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We give a criterion for the existence of an indecomposable decomposition
of pure-injective objects in a locally finitely presented Grothendieck category �
(Theorem 2.5). As a consequence we get Theorem 3.2, asserting that an associa-
tive unitary ring R is right pure-semisimple if and only if every right R-module is a
direct sum of modules that are pure-injective or countably generated. Some open
problems are formulated in the paper.  2001 Academic Press

1. INTRODUCTION

Let R be an associative ring with identity. We denote by J�R� the
Jacobson radical of R, by Mod�R� the category of right R-modules, and by
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mod�R� the full subcategory of Mod�R� formed by finitely generated right
R-modules.

It was proved in [9] that a finitely presented pure-injective right R-module
M has an indecomposable decomposition if and only if every pure submod-
ule of M is pure-projective. This result has been partially extended in [5] by
proving that a pure-projective right R-module M , which is pure-injective,
has an indecomposable decomposition if and only if every pure submodule
ofM is pure-projective. Furthermore, it is shown in [5] that a pure-injective
R-module M has an indecomposable decomposition if every pure submod-
ule of M is a direct sum of countably generated modules. However, there
are no general criteria for the existence of an indecomposable decomposi-
tion of an arbitrary pure-injective R-module (see [5, Remark, p. 3719]).

The main goal of this paper is to give a criterion of this kind for any
pure-injective module, and more generally, for any pure-injective object M
in a locally finitely presented Grothendieck category �. Our main result
asserts that a pure-injective object M of � has an indecomposable decom-
position if and only if every directly pure subobject of M (in the sense of
Definition 2.1 below) is a direct sum of objects that are pure-injective or
countably generated (Theorem 2.4). As a consequence we get the main
indecomposable decomposition results proved in �5� 9�.

By applying Theorem 2.4 we show in Section 3 that a right R-module M
is
∑

-pure-injective if and only if every pure (or perfectly pure) submodule
N of a pure-injective envelope of a direct sum of countably many copies of
M is a direct sum of modules that are pure-injective or countably generated
(see Theorem 3.1).

In Section 3 we apply our main results to the study of right pure-
semisimple rings [17]. We show in Theorem 3.2 that a ring R is right
pure-semisimple if and only if every right R-module is a direct sum of
modules that are pure-injective or countably generated. We remark that
if R is a ring for which every right R-module is a direct sum of mod-
ules that are pure-injective or pure-projective, then every indecomposable
right R-module is pure-injective or pure-projective. Thus, Theorem 3.2
sheds a light on the following open question posed by Simson in [20,
Problem 3.2]: “Is a semiperfect ring R right artinian or right pure semisimple
if every indecomposable right R-module is pure-injective or pure-projective?”

This question is also discussed in Section 4, and a partial answer is given
in Theorem 4.2.

2. THE MAIN DECOMPOSITION RESULTS

We recall that a Grothendieck category � is said to be locally finitely pre-
sented if there exists a set of finitely presented generators in � (see [14]).
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� has enough injective objects and every object M of � admits an essen-
tial embedding in an injective object E�M�, called an injective envelope of
M . The object E�M� is uniquely determined by M up to isomorphism. It
is well known that indecomposable injective objects of � have local endo-
morphism rings and the Azumaya’s decomposition theorem remains valid
for � (see [1, 14]).

Following [11], a concept of an algebraically compact object of � was
introduced in [16, Sect. 4]. It was proved there that the algebraically com-
pactness and the pure-injectivity in � coincide (see also [11]), and every
object M of � admits a pure-essential embedding into a pure-injective
object Epure�M�. The object Epure�M� is uniquely determined by M up
to isomorphism and is called a pure-injective envelope of M .

The following simple lemma is a consequence of [13, Theorem 2.17], but
we are including a direct proof for the sake of completeness.

Lemma 2.1. Let � be a locally finitely presented Grothendieck category.
Let E be a non-zero injective object of � such that any subobject E′ of E is
injective if E′ is a direct sum of injective objects. Then E is a direct sum of
indecomposable objects.

Proof. First we claim that the injective envelope of any finitely gen-
erated subobject of E is a (finite) direct sum of indecomposable objects.
Assume to the contrary, that M is a non-zero finitely generated subobject
of E such that its injective envelope E�M� is not a direct sum of finitely
many indecomposable objects. It follows that E�M� contains an infinite
direct sum ⊕∞

j=1Qj of non-zero injective objects. Applying our hypothe-
sis, we deduce that ⊕∞

j=1Qj is injective and thus, a direct summand of
E�M�. Say that E�M� = �⊕∞

j=1Qj� ⊕ Q′. Since M is finitely generated,
E�M� = Q1 ⊕ · · · ⊕Qm ⊕Q′ for some m, and we get a contradiction.

Let now �E be the set consisting of families 
Ei�i∈I of indecomposable
injective subobjects Ei of E such that E ⊇ ∑

i∈I Ei = ⊕i∈IEi. We view �E
as a partially ordered set with respect to the inclusion. By our claim, the set
�E is not empty. It is easy to check that �E is inductive. By Zorn’s lemma,
there exists a maximal family 
Ei�i∈I in �E . Since the object ⊕i∈IEi is
injective by our hypothesis, then E = ⊕i∈IEi, because otherwise the family

Ei�i∈I is not maximal (by applying the above claim).

The following definition will be useful throughout this paper.

Definition 2.2. Let B be a subobject of an object A in a locally finitely
presented Grothendieck category �. Then B is called a perfectly pure
subobject of A if B = ⋃

β Bβ is a directed union of its subobjects Bβ such
that the composed monomorphism Bβ ⊆ B ⊆ A splits for all indices β.

It is easy to see that every perfectly pure subobject of A is a pure sub-
object of A. The following easy lemma will be useful later on.
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Lemma 2.3. Let � be a locally finitely presented Grothendieck category.
Let ⊕i∈IEi be a direct sum of injective objects of � that is not injective. Let
us denote by πj � ⊕i∈IEi → Ej the canonical projections. Then there exist a
subobject N of a finitely generated object M and a morphism f � N → ⊕IEi
such that the set 
j ∈ I � πj ◦ f �= 0� is infinite.

Proof. By Baer’s Injectivity Criterium for Grothendieck Categories (see
[21, Proposition V.2.9]), there must exist a finitely generated object M of
� and a morphism f from a subobject N of M to ⊕i∈IEi that cannot be
extended to M . Since finite direct sums of