-

sisting of functions which are regular away from the place generated by 1/T in Fq[1/T ]. The place
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generated by 1/T will be denoted by ∞ and called the place at infinity; it will play a role similar to
the archimedean place for Q. The places in |F | − ∞ are the finite places.

Let v ∈ |F |. We denote by F v , Ov and Fv the completion of F at v , the ring of integers in F v ,
and the residue field of F v , respectively. We assume that the valuation ordv : F v → Z is normalized
by ordv(πv ) = 1, where πv is a uniformizer of Ov . The degree of v is deg(v) = [Fv : Fq]. Let qv :=
qdeg(v) = #Fv . If v is a finite place, then with an abuse of notation we denote the prime ideal of A
corresponding to v by the same letter.

Given a field K , we denote by K̄ an algebraic closure of K .
Let R ⊂ |F | − ∞ be a nonempty finite set of places of even cardinality. Let D be the quaternion

algebra over F ramified exactly at the places in R . Let X R
F be the modular curve of D-elliptic sheaves

(see Section 2.2). This curve is the function field analogue of a Shimura curve parametrizing abelian
surfaces with multiplication by a maximal order in an indefinite division quaternion algebra over Q.
Denote the Jacobian of X R

F by J R . The role of classical modular curves in this context is played by
Drinfeld modular curves. With an abuse of notation, let R also denote the square-free ideal of A
whose support consists of the places in R . Let X0(R)F be the Drinfeld modular curve defined in
Section 2.1. Let J0(R) be the Jacobian of X0(R)F . The same strategy as over Q shows that J R is
isogenous to the new part of J0(R) (see Theorem 7.1 and Remark 7.4). The proof relies on Tate’s
conjecture, so it provides no information about the isogenies J R → J0(R)new beyond their existence.
In this paper we carefully examine the simplest non-trivial case, namely R = {x, y} with deg(x) = 1
and deg(y) = 2. (When R = {x, y} and deg(x) = deg(y) = 1, both X R

F and X0(R)F have genus 0.)

Notation 1.1. Unless indicated otherwise, throughout the paper x and y will be two fixed finite places
of degree 1 and 2, respectively. When R = {x, y}, we write Xxy

F for X R
F , J xy for J R , X0(xy)F for

X0(R)F , and J0(xy) for J0(R).

The genus of Xxy
F is q, which is also the genus of X0(xy)F . Hence J0(xy) and J xy are q-dimensional

Jacobian varieties, which are isogenous over F . We would like to construct an explicit isogeny
J0(xy) → J xy . A natural place to look for the kernel of an isogeny defined over F is in the cuspidal
divisor group C of J0(xy). To see which subgroup of C could be the kernel, one needs to compute,
besides C itself, the component groups of J0(xy) and J xy , and the canonical specialization maps of C
into the component groups of J0(xy). These calculations constitute the bulk of the paper. Based on
these calculations, in Section 7 we propose a conjectural explicit isogeny J0(xy) → J xy , and prove
that the conjecture is true for q = 2. We note that Xxy

F is hyperelliptic, and in fact for odd q these
are the only X R

F which are hyperelliptic [31]. The curve X0(xy)F is also hyperelliptic, and for levels
which decompose into a product of two prime factors these are the only hyperelliptic Drinfeld modu-
lar curves [36]. Hence this paper can also be considered as a study of hyperelliptic modular Jacobians
over F which interrelates [31] and [36].

The approach to explicating the Jacquet–Langlands isogeny through the study of component groups
and cuspidal divisor groups was initiated in the classical context by Ogg. In [27], Ogg proposed in sev-
eral cases conjectural explicit isogenies between the modular Jacobians and the Jacobians of Shimura
curves (as far as I know, these conjectures are still mostly open, but see [19] and [23] for some
advances).

We summarize the main results of the paper.

• The cuspidal divisor group C ⊂ J0(xy)(F ) is isomorphic to

C ∼= Z/(q + 1)Z ⊕ Z/
(
q2 + 1

)
Z.

• The component groups of J0(xy) and J xy at x, y, and ∞ are listed in Table 1. ( J0(xy) and J xy

have good reduction away from x, y and ∞, so the component groups are trivial away from these
three places.)

• If we denote the component group of J0(xy) at ∗ by Φ∗ , and the canonical map C → Φ∗ by φ∗ ,
then there are exact sequences
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Table 1

x y ∞
J0(xy) Z/(q2 + 1)(q + 1)Z Z/(q + 1)Z Z/(q2 + 1)(q + 1)Z

J xy Z/(q + 1)Z Z/(q2 + 1)(q + 1)Z Z/(q + 1)Z

0 → Z/(q + 1)Z → C φx−→ Φx → Z/(q + 1)Z → 0,

0 → Z/
(
q2 + 1

)
Z → C φy−→ Φy → 0,

φ∞ : C ∼−→ Φ∞ if q is even,

0 → Z/2Z → C φ∞−−→ Φ∞ → Z/2Z → 0 if q is odd.

• The kernel C0 ∼= Z/(q2 + 1)Z of φy maps injectively into Φx and Φ∞ .

Conjecture 7.3 then states that there is an isogeny J0(xy) → J xy whose kernel is C0. As an evidence
for the conjecture, we prove that the quotient abelian variety J0(xy)/C0 has component groups of
the same order as J xy . This is a consequence of a general result (Theorem 4.3), which describes how
the component groups of abelian varieties with toric reduction change under isogenies. Finally, we
prove Conjecture 7.3 for q = 2 (Theorem 7.12); the proof relies on the fact that J0(xy) in this case
is isogenous to a product of two elliptic curves. Two other interesting consequences of our results
are the following. First, we deduce the genus formula for X R

F proven in [30] by a different argument
(Corollary 6.3). Second, assuming q is even and Conjecture 7.3 is true, we are able to tell how the
optimal elliptic curve with conductor xy∞ changes in a given F -isogeny class when we change the
modular parametrization from X0(xy)F to Xxy

F (Proposition 7.10).

2. Preliminaries

2.1. Drinfeld modular curves

Let K be an A-field, i.e., K is a field equipped with a homomorphism γ : A → K . In particular,
K contains Fq as a subfield. The A-characteristic of K is the ideal ker(γ ) � A. Let K {τ } be the twisted
polynomial ring with commutation rule τ s = sqτ , s ∈ K . A rank-2 Drinfeld A-module over K is a ring
homomorphism φ : A → K {τ }, a 	→ φa such that degτ φa = −2 ord∞(a) and the constant term of φa

is γ (a). A homomorphism of two Drinfeld modules u : φ → ψ is u ∈ K {τ } such that φau = uψa for
all a in A; u is an isomorphism if u ∈ K × . Note that φ is uniquely determined by the image of T :

φT = γ (T ) + gτ + �τ 2,

where g ∈ K and � ∈ K × . The j-invariant of φ is j(φ) = gq+1/�. It is easy to check that if K is
algebraically closed, then φ ∼= ψ if and only if j(φ) = j(ψ).

Treating τ as the automorphism of K given by k 	→ kq , the field K acquires a new A-module
structure via φ. Let a � A be an ideal. Since A is a principal ideal domain, we can choose a generator
a ∈ A of a. The A-module φ[a] = kerφa(K̄ ) does not depend on the choice of a and is called the
a-torsion of φ. If a is coprime to the A-characteristic of K , then φ[a] ∼= (A/a)2. On the other hand, if
p = ker(γ ) 
= 0, then φ[p] ∼= (A/p) or 0; when φ[p] = 0, φ is called supersingular.

Lemma 2.1. Up to isomorphism, there is a unique supersingular rank-2 Drinfeld A-module over Fx: it is the
Drinfeld module with j-invariant equal to 0. Up to isomorphism, there is a unique supersingular rank-2 Drin-
feld A-module over Fy , and its j-invariant is non-zero.

Proof. This follows from [9, (5.9)] since deg(x) = 1 and deg(y) = 2. �
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Let End(φ) denote the centralizer of φ(A) in K̄ {τ }, i.e., the ring of all homomorphisms φ → φ

over K̄ . The automorphism group Aut(φ) is the group of units End(φ)× .

Lemma 2.2. If j(φ) 
= 0, then Aut(φ) ∼= F×
q . If j(φ) = 0, then Aut(φ) ∼= F×

q2 .

Proof. If u ∈ K̄ × commutes with φT = γ (T ) + gτ + �τ 2, then uq2−1 = 1 and uq−1 = 1 if g 
= 0. This
implies that u ∈ F×

q if j(φ) 
= 0, and u ∈ F×
q2 if j(φ) = 0. On the other hand, we clearly have the

inclusions F×
q ⊂ Aut(φ) and, if j(φ) = 0, F×

q2 ⊂ Aut(φ). This finishes the proof. �
Lemma 2.3. Let p � A be a prime ideal and Fp := A/p. Let φ be a rank-2 Drinfeld A-module over Fp . Let
n � A be an ideal coprime to p. Let Cn be an A-submodule of φ[n] isomorphic to A/n. Denote by Aut(φ, Cn)

the subgroup of automorphisms of φ which map Cn to itself. Then Aut(φ, Cn) ∼= F×
q or F×

q2 . The second case is

possible only if j(φ) = 0.

Proof. The action of F×
q obviously stabilizes Cn , hence, using Lemma 2.2, it is enough to show that

if Aut(φ, Cn) 
= F×
q , then Aut(φ, Cn) ∼= F×

q2 . Let u ∈ Aut(φ, Cn) be an element which is not in Fq . Then

Aut(φ) = Fq[u]× ∼= F×
q2 , where Fq[u] is considered as a finite subring of End(φ). It remains to show

that α + uβ stabilizes Cn for any α,β ∈ Fq not both equal to zero. But this is obvious since α and uβ

stabilize Cn and Cn
∼= A/n is cyclic. �

One can generalize the notion of Drinfeld modules over an A-field to the notion of Drinfeld mod-
ules over an arbitrary A-scheme S [8]. The functor which associates to an A-scheme S the set of
isomorphism classes of pairs (φ, Cn), where φ is a Drinfeld A-module of rank 2 over S and Cn

∼= A/n

is an A-submodule of φ[n], possesses a coarse moduli scheme Y0(n) that is affine, flat and of fi-
nite type over A of pure relative dimension 1. There is a canonical compactification X0(n) of Y0(n)

over Spec(A); see [8, §9] or [41]. The finitely many points X0(n)( F̄ ) − Y0(n)( F̄ ) are called the cusps
of X0(n)F .

Denote by C∞ the completion of an algebraic closure of F∞ . Let Ω = C∞ − F∞ be the Drinfeld up-
per half-plane; Ω has a natural structure of a smooth connected rigid-analytic space over F∞ . Denote
by Γ0(n) the Hecke congruence subgroup of level n:

Γ0(n) =
{(

a b
c d

)
∈ GL2(A)

∣∣ c ∈ n

}
.

The group Γ0(n) naturally acts on Ω via linear fractional transformations, and the action is discrete in
the sense of [8, p. 582]. Hence we may construct the quotient Γ0(n)\Ω as a 1-dimensional connected
smooth analytic space over F∞ .

The following theorem can be deduced from the results in [8]:

Theorem 2.4. X0(n) is a proper flat scheme of pure relative dimension 1 over Spec(A), which is smooth away
from the support of n. There is an isomorphism of rigid-analytic spaces Γ0(n) \ Ω ∼= Y0(n)an

F∞ .

There is a genus formula for X0(n)F which depends on the prime decomposition of n; see [16,
Thm. 2.17]. By this formula, the genera of X0(x)F , X0(y)F and X0(xy)F are 0, 0 and q, respectively.

2.2. Modular curves of D-elliptic sheaves

Let D be a quaternion algebra over F . Let R ⊂ |F | be the set of places which ramify in D , i.e.,
D ⊗ F v is a division algebra for v ∈ R . It is known that R is finite of even cardinality, and, up to
isomorphism, this set uniquely determines D; see [42]. Assume R 
= ∅ and ∞ /∈ R . In particular, D is
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a division algebra. Let C := P1
Fq

. Fix a locally free sheaf D of OC -algebras with stalk at the generic

point equal to D and such that Dv := D ⊗OC Ov is a maximal order in D v := D ⊗F F v .
Let S be an Fq-scheme. Denote by FrobS its Frobenius endomorphism, which is the identity on the

points and the qth power map on the functions. Denote by C × S the fibered product C ×Spec(Fq) S .
Let z : S → C be a morphism of Fq-schemes. A D-elliptic sheaf over S , with pole ∞ and zero z, is a
sequence E = (Ei, ji, ti)i∈Z , where each Ei is a locally free sheaf of OC×S -modules of rank 4 equipped
with a right action of D compatible with the OC -action, and where

ji : Ei → Ei+1,

ti : τ Ei := (IdC × FrobS)
∗Ei → Ei+1

are injective OC×S -linear homomorphisms compatible with the D-action. The maps ji and ti are
sheaf modifications at ∞ and z, respectively, which satisfy certain conditions, and it is assumed that
for each closed point w of S , the Euler–Poincaré characteristic χ(E0|C×w) is in the interval [0,2);
we refer to [26, §2] and [22, §1] for the precise definition. Moreover, to obtain moduli schemes with
good properties at the closed points w of S such that z(w) ∈ R one imposes an extra condition on E

to be “special” [22, p. 1305]. Note that, unlike the original definition in [26], ∞ is allowed to be in
the image of S; here we refer to [1, §4.4] for the details. Denote by E ��D(S) the set of isomorphism
classes of D-elliptic sheaves over S . The following theorem can be deduced from some of the main
results in [26] and [22]:

Theorem 2.5. The functor S 	→ E ��D(S) has a coarse moduli scheme X R , which is proper and flat of pure
relative dimension 1 over C and is smooth over C − R − ∞.

Remark 2.6. Theorems 2.4 and 2.5 imply that J0(R) and J R have good reduction at any place v ∈
|F | − R − ∞; cf. [2, Ch. 9].

3. Cuspidal divisor group

For a field K , we represent the elements of P1(K ) as column vectors
( u

v

)
where u, v ∈ K are not

both zero and
( u

v

)
is identified with

( αu
αv

)
if α ∈ K × . We assume that GL2(K ) acts on P1(K ) on the

left by

(
a b
c d

)(
u
v

)
=

(
au + bv
cu + dv

)
.

Let n � A be an ideal. The cusps of X0(n)F are in natural bijection with the orbits of Γ0(n) acting
from the left on P1(F ).

Lemma 3.1. If n is square-free, then there are 2s cusps on X0(n)F , where s is the number of prime divisors of n.
All the cusps are F -rational.

Proof. See Proposition 3.3 and Corollary 3.4 in [11]. �
For every m|n with (m,n/m) = 1 there is an Atkin–Lehner involution Wm on X0(n)F , cf. [36]. Its ac-

tion is given by multiplication from the left with any matrix
( ma b

n m

)
whose determinant generates m,

and where a,b,m,n ∈ A, (n) = n, (m) = m.
From now on assume n = xy. Recall that we denote by x and y the prime ideals of A corresponding

to the places x and y, respectively. With an abuse of notation, we will denote by x also the monic
irreducible polynomial in A generating the ideal x, and similarly for y. It should be clear from the
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context in which capacity x and y are being used. With this notation, X0(xy)F has 4 cusps, which
can be represented by

[∞] :=
(

1
0

)
, [0] :=

(
0
1

)
, [x] :=

(
1
x

)
, [y] :=

(
1
y

)
,

cf. [36, p. 333] and [15, p. 196].
There are 3 non-trivial Atkin–Lehner involutions W x, W y , W xy which generate a group isomorphic

to (Z/2Z)2: these involutions commute with each other and satisfy

W xW y = W xy, W 2
x = W 2

y = W 2
xy = 1.

By [36, Prop. 9], none of these involutions fixes a cusp. In fact, a simple direct calculation shows that

W xy
([∞]) = [0], W xy

([x]) = [y];
W x

([∞]) = [y], W x
([0]) = [x];

W y
([∞]) = [x], W y

([0]) = [y]. (3.1)

Let �(z), z ∈ Ω , denote the Drinfeld discriminant function; see [11] or [15] for the definition. This
is a holomorphic and nowhere vanishing function on Ω . In fact, �(z) is a type-0 and weight-(q2 − 1)

cusp form for GL2(A). Its order of vanishing at the cusps of X0(n)F can be calculated using [15].
When n = xy, [15, (3.10)] implies

ord[∞] � = 1, ord[0] � = qxqy, ord[x] � = qy, ord[y] � = qx. (3.2)

The functions

�x(z) := �(xz), �y(z) := �(yz), �xy(z) := �(xyz)

are type-0 and weight-(q2 − 1) cusp forms for Γ0(xy). Hence the fractions �/�x , �/�y , �/�xy

define rational functions on X0(xy)C∞ . We compute the divisors of these functions.

The matrix W xy = ( 0 1
xy 0

)
normalizes Γ0(xy) and interchanges �(z) and �xy(z). Thus by (3.1)

and (3.2)

ord[∞] �xy = qxqy, ord[0] �xy = 1, ord[x] �xy = qx, ord[y] �xy = qy .

A similar argument involving the actions of W x and W y gives

ord[∞] �x = qx, ord[0] �x = qy, ord[x] �x = qxqy, ord[y] �x = 1;
ord[∞] �y = qy, ord[0] �y = qx, ord[x] �y = 1, ord[y] �y = qxqy .

From these calculations we obtain

div(�/�xy) = (1 − qxqy)[∞] + (qxqy − 1)[0] + (qy − qx)[x] + (qx − qy)[y]
= (

q3 − 1
)([0] − [∞]) + (

q2 − q
)([x] − [y]),

and similarly,
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div(�/�x) = (q − 1)
([y] − [∞]) + (

q3 − q2)([0] − [x]),
div(�/�y) = (

q2 − 1
)([x] − [∞]) + (

q3 − q
)([0] − [y]).

Next, by [15, p. 200], the largest positive integer k such that �/�xy has a kth root in the field of
modular functions for Γ0(xy) is (q − 1)2/(q − 1) = (q − 1). We can apply the same argument to �/�x

as a modular function for Γ0(x) to deduce that �/�x has (q − 1)2/(q − 1)th root. Similarly, �/�y

has (q − 1)(q2 − 1)/(q − 1)th root. Therefore, the following relations hold in Pic0(X0(xy)F ):

(
q2 + q + 1

)([0] − [∞]) + q
([x] − [y]) = 0,([y] − [∞]) + q2([0] − [x]) = 0,([x] − [∞]) + q
([0] − [y]) = 0. (3.3)

There is one more relation between the cuspidal divisors which comes from the fact that X0(xy)F

is hyperelliptic. By a theorem of Schweizer [36, Thm. 20], X0(xy)F is hyperelliptic, and W xy is the
hyperelliptic involution. Consider the degree-2 covering

π : X0(xy)F → X0(xy)F /W xy ∼= P1
F .

Denote P := π([∞]), Q := π([x]). Since W xy([∞]) 
= [x], P 
= Q . There is a function f on P1
F with

divisor P − Q . Now

div
(
π∗ f

) = π∗(div( f )
) = π∗(P − Q )

= ([∞] + W xy
([∞])) − ([x] + W xy

([x])) = [∞] + [0] − [x] − [y].

This gives the relation in Pic0(X0(xy)F )

[∞] + [0] − [x] − [y] = 0. (3.4)

Fixing [∞] ∈ X0(xy)(F ) as an F -rational point, we have the Abel–Jacobi map X0(xy)F → J0(xy)

which sends a point P ∈ X0(xy)F to the linear equivalence class of the degree-0 divisor P − [∞].

Definition 3.2. Let c0, cx, c y ∈ J0(xy)(F ) be the classes of [0] − [∞], [x] − [∞], and [y] − [∞], respec-
tively. These give F -rational points on the Jacobian since the cusps are F -rational. The cuspidal divisor
group is the subgroup C ⊂ J0(xy) generated by c0, cx , and c y .

From (3.3) and (3.4) we obtain the following relations:

(
q2 + q + 1

)
c0 + qcx − qc y = 0,

q2c0 − q2cx + c y = 0,

qc0 + cx − qc y = 0,

c0 − cx − c y = 0.

Lemma 3.3. The cuspidal divisor group C is generated by cx and c y , which have orders dividing q + 1 and
q2 + 1, respectively.
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Proof. Substituting c0 = cx + c y into the first three equations above, we see that C is generated by cx
and c y subject to relations:

(q + 1)cx = 0,(
q2 + 1

)
c y = 0. �

The following simple lemma, which will be used later on, shows that the factors (q2 + 1) and
(q + 1) appearing in Lemma 3.3 are almost coprime.

Lemma 3.4. Let n be a positive integer. Then

gcd
(
n2 + 1,n + 1

) =
{

1, if n is even;
2, if n is odd.

Proof. Let d = gcd(n2 + 1,n + 1). Then d divides (n2 + 1) − (n + 1) = n(n − 1). Since n is coprime
to n + 1, d must divide n − 1, hence also must divide (n + 1) − (n − 1) = 2. For n even, d is obviously
odd, so d = 1. For n odd, n + 1 and n2 + 1 are both even, so d = 2. �
4. Néron models and component groups

4.1. Terminology and notation

The notation in this section will be somewhat different from the rest of the paper. Let R be a
complete discrete valuation ring, with fraction field K and algebraically closed residue field k.

Let AK be an abelian variety over K . Denote by A its Néron model over R and denote by A0
k the

connected component of the identity of the special fiber Ak of A. There is an exact sequence

0 → A0
k → Ak → ΦA → 0,

where ΦA is a finite (abelian) group called the component group of AK . We say that AK has semi-
abelian reduction if A0

k is an extension of an abelian variety A′
k by an affine algebraic torus T A over k

(cf. [2, p. 181]):

0 → T A → A0
k → A′

k → 0.

We say that AK has toric reduction if A0
k = T A . The character group

M A := Hom(T A,Gm,k)

is a free abelian group contravariantly associated to A.
Let XK be a smooth, proper, geometrically connected curve over K . We say that X is a semi-stable

model of XK over R if (cf. [2, p. 245]):

(i) X is a proper flat R-scheme.
(ii) The generic fiber of X is XK .

(iii) The special fiber Xk is reduced, connected, and has only ordinary double points as singularities.

We will denote the set of irreducible components of Xk by C(X) and the set of singular points of Xk
by S(X). Let G(X) be the dual graph of X : The set of vertices of G(X) is the set C(X), the set of edges
is the set S(X), the end points of an edge x are the two components containing x. Locally at x ∈ S(X)

for the étale topology, X is given by the equation uv = πm(x) , where π is a uniformizer of R . The
integer m(x) � 1 is well defined, and will be called the thickness of x. One obtains from G(X) a graph
with length by assigning to each edge x ∈ S(X) the length m(x).
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Fig. 1. X̃k for n = 5 and m = 4.

4.2. Raynaud’s theorem

Let XK be a curve over K with semi-stable model X over R . Let J K be the Jacobian of XK , let J
be the Néron model of J K over R , and Φ := Jk/ J 0

k . Let X̃ → X be the minimal resolution of X . Let
B( X̃) be the free abelian group generated by the elements of C( X̃). Let B0( X̃) be the kernel of the
homomorphism

B( X̃) → Z,
∑

Ci∈C( X̃)

ni Ci 	→
∑

ni .

The elements of C( X̃) are Cartier divisors on X̃ , hence for any two of them, say C and C ′ , we have an
intersection number (C · C ′). The image of the homomorphism

α : B( X̃) → B( X̃), C 	→
∑

C ′∈C( X̃)

(
C · C ′)C ′

lies in B0( X̃). A theorem of Raynaud [2, Thm. 9.6/1] says that Φ is canonically isomorphic to
B0( X̃)/α(B( X̃)).

The homomorphism φ : J K (K ) → Φ obtained from the composition

J K (K ) = J (R) → Jk(k) → Φ

will be called the canonical specialization map. Let D = ∑
Q nQ Q be a degree-0 divisor on XK whose

support is in the set of K -rational points. Let P ∈ J K (K ) be the linear equivalence class of D . The
image φ(P ) can be explicitly described as follows. Since X and X̃ are proper, X(K ) = X(R) = X̃(R).
Since X̃ is regular, each point Q ∈ X(K ) specializes to a unique element c(Q ) of C( X̃). With this
notation, φ(P ) is the image of

∑
Q nQ c(Q ) ∈ B0( X̃) in Φ .

We apply Raynaud’s theorem to compute Φ explicitly for a special type of X . Assume that Xk con-
sists of two components Z and Z ′ crossing transversally at n � 2 points x1, . . . , xn . Denote mi := m(xi).
Let r : X̃ → X denote the resolution morphism; it is a composition of blow-ups at the singular points.
It is well known that r−1(xi) is a chain of mi − 1 projective lines. More precisely, the special fiber X̃k
consists of Z and Z ′ but now, instead of intersecting at xi , these components are joined by a chain
E1, . . . , Emi−1 of projective lines, where Ei intersect Ei+1, E1 intersects Z at xi and Emi−1 intersects Z ′
at xi . All the singularities are ordinary double points.

Assume m1 = mn = m � 1 and m2 = · · · = mn−1 = 1 if n � 3.
If m = 1, then X = X̃ , so B0( X̃) is freely generated by z := Z − Z ′ . In this case Raynaud’s theorem

implies that Φ is isomorphic to B0( X̃) modulo the relation nz = 0.
If m � 2, let E1, . . . , Em−1 be the chain of projective lines at x1 and G1, . . . , Gm−1 be the chain of

projective lines at xn , with the convention that Z in X̃k intersects E1 and G1, cf. Fig. 1. The elements
z := Z − Z ′ , ei := Ei − Z ′ , gi := Gi − Z ′ , 1 � i � m − 1 form a Z-basis of B0( X̃). By Raynaud’s theorem,
Φ is isomorphic to B0( X̃) modulo the following relations:

if m = 2,

−nz + e1 + g1 = 0, z − 2e1 = 0, z − 2g1 = 0;
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if m = 3,

−nz + e1 + g1 = 0, z − 2e1 + e2 = 0, z − 2g1 + g2 = 0,

e1 − 2e2 = 0, g1 − 2g2 = 0;

if m � 4

−nz + e1 + g1 = 0, z − 2e1 + e2 = 0, z − 2g1 + g2 = 0,

ei − 2ei+1 + ei+2 = 0, gi − 2gi+1 + gi+2 = 0, 1 � i � m − 3,

em−2 − 2em−1 = 0, gm−2 − 2gm−1 = 0.

Theorem 4.1. Denote the images of z, ei , gi in Φ by the same letters, and let 〈z〉 be the cyclic subgroup
generated by z in Φ . Then for any n � 2 and m � 1:

(i) Φ ∼= Z/m(m(n − 2) + 2)Z.
(ii) If m � 2, then Φ is generated by em−1 . Explicitly, for 1 � i � m − 1,

ei = (m − i)em−1,

gi = (
i(nm + 1) − (2i − 1)m

)
em−1,

z = mem−1.

(iii) Φ/〈z〉 ∼= Z/mZ.

Proof. When m = 1 the claim is obvious, so assume m � 2. By [2, Prop. 9.6/10], Φ has order

n∑
i=1

∏
j 
=i

m j = m2(n − 2) + 2m.

From the relations

em−2 − 2em−1 = 0,

ei − 2ei+1 + ei+2 = 0, 1 � i � m − 3,

z − 2e1 + e2 = 0

it follows inductively that ei = (m − i)em−1 for 1 � i � m − 1, and z = mem−1. Next, from the relations

−nz + e1 + g1 = 0 and z − 2g1 + g2 = 0

we get g1 = (nm − m + 1)em−1 and g2 = (2nm − 3m + 2)em−1. Finally, if m � 4, the relations gi −
2gi+1 + gi+2 = 0, 1 � i � m − 3, show inductively that

gi = (
i(nm + 1) − (2i − 1)m

)
em−1, 1 � i � m − 1.

This proves (i) and (ii), and (iii) is an immediate consequence of (ii). �
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Remark 4.2. Note that by the formula in Theorem 4.1

gm−1 = (
m2(n − 2) + 2m − (

m(n − 2) + 1
))

em−1 = −(
m(n − 2) + 1

)
em−1.

It is easy to see that m(n − 2) + 1 is coprime to the order m(m(n − 2) + 2) of Φ . Hence gm−1 is also
a generator. This is of course not surprising since the relations defining Φ remain the same if we
interchange ei ’s and gi ’s.

4.3. Grothendieck’s theorem

Grothendieck gave another description of Φ in [20]. This description will be useful for us when
studying maps between the component groups induced by isogenies of abelian varieties.

Let AK be an abelian variety over K with semi-abelian reduction. Denote by ÂK the dual abelian
variety of AK . As discussed in [20], there is a non-degenerate pairing u A : M A × M Â → Z (called
monodromy pairing) having nice functorial properties, which induces an exact sequence

0 → M Â
u A−→ Hom(M A,Z) → ΦA → 0. (4.1)

Let H ⊂ AK (K ) be a finite subgroup of order coprime to the characteristic of k. Since A(R) =
AK (K ), H extends to a constant étale subgroup-scheme H of A. The restriction to the special fiber
gives a natural injection Hk

∼= H ↪→ Ak(k), cf. [2, Prop. 7.3/3]. Composing this injection with Ak → ΦA ,
we get the canonical homomorphism φ : H → ΦA . Denote H0 := ker(φ) and H1 := im(φ), so that
there is a tautological exact sequence

0 → H0 → H
φ−→ H1 → 0.

Let B K be the abelian variety obtained as the quotient of AK by H . Let ϕK : AK → B K denote the
isogeny whose kernel is H . By the Néron mapping property, ϕK extends to a morphism ϕ : A → B
of the Néron models. On the special fibers we get a homomorphism ϕk : Ak → Bk , which induces an
isogeny ϕ0

k : A0
k → B0

k and a homomorphism ϕΦ : ΦA → ΦB . The isogeny ϕ0
k restricts to an isogeny

ϕt : T A → T B , which corresponds to an injective homomorphisms of character groups ϕ∗ : MB → M A

with finite cokernel.

Theorem 4.3. Assume AK has toric reduction. There is an exact sequence

0 → H1 → ΦA
ϕΦ−−→ ΦB → H0 → 0.

Proof. The kernel of ϕk is Hk
∼= H . It is clear that ker(ϕΦ) = H1. Let ϕ̂K : B̂ K → ÂK be the isogeny

dual to ϕK . Using (4.1), one obtains a commutative diagram with exact rows (cf. [34, p. 8]):

0 M Â

ϕ̂∗

Hom(M A,Z)

Hom(ϕ∗,Z)

ΦA

ϕΦ

0

0 MB̂ Hom(MB ,Z) ΦB 0.

From this diagram we get the exact sequence

0 → ker(ϕΦ) → M ˆ /ϕ̂∗(M ˆ ) → Ext1
Z

(
M A/ϕ∗(MB),Z

) → coker(ϕΦ) → 0.
B A
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Using the exact sequence 0 → Z → Q → Q/Z → 0, it is easy to show that

Ext1
Z

(
M A/ϕ∗(MB),Z

) ∼= Hom
(
M A/ϕ∗(MB),Q/Z

) =: (M A/ϕ∗(MB)
)∨

,

so there is an exact sequence of abelian groups

0 → ker(ϕΦ) → MB̂/ϕ̂∗(M Â) → (
M A/ϕ∗(MB)

)∨ → coker(ϕΦ) → 0. (4.2)

So far we have not used the assumption that AK has toric reduction. Under this assumption,
B K also has toric reduction, and H0 is the kernel of ϕt : T A → T B . Hence (M A/ϕ∗(MB))∨ ∼= H0. Next,
[5, Thm. 8.6] implies that MB̂/ϕ̂∗(M Â) ∼= H1. Thus, we can rewrite (4.2) as

0 → ker(ϕΦ) → H1 → H0 → coker(ϕΦ) → 0.

Since ker(ϕΦ) = H1, this implies that coker(ϕΦ) ∼= H0. �
5. Component groups of J0(xy)

5.1. Component groups at x and y

We return to the notation in Section 3. As we mentioned in Section 2.1, X0(xy) is smooth
over A[1/xy].

Proposition 5.1.

(i) X0(xy)Fx has a semi-stable model over Ox such that X0(xy)Fx consists of two irreducible components
both isomorphic to X0(y)Fx

∼= P1
Fq

intersecting transversally in q + 1 points. Two of these singular points

have thickness q + 1, and the other q − 1 points have thickness 1.
(ii) X0(xy)F y has a semi-stable model over O y such that X0(xy)Fy consists of two irreducible components

both isomorphic to X0(x)Fy
∼= P1

Fq2
intersecting transversally in q + 1 points. All these singular points

have thickness 1.

Proof. The fact that X0(xy)F has a model over Ox and O y with special fibers of the stated form
follows from the same argument as in the case of X0(v)F over Ov (v ∈ |F |−∞) discussed in [11, §5].
We only clarify why the number of singular points and their thickness are as stated.

(i) The special fiber X0(xy)Fx consists of two copies of X0(y)Fx . The set of points Y0(y)(Fx) is
in bijection with the isomorphism classes of pairs (φ, C y), where φ is a rank-2 Drinfeld A-module
over Fx and C y ∼= A/y is a cyclic subgroup of φ. The two copies of X0(y)Fx intersect exactly at the
points corresponding to (φ, C y) with φ supersingular; more precisely, (φ, C y) on the first copy is

identified with (φ(x), C (x)
y ) on the second copy where φ(x) is the image of φ under the Frobenius

isogeny and C (x)
y is subgroup of φ(x) which is the image of C y , cf. [11].

Now, by Lemma 2.1, up to an isomorphism over Fx , there is a unique supersingular Drinfeld
module φ in characteristic x and j(φ) = 0. It is easy to see that φ has qy + 1 = q2 + 1 cyclic sub-
groups isomorphic to A/y, so the set S = {(φ, C y) | C y ⊂ φ[y]} has cardinality q2 + 1. By Lemma 2.2,
Aut(φ) ∼= F×

q2 . This group naturally acts S , and the orbits are in bijection with the singular points

of X0(xy)Fx . Since the genus of X0(xy)F is q, the arithmetic genus of X0(xy)Fx is also q due to the
flatness of X0(xy) → Spec(A); see [21, Cor. III.9.10]. Using the fact that the genus of X0(y)F is zero,
a simple calculation shows that the number of singular points of X0(xy)Fx is q + 1, cf. [21, p. 298].
Next, by Lemma 2.3, the stabilizer in Aut(φ) of (φ, C y) is either F×

q or F×
2 . Let s be the number of
q
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pairs (φ, C y) with stabilizer F×
q2 . Let t be the number of orbits of pairs with stabilizers F×

q ; each such

orbit consists of #(F×
q2/F×

q ) = q + 1 pairs (φ, C y). Hence we have

(q + 1)t + s = q2 + 1 and t + s = q + 1.

This implies that t = q − 1 and s = 2. Finally, as is explained in [11], the thickness of the singular
point corresponding to an isomorphism class of (φ, C y) is equal to #(Aut(φ, C y)/F×

q ).

(ii) Similar to the previous case, X0(xy)Fy consists of two copies of X0(x)Fy
∼= P1

Fq2
. The two copies

of X0(x)Fy intersect exactly at the points corresponding to the isomorphism classes of pairs (φ, Cx)

with φ supersingular. Again by Lemma 2.1, up to an isomorphism over Fy , there is a unique super-
singular φ and j(φ) 
= 0. Hence, by Lemma 2.3, Aut(φ, Cx) ∼= F×

q for any Cx . There are qx + 1 = q + 1
cyclic subgroups in φ isomorphic to A/x. The rest of the argument is the same as in the previous
case. �
Theorem 5.2. Let Φv denote the group of connected components of J0(xy) at v ∈ |F |. Let Z and Z ′ be the
irreducible components in Proposition 5.1 with the convention that the reduction of [∞] lies on Z ′ . Let z =
Z − Z ′ .

(i) Φx ∼= Z/(q2 + 1)(q + 1)Z.
(ii) Φy ∼= Z/(q + 1)Z.

(iii) Under the canonical specialization map φx : C → Φx we have

φx(cx) = 0 and φx(c y) = z.

In particular, q2 + 1 divides the order of c y .
(iv) Under the canonical specialization map φy : C → Φy we have

φy(cx) = z and φy(c y) = 0.

In particular, q + 1 divides the order of cx.

Proof. (i) and (ii) follow from Theorem 4.1 and Proposition 5.1.
(iii) The cusps reduce to distinct points in the smooth locus of X0(xy)Fx , cf. [41]. Since by Theo-

rem 4.1 we know that z has order q2 + 1 in the component group Φx , it is enough to show that the
reductions of [y] and [∞] lie on distinct components Z and Z ′ in X0(xy)Fx , but the reductions of [x]
and [∞] lie on the same component. The involution W x interchanges the two components X0(y)Fx ,
cf. [11, (5.3)]. Since W x([∞]) = [y], the reductions of [∞] and [y] lie on distinct components. On the
other hand, W y acts on X0(xy)Fy by acting on each component X0(y)Fx separately, without inter-
changing them. Since W y([∞]) = [x], the reductions of [∞] and [x] lie on the same component.

(iv) The argument is similar to (iii). Here W y interchanges the two components X0(x)Fy of
X0(xy)Fy and W x maps the components to themselves. Hence [∞] and [y] lie on one component
and [0] and [x] on the other component. �
Theorem 5.3. The cuspidal divisor group

C ∼= Z/(q + 1)Z ⊕ Z/
(
q2 + 1

)
Z

is the direct sum of the cyclic subgroups generated by cx and c y , which have orders (q + 1) and (q2 + 1),
respectively. (Note that C is cyclic if q is even, but it is not cyclic if q is odd.)
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Proof. By Lemma 3.3 and Theorem 5.2, C is generated by cx and c y , which have orders (q + 1) and
(q2 + 1), respectively. If the subgroup of C generated by cx non-trivially intersects with the subgroup

generated by c y , then, by Lemma 3.4, q must be odd and q+1
2 cx = q2+1

2 c y . Applying φy to both sides

of this equality, we get q+1
2 z = 0, which is a contradiction since z generates Φy ∼= Z/(q + 1)Z. �

Remark 5.4. The divisor class c0 has order (q + 1)(q2 + 1) (resp. (q + 1)(q2 + 1)/2) if q is even (resp.
odd).

5.2. Component group at ∞

To obtain a model of X0(xy)F∞ over O∞ , instead of relying on the moduli interpretation of X0(xy),
one has to use the existence of analytic uniformization for this curve; see [28, §4.2]. As far as the
structure of the special fiber X0(xy)F∞ is concerned, it is more natural to compute the dual graph
of X0(xy)F∞ directly using the quotient Γ0(xy) \ T of the Bruhat–Tits tree T of PGL2(F∞). For the
definition of T , and more generally for the basic theory of trees and groups acting on trees, we refer
to [40].

The quotient graph Γ0(xy) \ T was first computed by Gekeler [10, (5.2)]. For our purposes we will
need to know the relative position of the cusps on Γ0(xy) \ T and also the stabilizers of the edges.
To obtain this more detailed information, and for the general sake of completeness, we recompute
Γ0(xy) \ T in this subsection using the method in [16].

Denote

G0 = GL2(Fq)

and

Gi =
{(

a b
0 d

)
∈ GL2(A)

∣∣ deg(b) � i

}
, i � 1.

As is explained in [16], Γ0(xy) \ T can be constructed in “layers”, where the vertices of the ith layer
(in [16] called type-i vertices) are the orbits

Xi := Gi \ P1(A/xy)

and the edges connecting type-i vertices to type-(i + 1) vertices, called type-i edges, are the orbits

Yi := (Gi ∩ Gi+1) \ P1(A/xy).

There are obvious maps Yi → Xi , Yi → Xi+1 and Xi → Xi+1 which are used to define the adjacencies
of vertices in Xi and Xi+1; see [16, 1.7]. The graph Γ0(xy) \ T is isomorphic to the graph with set of
vertices

⊔
i�0 Xi and set of edges

⊔
i�0 Yi with the adjacencies defined by these maps.

Note that P1(A/xy) = P1(Fx) × P1(Fy). We will represent the elements of P1(A/xy) as couples
[P ; Q ] where P ∈ P1(Fx) and Q ∈ P1(Fy). With this notation, Gi acts diagonally on [P ; Q ] via its
images in GL2(Fx) and GL2(Fy), respectively.

The group G0 acting on P1(A/xy) has 3 orbits, whose representatives are[(
1
0

)
;
(

1
0

)]
,

[(
1
0

)
;
(

0
1

)]
,

[(
1
0

)
;
(

x
1

)]
,

where in the last element we write x for the image in Fy of the monic generator of x under the
canonical homomorphism A → A/y. The orbit of [( 1

0

); ( 1
0

)] has length q + 1, the orbit of [( 1
0

); ( 0
1

)]
has length q(q + 1), and the orbit of [( 1 ); ( x )] has length q(q2 − 1), cf. [16, Prop. 2.10]. Next, note
0 1
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[(
1
0

)
;
(

1
0

)] [(
1
0

)
;
(

1
0

)] [∞]

[(
1
0

)
;
(

1
0

)] [(
0
1

)
;
(

0
1

)] [(
0
1

)
;
(

0
1

)] [0]

[(
1
0

)
;
(

x
1

)] [(
1
1

)
;
(

0
1

)]

[(
1
0

)
;
(

0
1

)] [(
1
0

)
;
(

0
1

)] [(
1
0

)
;
(

0
1

)] [x]

[(
0
1

)
;
(

1
0

)] [(
0
1

)
;
(

1
0

)] [y]

X0 X1 X2

Fig. 2. Γ0(xy) \ T .

that G0 ∩ G1 is the subgroup B of the upper-triangular matrices in GL2(Fq). The G0-orbit of [( 1
0

); ( 1
0

)]
splits into two B-orbits with representatives:

[(
1
0

)
;
(

1
0

)]
and

[(
0
1

)
;
(

0
1

)]
. (5.1)

The lengths of these B-orbits are 1 and q, respectively. The G0-orbit of [( 1
0

); ( 0
1

)] splits into three
B-orbits with representatives:

[(
1
0

)
;
(

0
1

)]
,

[(
0
1

)
;
(

1
0

)]
,

[(
1
1

)
;
(

0
1

)]
. (5.2)

The lengths of these B-orbits are q, q, q(q − 1), respectively. Finally, the G0-orbit of [( 1
0

); ( x
1

)] splits
into (q + 1) B-orbits each of length q(q − 1). The previous statements can be deduced from Proposi-
tion 2.11 in [16]. It turns out that the elements of P1(Fx) × P1(Fy) listed in (5.1) and (5.2) combined
form a complete set of G1-orbit representatives. For i � 1, the set of Gi -orbit representatives obviously
contains a complete set of Gi+1-orbit representatives. A small calculation shows that

[(
1
0

)
;
(

1
0

)]
,

[(
0
1

)
;
(

0
1

)]
,

[(
1
0

)
;
(

0
1

)]
,

[(
0
1

)
;
(

1
0

)]
(5.3)

is a complete set of Gi -orbit representatives for any i � 2. Moreover, the elements [( 1
1

); ( 0
1

)] and

[( 0
1

); ( 0
1

)] are in the same G2-orbit. We recognize the elements in (5.3) as the cusps [∞], [0], [x], [y],
respectively. Overall, the structure of Γ0(xy) \ T is described by the diagram in Fig. 2. In the diagram
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the broken line −−− indicates that there are (q−1) distinct edges joining the corresponding vertices,
and an arrow → indicates an infinite half-line.

Now we compute the stabilizers of the edges. Let e be an edge in Γ0(xy) \ T of type i. Let

O (e) = (Gi ∩ Gi+1)[P ; Q ]

be its corresponding orbit in (Gi ∩ Gi+1) \ P1(A/xy). Then for a preimage ẽ of e in T we have

#StabΓ0(xy)(ẽ) = #StabGi∩Gi+1

([P ; Q ]) = #(Gi ∩ Gi+1)

#O (e)
.

Using this observation, we conclude from our previous discussion that the edges connecting
[( 1

0

); ( x
1

)] ∈ X0 to any vertex in X1 have preimages whose stabilizers have order #B/q(q − 1) = q − 1.

The preimages of the edges connecting [( 1
0

); ( 0
1

)] ∈ X0 to [( 1
1

); ( 0
1

)] ∈ X1 and [( 1
0

); ( 0
1

)] ∈ X1 have

stabilizers of orders q − 1 and (q − 1)2, respectively. (Note that if a stabilizer has order (q − 1) then
it is equal to the center Z(Γ0(xy)) ∼= F×

q of Γ0(xy), as the center is a subgroup of any stabilizer.)
The valency of a vertex v in a graph without loops is the number of distinct edges having v as an
endpoint. (A loop is an edge whose endpoints are the same.) Consider the vertex v = [( 1

1

); ( 0
1

)] ∈ X1.
Its valency is (q + 1). Let ṽ be a preimage of v in T . Since the valency of ṽ is also q + 1, StabΓ0(xy)(ṽ)

acts trivially on all edges having ṽ as an endpoint. Hence the stabilizer of any such edge is equal to
StabΓ0(xy)(ṽ). We already determined that the stabilizer of a preimage of an edge connecting v to a
type-0 vertex is F×

q . This implies that the stabilizer in Γ0(xy) of a preimage of the edge connecting v

to [( 0
1

); ( 0
1

)] ∈ X2 is also F×
q . Finally, consider the vertex w = [( 0

1

); ( 0
1

)] ∈ X1. Its valency is 3. Let
S , S1, S2, S3 be the orders of stabilizers in Γ0(xy) of a preimage w̃ of w in T , and the edges con-
necting w to [( 1

0

); ( 1
0

)] ∈ X0, [( 1
0

); ( x
1

)] ∈ X0, [( 0
1

); ( 0
1

)] ∈ X2, respectively. From our discussion of the

lengths of orbits of type-0 edges, we have S1 = (q − 1)2 and S2 = (q − 1). Obviously, Si ’s divide S .
On the other hand, counting the lengths of orbits of StabΓ0(xy)(w̃) acting on the set of (non-oriented)
edges in T having w̃ as an endpoint, we get

q + 1 = S

S1
+ S

S2
+ S

S3
= S

(q − 1)2
+ S

(q − 1)
+ S

S3
.

This implies S = S3 = (q − 1)2. To summarize, in Fig. 2 a wavy line ∼ indicates that a preimage of the
corresponding edge in T has a stabilizer in Γ0(xy) of order (q − 1)2. The edges connecting [( 1

0

); ( x
1

)]
or [( 1

1

); ( 0
1

)] to any other vertex have preimages in T whose stabilizers in Γ0(xy) are isomorphic

to F×
q .

Now from [28, §4.2] one deduces the following. The quotient graph Γ0(xy) \ T , without the
infinite half-lines, is the dual graph of the special fiber of a semi-stable model of X0(xy)F∞ over
Spec(O∞). The special fiber X0(xy)F∞ has 6 irreducible components Z , Z ′ , E , E ′ , G , G ′ , all isomor-
phic to P1

Fq
, such that Z and Z ′ intersect in q − 1 points, E intersects Z and E ′ , E ′ intersects Z ′

and E , G intersects Z and G ′ , G ′ intersects Z ′ and G . Moreover, all intersection points are ordinary
double singularities. By [28, Prop. 4.3], the thickness of the singular point corresponding to an edge
e ∈ Γ0(xy) \ T is

#
(
StabΓ0(xy)(ẽ)/F×

q

)
,

hence all intersection points on Z or Z ′ have thickness 1, but the intersection points of E and E ′ , and
of G and G ′ have thickness (q − 1), cf. Fig. 3. From the structure of Γ0(xy) \ T , one also concludes
that the reductions of the cusps are smooth points in X0(xy)F∞ . Moreover, [∞], [0], [x], [y] reduce
to points on E , E ′ , G , G ′ respectively.
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Fig. 3. X0(xy)F∞ for q = 3.

Blowing up X0(xy)O∞ at the intersection points of E , E ′ , and G , G ′ , (q − 2)-times each, we obtain
the minimal regular model of X0(xy)F over Spec(O∞). This is a curve of the type discussed in Sec-
tion 4.2 with m = n = (q + 1), and we enumerate its irreducible components so that E1 = E , Eq = E ′ ,
G1 = G , Gq = G ′ .

Theorem 5.5. Let φ∞ : C → Φ∞ denote the canonical specialization map.

(i) Φ∞ ∼= Z/(q2 + 1)(q + 1)Z.
(ii) φ∞(cx) = (q2 + 1)eq and φ∞(c y) = −q(q + 1)eq = (q3 + 1)eq.

(iii) If q is even, then φ∞ : C ∼−→ Φ∞ is an isomorphism.
(iv) If q is odd, then there is an exact sequence

0 → Z/2Z → C φ∞−−→ Φ∞ → Z/2Z → 0.

Proof. Part (i) is an immediate consequence of the preceding discussion and Theorem 4.1. We have
determined the reductions of the cusps at ∞, so using Theorem 4.1, we get

φ∞(cx) = g1 − e1 = (
q2 + q + 1

)
eq − qeq = (

q2 + 1
)
eq

and

φ∞(c y) = gq − e1 = −q2eq − qeq = −q(q + 1)eq,

which proves (ii). Since gcd(q2 + 1,q(q + 1)) = 1 (resp. 2) if q is even (resp. odd), cf. Lemma 3.4, the
subgroup of Φ∞ generated by φ∞(cx) and φ∞(c y) is 〈eq〉 (resp. 〈2eq〉) if q is even (resp. odd). On
the other hand, we know that eq generates Φ∞ . Therefore, if q is even, then φ∞ is surjective, and if
q is odd, then the cokernel of φ∞ is isomorphic to Z/2Z. The claims (iii) and (iv) now follow from
Theorem 5.3. �
Remark 5.6. We note that (iii) and a slightly weaker version of (iv) in Theorem 5.5 can be deduced
from Theorem 5.3 and a result of Gekeler [14]. In fact, in [14, p. 366] it is proven that for an arbi-
trary n the kernel of the canonical homomorphism from the cuspidal divisor group of X0(n)F to Φ∞
is a quotient of (Z/(q−1)Z)c−1, where c is the number of cusps of X0(n)F . In our case, this result says
that ker(φ∞) is a quotient of (Z/(q−1)Z)3. Now suppose q is even. Then C ∼= Z/(q2 +1)(q+1)Z. Since
for even q, gcd(q−1, (q2 +1)(q+1)) = 1, φ∞ must be injective. But by (i), #Φ∞ = (q2 +1)(q+1) = #C ,
so φ∞ is also surjective. When q = 2, the fact that #Φ∞ = 15 and φ∞ is an isomorphism is already
contained in [14, (5.3.1)].

Now suppose q is odd. Then C ∼= Z/(q2 + 1)Z ⊕ Z/(q + 1)Z. Since

gcd(q − 1,q + 1) = gcd
(
q − 1,q2 + 1

) = 2,

ker(φ∞) ⊂ (Z/2Z)2. Since Φ∞ is cyclic but C is not, ker(φ∞) is not trivial, hence it is either Z/2Z

or (Z/2Z)2. (Theorem 5.5 implies that the second possibility does not occur.)

Notation 5.7. Let C0 be the subgroup of C generated by c y .
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Corollary 5.8. The cyclic group C0 has order q2 + 1. Under the canonical specializations C0 maps injectively
into Φx and Φ∞ , and C0 is the kernel of φy .

Proof. The claims easily follow from Theorems 5.2, 5.3 and 5.5. �
6. Component groups of J xy

6.1. A class number formula

Let H be a quaternion algebra over F . Let Ram ⊂ |F | be the set of places where H ramifies. Assume
∞ ∈ Ram. Denote R = Ram − ∞. Note that R 
= ∅ since #Ram is even.

Let Θ be a hereditary A-order in H . Let I1, . . . , Ih be the isomorphism classes of left Θ-ideals. It
is known that h(Θ) := h, called the class number of Θ , is finite. For i = 1, . . . ,h we denote by Θi the
right order of the respective Ii . (For the definitions see [42].) Denote

M(Θ) =
h∑

i=1

(
Θ×

i : F×
q

)−1
.

It is not hard to show that each Θ×
i is isomorphic to either F×

q or F×
q2 ; see [7, p. 383]. Let U (Θ) be

the number of right orders Θi such that Θ×
i

∼= F×
q2 . In particular,

h(Θ) = M(Θ) + U (Θ)

(
1 − 1

q + 1

)
.

Definition 6.1. For a subset S of |F |, let

Odd(S) =
{

1, if all places in S have odd degrees;
0, otherwise.

Let S ⊂ |F | − ∞ be a finite (possibly empty) set of places such that R ∩ S = ∅. Let n � A be the
square-free ideal whose support is S . Let Θ be an Eichler A-order of level n. (When S = ∅, Θ is a
maximal A-order in H .) The formulae that follow are special cases of (1), (4) and (6) in [7]:

M S (H) := M(Θ) = 1

q2 − 1

∏
v∈R

(qv − 1)
∏

w∈S
(qw + 1),

U S (H) := U (Θ) = 2#R+#S−1 Odd(R)
∏

w∈S

(
1 − Odd(w)

)
.

Denote

hS (H) = M S (H) + U S (H)
q

q + 1
.

6.2. Component groups at x and y

Let D and R be as in Section 2.2. Recall that we assume ∞ /∈ R . Fix a place w ∈ R . Let D w be the
quaternion algebra over F which is ramified at (R − w) ∪ ∞. Fix a maximal A-order D in D w , and
denote
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Aw = A
[

w−1];
Dw = D ⊗A Aw;
Γ w = {

γ ∈ (
Dw)× ∣∣ ordw

(
Nr(γ )

) ∈ 2Z
};

here w−1 denotes the inverse of a generator of the ideal in A corresponding to w , and Nr denotes
the reduced norm on D w .

By fixing an isomorphism D w ⊗F F w ∼= M2(F w), one can consider Γ w as a subgroup of GL2(F w)

whose image in PGL2(F w) is discrete and cocompact. Hence Γ w acts on the Bruhat–Tits tree T w of
PGL2(F w). It is not hard to show that Γ w acts without inversions, so the quotient graph Γ w \ T w

is a finite graph without loops. We make Γ w \ T w into a graph with lengths by assigning to each
edge e of Γ w \ T w the length #(StabΓ w (ẽ)/F×

q ), where ẽ is a preimage of e in T w . The graph with
lengths Γ w \ T w does not depend on the choice of isomorphism D w ⊗F F w ∼= M2(F w), since such
isomorphisms differ by conjugation.

As follows from the analogue of Cherednik–Drinfeld uniformization for X R
F w

, proven in this context

by Hausberger [22], X R
F w

is a twisted Mumford curve: Denote by O(2)
w the quadratic unramified ex-

tension of O w and denote by F
(2)
w the residue field of O(2)

w . Then X R
F has a semi-stable model X R

O(2)
w

over O(2)
w such that the irreducible components of X R

F
(2)
w

are projective lines without self-intersections,

and the dual graph G(X R
O(2)

w
), as a graph with lengths, is isomorphic to Γ w \ T w .

On the other hand, as is done in [25] for the quaternion algebras over Q, the structure of Γ w \ T w

can be related to the arithmetic to D w : The number of vertices of Γ w \ T w is 2h∅(D w), the number
of edges is hw(D w), each edge has length 1 or q + 1, and the number of edges of length q + 1
is U w(D w) (the notation here is as in Section 6.1). Hence, using the formulae in Section 6.1, we get
the following:

Proposition 6.2. X R
F has a semi-stable model X R

O(2)
w

over O(2)
w such that X R

F
(2)
w

is a union of projective lines

without self-intersections. The number of vertices of the dual graph G(X R
O(2)

w
) is

2

q2 − 1

∏
v∈R−w

(qv − 1) + 2#R−1 Odd(R − w)
q

q + 1
;

the number of edges is

(qw + 1)

q2 − 1

∏
v∈R−w

(qv − 1) + 2#R−1 Odd(R − w)
(
1 − Odd(w)

) q

q + 1
.

The edges of G(X R
O(2)

w
) have length 1 or q + 1. The number of edges of length q + 1 is

2#R−1 Odd(R − w)
(
1 − Odd(w)

)
.

This proposition has an interesting corollary:

Corollary 6.3. Let g(R) be the genus of X R
F . Then

g(R) = 1 + 1

q2 − 1

∏
v∈R

(qv − 1) − q

q + 1
2#R−1 Odd(R).
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Fig. 4.

Proof. Let h1 be the dimension of the first simplicial homology group of G(X R
O(2)

w
) with Q-coefficients.

Let V , E be the number of vertices and edges of this graph, respectively. By Euler’s formula, h1 =
E − V + 1. Proposition 6.2 gives formulae for V and E from which it is easy to see that h1 is given
by the above expression. Since the irreducible components of X R

F
(2)
w

are projective lines, it is not hard

to show that h1 is the arithmetic genus of X R
F

(2)
w

; cf. [21, p. 298]. On the other hand, X R
O(2)

w
is flat

over O(2)
w , so the genus g(R) of its generic fiber is equal to the arithmetic genus of the special fiber;

see [21, p. 263]. (Note that the special role of w in the formulae for V and E disappears in g(R), as
expected. This formula for g(R) was obtained in [30] by a different argument.) �
Theorem 6.4. Let Φ ′

v denote the group of connected components of J xy at v ∈ |F |.

(i) Φ ′
x
∼= Z/(q + 1)Z;

(ii) Φ ′
y
∼= Z/(q2 + 1)(q + 1)Z.

Proof. In general, the information supplied by Proposition 6.2 is not sufficient for determining the
graph G(X R

O(2)
w

) uniquely. Nevertheless, in the case when R = {x, y} Proposition 6.2 does uniquely

determine G(X R
O(2)

w
): G(Xxy

O(2)
x

) is a graph without loops, which has 2 vertices, q + 1 edges, and all

edges have length 1. Similarly, G(Xxy

O(2)
y

) is a graph without loops, which has 2 vertices, q + 1 edges,

two of the edges have length q + 1 and all others have length 1. Hence, in both cases, the dual graph
is the graph with two vertices and q + 1 edges connecting them, cf. Fig. 4.

Now Theorem 4.1 can be used to conclude that the component groups are as stated. �
6.3. Component group at ∞

Here we again rely on the existence of analytic uniformization. Let Λ be a maximal A-order in D .
Let

Γ ∞ := Λ×.

Since D splits at ∞, by fixing an isomorphism D ⊗ F∞ ∼= M2(F∞), we get an embedding Γ ∞ ↪→
GL2(F∞). The group Γ ∞ is a discrete, cocompact subgroup of GL2(F∞), well defined up to conjuga-
tion. Let T ∞ be the Bruhat–Tits tree of PGL2(F∞). The group Γ ∞ acts on T ∞ without inversions, so
the quotient Γ ∞ \ T ∞ is a finite graph without loops which we make into a graph with lengths by
assigning to an edge e of Γ ∞ \ T ∞ the length #(StabΓ ∞ (ẽ)/F×

q ), where ẽ is a preimage of e in T ∞ .
By a theorem of Blum and Stuhler [1, Thm. 4.4.11],

(
X R

F∞
)an ∼= Γ ∞ \ Ω.

From this one deduces that X R
F has a semi-stable model X R

O∞ over O∞ such that the dual graph

of X R
O∞ , as a graph with lengths, is isomorphic to Γ ∞ \ T ∞ , cf. [25]. The structure of Γ ∞ \ T ∞ can

be related to the arithmetic of D; see [32].
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Proposition 6.5. X R
F has a semi-stable model X R

O∞ over O∞ such that the special fiber X R
F∞ is a union of

projective lines without self-intersections. The number of vertices of the dual graph G(X R
O∞ ) is

2

q − 1

(
g(R) − 1

) + q

q − 1
2#R−1 Odd(R);

the number of edges is

q + 1

q − 1

(
g(R) − 1

) + q

q − 1
2#R−1 Odd(R).

All edges have length 1.

Proof. See Proposition 5.2 and Theorem 5.5 in [32]. �
Theorem 6.6. Φ ′∞ ∼= Z/(q + 1)Z.

Proof. Applying Proposition 6.5 in the case R = {x, y}, one easily concludes that X xy
F has a semi-stable

model over O∞ whose dual graph looks like Fig. 4: it has 2 vertices, q + 1 edges, and all edges have
length 1. The structure of Φ ′∞ now follows from Theorem 4.1. �
7. Jacquet–Langlands isogeny

Let D and R be as in Section 2.2. Let X := X R
F , X ′ := X0(R)F , J := J R , J ′ := J0(R). Fix a separable

closure F sep of F and let G F := Gal(F sep/F ). Let p be the characteristic of F and fix a prime � 
= p.
Denote by V�( J ) the Tate vector space of J ; this is a Q�-vector space of dimension 2g(R) naturally
equipped with a continuous action of G F . Let V�( J )∗ be the linear dual of V�( J ).

Theorem 7.1. There is a surjective homomorphism J ′ → J defined over F .

Proof. Let A = ∏′
v∈|F | F v denote the Adele ring of F and let A∞ = ∏′

v∈|F |−∞ F v , so A = A∞ × F∞ .

Fix a uniformizer π∞ at ∞. Let A(D×(F ) \ D×(A)/πZ∞) be the space of Q�-valued locally constant
functions on D×(A)/πZ∞ which are invariant under the action of D×(F ) on the left. This space is
equipped with the right regular representation of D×(A)/πZ∞ . Since D is a division algebra, the coset
space D×(F ) \ D×(A)/πZ∞ is compact and decomposes as a sum of irreducible admissible representa-
tions Π with finite multiplicities m(Π) > 0, cf. [26, §13]:

A D := A
(

D×(F ) \ D×(A)/πZ∞
) =

⊕
Π

m(Π) · Π. (7.1)

Moreover, as follows from the Jacquet–Langlands correspondence and the multiplicity-one theorem
for automorphic cuspidal representations of GL2(A), the multiplicities m(Π) are all equal to 1;
see [18, Thm. 10.10]. The representations appearing in the sum (7.1) are called automorphic. Each au-
tomorphic representation Π decomposes as a restricted tensor product Π = ⊗

v∈|F | Πv of admissible
irreducible representations of D×(F v). We denote Π∞ = ⊗

v 
=∞ Πv , so Π = Π∞ ⊗ Π∞ . If Π is finite
dimensional, then it is of the form Π = χ ◦ Nr, where χ is a Hecke character of A× and Nr is the
reduced norm on D× , cf. [26, Lem. 14.8]. If Π is infinite dimensional, then Πv is infinite dimensional
for every v /∈ R .

Let ψv be a character of F ×
v . Denote by Spv ⊗ ψv the unique irreducible quotient of the induced

representation

IndGL2
B

(| · |− 1
2

v ψv ⊕ | · |
1
2
v ψv

)
,



1170 M. Papikian / Journal of Number Theory 131 (2011) 1149–1175
where B is the subgroup of upper-triangular matrices in GL2. The representation Spv ⊗ ψv is called
the special representation of GL2(F v ) twisted by ψv . If ψv = 1, then we simply write Spv .

For v ∈ R , let Dv be the maximal order in D(F v ). Let

K :=
∏
v∈R

D×
v ×

∏
v∈|F |−R−∞

GL2(Ov) ⊂ D×(
A∞)

.

Taking the K-invariants in Theorems 14.9 and 14.12 in [26], we get an isomorphism of G F -modules

V�( J )∗ ⊗Q�
Q� = H1

ét

(
X ⊗F F sep,Q�

) =
⊕

Π∈A D
Π∞∼=Sp∞

(
Π∞)K ⊗ σ(Π), (7.2)

where σ(Π) is a 2-dimensional irreducible representation of G F over Q� with the following property:
If (Π∞)K 
= 0, then for all v ∈ |F | − R − ∞, σ(Π) is unramified at v and there is an equality of
L-functions

L

(
s − 1

2
,Πv

)
= L

(
s,σ (Π)v

);
here σ(Π)v denotes the restriction of σ(Π) to a decomposition group at v . This uniquely deter-
mines σ(Π) by the Chebotarev density theorem [39, Ch. I, pp. 8–11]. Next, we claim that the dimen-
sion of (Π∞)K is at most one. Indeed, if v ∈ |F | − R − ∞, then Π

GL2(Ov )
v is at most one-dimensional

by [3, Thm. 4.6.2]. On the other hand, note that D×
v is normal in D×(F v ) and D×(F v )/D×

v
∼= Z for

v ∈ R . Hence Π
D×

v
v 
= 0 implies Πv = ψv ◦ Nr for some unramified character of F ×

v (ψv is unramified
because the reduced norm maps D×

v surjectively onto O×
v ).

Let Iv be the Iwahori subgroup of GL2(Ov ), i.e., the subgroup of matrices which maps to B(Fv )

under the reduction map GL2(Ov) → GL2(Fv ). Let

I =
∏
v∈R

Iv ×
∏

v∈|F |−R−∞
GL2(Ov) ⊂ GL2

(
A∞)

.

Let A0 := A0(GL2(F ) \ GL2(A)) be the space of Q�-valued cusp forms on GL2(A); see [17, §4]
or [3, §3.3] for the definition. Taking the I -invariants in Theorem 2 of [8], we get an isomorphism of
G F -modules

V�

(
J ′)∗ ⊗Q�

Q� = H1
ét

(
X ′ ⊗F F sep,Q�

) =
⊕

Π∈A0
Π∞∼=Sp∞

(
Π∞)I ⊗ ρ(Π), (7.3)

where ρ(Π) is 2-dimensional irreducible representation of G F over Q� with the following property:
If (Π∞)I 
= 0, then for all v ∈ |F | − R − ∞, ρ(Π) is unramified at v and

L

(
s − 1

2
,Πv

)
= L

(
s,ρ(Π)v

)
.

In this case, (Π∞)I is finite dimensional, but its dimension might be larger than one (due to the
existence of old forms).

The global Jacquet–Langlands correspondence [24, Ch. III] associates to each infinite dimensional
automorphic representation Π of D×(A) a cuspidal representation Π ′ = JL(Π) of GL2(A) with the
following properties:
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(1) if v /∈ R then Πv ∼= Π ′
v ;

(2) if v ∈ R and Πv ∼= ψv ◦ Nr for a character ψ of F ×
v , then

Π ′
v

∼= Spv ⊗ ψv .

As we observed above, for Π ∈ A D such that (Π∞)K 
= 0, the characters ψv at the places in R
are unramified. Thus, for v ∈ R , Π ′

v is a twist of Spv by an unramified character. On the other hand,
the representations of the form Spv ⊗ ψv , with ψv unramified, can be characterized by the prop-
erty that they have a unique 1-dimensional Iv -fixed subspace; see [4]. Hence if (Π∞)K 
= 0, then
((Π ′)∞)I 
= 0.

Now using (7.2) and (7.3), one concludes that V�( J ) is isomorphic with a quotient of V�( J ′) as a
G F -module. On the other hand, by a theorem of Zarhin (for p > 2) and Mori (for p = 2)

HomF
(

J ′, J
) ⊗ Q�

∼= HomG F

(
V�

(
J ′), V�( J )

)
. (7.4)

Thus, there is a surjective homomorphism J ′ → J defined over F . �
Corollary 7.2. J0(xy) and J xy are isogenous over F .

Proof. Since dim( J xy) = q = dim( J0(xy)), the claim follows from Theorem 7.1. �
Conjecture 7.3. There exists an isogeny J0(xy) → J xy whose kernel is C0 .

As an initial evidence for the conjecture, note that J0(xy)/C0 has component groups at x, y,∞
of the same order as those of J xy . This follows from Theorem 4.3, Corollary 5.8, and Table 1 in the
introduction. We will show below that Conjecture 7.3 is true for q = 2.

Remark 7.4. The statement of Theorem 7.1 can be refined. The abelian variety J has toric reduction
at every v ∈ R , so it is isogenous to an abelian subvariety of J ′ having the same reduction property.
The new subvariety of J ′ , J ′ new, defined as in the case of classical modular Jacobians (cf. [35], [13,
p. 248]), is the abelian subvariety of J ′ of maximal dimension having toric reduction at every v ∈ R .
Hence J is isogenous to a subvariety of J ′ new. By computing the dimension of J ′ new, one concludes
that J and J ′ new are isogenous over F .

Remark 7.5. There is just one other case, besides the case which is the focus of this paper, when J
and J ′ are actually isogenous. As one easily shows by comparing the genera of modular curves X R

and X0(R), the genera of these curves are equal if and only if R = {x, y} and {deg(x),deg(y)} =
{1,1}, {1,2}, {2,2}. Assume deg(x) = deg(y) = 2. Then the genus of both Xxy and X0(xy) is q2, but
neither of these curves is hyperelliptic. The curve X0(xy) again has 4 cusps which can be represented
as in Section 3. Calculations similar to those we have carried out in earlier sections lead to the fol-
lowing result:

(1) The cuspidal divisor group C is generated by c0 and cx . The order of c0 is q2 + 1. The order of cx
is divisible by q2 + 1 and divides q4 − 1. The order of c y is divisible by q2 + 1 and divides q4 − 1.

(2) Φx ∼= Φ ′
x
∼= Z/(q2 + 1)Z.

(3) Φy ∼= Φ ′
y
∼= Z/(q2 + 1)Z.

(4) The canonical map φx : C → Φx is surjective, and

φx(c0) = z, φx(cx) = 0, φx(c y) = z.

(5) The canonical map φy : C → Φy is surjective, and

φx(c0) = z, φy(cx) = z, φy(c y) = 0.
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The fact that X0(xy) is not hyperelliptic complicates the calculation of C : just the relations between
the cuspidal divisors arising from the Drinfeld discriminant function are not sufficient for pinning
down the orders of cx and c y , cf. (3.3). Next, the calculations required for determining Φ∞ , Φ ′∞ ,
and φ∞ appear to be much more complicated than those in Sections 5.2 and 6.3. Nevertheless, based
on the facts that we are able to prove, and in analogy with the case deg(x) = 1, deg(y) = 2, we
make the following prediction: The cuspidal divisor group C ∼= (Z/(q2 + 1)Z)2 is the direct sum of
the cyclic subgroups generated by cx and c y both of which have order q2 + 1, and there is an isogeny
J0(xy) → J xy whose kernel is C .

Definition 7.6. It is known that every elliptic curve E over F with conductor nE = n · ∞, n � A,
and split multiplicative reduction at ∞ is isogenous to a subvariety of J0(n); see [17]. This follows
from (7.3), (7.4), and the fact [6, p. 577] that the representation ρE : G F → Aut(V�(E)∗) is automorphic
(i.e., ρE = ρ(Π) for some Π ∈ A0). The multiplicity-one theorem can be used to show that in the
F -isogeny class of E there exists a unique curve E ′ which is isomorphic to a one-dimensional abelian
subvariety of J0(n), thus maps “optimally” into J0(n). We call E ′ the J0(n)-optimal curve. Theorem 7.1
and Remark 7.4 imply that E with square-free conductor R · ∞ and split multiplicative reduction
at ∞ is also isogenous to a subvariety of J R . Moreover, in the F -isogeny class of E there is a unique
elliptic curve E ′′ which is isomorphic to a one-dimensional abelian subvariety of J R . We call E ′′ the
J R -optimal curve.

Notation 7.7. Let E be an elliptic curve over F given by a Weierstrass equation

E: Y 2 + a1 XY + a3Y = X3 + a2 X2 + a4 X + a6.

Let E(p) be the elliptic curve given by the equation

E(p): Y 2 + ap
1 XY + ap

3 Y = X3 + ap
2 X2 + ap

4 X + ap
6 .

There is a Frobenius morphism Frobp : E → E(p) which maps a point (x0, y0) on E to the point
(xp

0 , yp
0 ) on E(p) . It is clear that the j-invariants of these elliptic curves are related by the equation

j(E(p)) = j(E)p . If E has semi-stable reduction at v ∈ |F |, then ΦE,v ∼= Z/nZ, where ΦE,v denotes the
component group of E at v and n = −ordv( j(E)) � 1. In this case, ΦE(p),v

∼= Z/pnZ.

Definition 7.8. An elliptic curve E over F with j-invariant j(E) /∈ Fq is said to be Frobenius minimal
if it is not isomorphic to Ẽ(p) for some other elliptic curve Ẽ over F . It is easy to check that this is
equivalent to j(E) /∈ F p , cf. [38].

For q even, Schweizer has completely classified the elliptic curves over F having conductor of
degree 4 in terms of explicit Weierstrass equations; see [37]. We are particularly interested in those
curves which have conductor xy∞ and split multiplicative reduction at ∞.

Theorem 7.9. Assume q = 2s . Elliptic curves over F with conductor xy∞ exist only if there exists an
Fq-automorphism of F that transforms the conductor into (T + 1)(T 2 + T + 1)∞. In particular, s must be
odd.

If s is odd, then there exists two isogeny classes of elliptic curves over F with conductor (T + 1)(T 2 +
T + 1)∞ and split multiplicative reduction at ∞. The Frobenius minimal curves in each isogeny class are listed
in Tables 2 and 3; the last three columns in the tables give the orders of the component groups ΦE,v of the
corresponding curve E at v = x, y,∞.

Proof. Theorem 4.1 in [37]. �
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Table 2
Isogeny class I.

Equation x y ∞
E1 Y 2 + T XY + Y = X3 + T 3 + 1 3 3 3
E ′

1 Y 2 + T XY + Y = X3 + T 2(T 3 + 1) 9 1 1

E ′′
1 Y 2 + T XY + Y = X3 1 1 9

Table 3
Isogeny class II.

Equation x y ∞
E2 Y 2 + T XY + Y = X3 + X2 + T 5 1 5
E ′

2 Y 2 + T XY + Y = X3 + X2 + T 5 + T 2 + T 1 5 1

Next, [37, Prop. 3.5] describes explicitly the isogenies between the curves in classes I and II: There
is an isomorphism of étale group-schemes over F

E1[3] ∼= H1 ⊕ H2,

where H1 ∼= Z/3Z and H2 ∼= μ3. The subgroup-scheme H1 is generated by (T + 1,1) and H2 is
generated by (T 2, sT 3 + s2), where s is a third root of unity. Then E1/H1 ∼= E ′

1 and E1/H2 ∼= E ′′
1.

(It is well known that an elliptic curve over F with conductor of degree 4 has rank 0, so in fact
E1(F ) = H1 ∼= Z/3Z.) Similarly, the subgroup-scheme H3 of E2 generated by (1,1) is isomorphic
to Z/5Z, E2/H3 ∼= E ′

2, and E2(F ) = H3 ∼= Z/5Z.

Proposition 7.10. Assume q = 2s and s is odd.

(i) E1 and E2 are the J0(xy)-optimal curves in the isogeny classes I and II.
(ii) E ′

2 is the J xy-optimal curve in the isogeny class II.
(iii) If Conjecture 7.3 is true, then E1 is the J xy-optimal curve in the isogeny class I.

Proof. (i) There is a method due to Gekeler and Reversat [12, Cor. 3.19] which can be used to deter-
mine #ΦE,∞ of the J0(n)-optimal curve in a given isogeny class. This method is based on the study
of the action of Hecke algebra on H1(Γ0(n) \ T ,Z). For deg(n) = 3 the Gekeler–Reversat method can
be further refined [38, Cor. 1.2]. Applying this method for n = xy, one obtains #ΦE,∞ = 3 (resp.
#ΦE,∞ = 5) for the J0(xy)-optimal elliptic curve E in the isogeny class I (resp. II). Since there
is a unique curve with this property in each isogeny class, we conclude that E1 and E2 are the
J0(xy)-optimal elliptic curves. (For q = 2, this is already contained in [12, Ex. 4.4].)

(ii) Assume q is arbitrary. Let E be an elliptic curve over F which embeds into J xy . Since J xy has
split toric reduction at ∞, [29, Cor. 2.4] implies that the kernel of the natural homomorphism

ΦE,∞ → Φ ′∞ ∼= Z/(q + 1)Z

is a subgroup of Z/(q∞ −1)Z. Hence #ΦE,∞ divides (q2 −1). First, this implies that #ΦE,∞ is coprime
to p, so E must be Frobenius minimal in its isogeny class. Second, if q = 2s and s is odd, then 5 does
not divide (q2 − 1), so E2 is not J xy-optimal. This leaves E ′

2 as the only possible J xy-optimal curve in
the isogeny class II.

(iii) Let E be the J xy-optimal curve in the isogeny class I. By the discussion in (ii), this curve
is one of the curves in Table 2. Suppose there is an isogeny ϕ : J0(xy) → J xy whose kernel is C0.
Restricting ϕ to E1 ↪→ J0(xy), we get an isogeny ϕ′ : E1 → E defined over F whose kernel is a
subgroup of C0 ∼= Z/(q2 + 1)Z. Note that 3 does not divide q2 + 1. On the other hand, any isogeny
from E1 to E ′

1 or E ′′
1 must have kernel whose order is divisible by 3. This implies that ϕ′ has trivial

kernel, so E = E1. �



1174 M. Papikian / Journal of Number Theory 131 (2011) 1149–1175
Remark 7.11. In the notation of the proof of Proposition 7.10, consider the restriction of ϕ to
E2 ↪→ J0(xy). By part (ii) of the proposition, there results an isogeny ϕ′′ : E2 → E ′

2 whose kernel
is a subgroup of Z/(q2 + 1)Z. Since 5 divides q2 + 1 when s is odd, part (ii) of Proposition 7.10 is
compatible with Conjecture 7.3.

Theorem 7.12. Conjecture 7.3 is true for q = 2.

Proof. Assume q = 2. By Proposition 7.10, E1 and E2 are the J0(xy)-optimal curves. Since the genus
of X0(xy) is 2, it is hyperelliptic (this is true for general q by Schweizer’s theorem which we used
in Section 3). The genus being 2 also implies that a quotient of X0(xy) by an involution has genus 0
or 1. The Atkin–Lehner involutions form a subgroup in Aut(X0(xy)) isomorphic to (Z/2Z)2. Since
the hyperelliptic involution is unique, each E1 and E2 can be obtained as a quotient of X0(xy) un-
der the action of an Atkin–Lehner involution. Thus, there are degree-2 morphisms πi : X0(xy) → Ei ,
i = 1,2. In fact, one obtains the closed immersions π∗

i : Ei → J0(xy) from these morphisms by Pi-
card functoriality. Let π̂∗

i : J0(xy) → Ei be the dual morphism. It is easy to show that the composition
π̂∗

i ◦π∗
i : Ei → Ei is the isogeny given by multiplication by 2 = deg(πi). This implies that E1 and E2 in-

tersect in J0(xy) in their common subgroup-scheme of 2-division points S := π∗
1 (E1)[2] = π∗

2 (E2)[2],
so

J0(xy)(F ) = H1 ⊕ H3 ∼= Z/3Z ⊕ Z/5Z = C.

Let ψ : J0(xy) → E1 × E2 be the isogeny with kernel S . Note that S is characterized by the non-split
exact sequence of group-schemes over F :

0 → μ2 → S → Z/2Z → 0.

By Proposition 7.10, E ′
2 is the J xy-optimal elliptic curve in the isogeny class II. Let E be the

J xy-optimal elliptic curves in class I. From the proof of Proposition 7.10, we know that E is Frobenius
minimal, so it is one of the curves listed in Table 2. There are also Atkin–Lehner involutions acting
on Xxy and they form a subgroup in Aut(Xxy) isomorphic to (Z/2Z)2; see [31]. Now exactly the same
argument as above implies that E and E ′

2 intersect in J xy along their common subgroup-scheme of
2-division points S ′ ∼= S . Let ν : J xy → E × E ′

2 be the isogeny with kernel S ′ . Let ν̂ : E × E ′
2 → J xy be

the dual isogeny.
The following argument is motivated by [19]. Consider the composition

φ : J0(xy)
ψ−→ E1 × E2

φ1×φ2−−−−→ E × E ′
2

ν̂−→ J xy,

where φ1 is either the identity morphism or has kernel H1, H2, and φ2 has kernel H3. Since φ1 × φ2
has odd degree, this morphism maps the kernel of ψ̂ to the kernel of ν̂ . Indeed, both are the “diag-
onal” subgroups isomorphic to S in the corresponding group-schemes (E1 × E2)[2] and (E × E ′

2)[2].
More precisely, H := ker(ψ̂) is uniquely characterized as the subgroup-scheme of G := (E1 × E2)[2]
having the following properties: H0 is the image of the diagonal morphism μ2 → μ2 × μ2 = G 0 and
the image of H in G et under the natural morphism G → G et is the image of the diagonal morphism
Z/2Z → Z/2Z×Z/2Z. A similar description applies to ker(ν̂) ⊂ (E × E ′

2)[2]. Thus, there is an isogeny
φ′ : J0(xy) → J xy such that φ = φ′[2] and ker(φ′) ∼= ker(φ1 × φ2). We conclude that J xy is isomorphic
to the quotient of J0(xy) by one of the following subgroups

H3, H1 ⊕ H3, H2 ⊕ H3.

Now note that H1 and H3 under the specialization map φ∞ inject into Φ∞ , but H2 maps to 0 (indeed,
H2 ∼= μ3 has non-trivial action by Gal(F∞/F∞) whereas Φ∞ is constant). Hence Theorem 4.3 implies
that the quotients of J0(xy) by the subgroups listed above have component groups at ∞ of orders 3,
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1, 9, respectively. Since Φ ′∞ ∼= Z/3Z, we see that J xy is the quotient of J0(xy) by H3 which is C0 in
this case. �
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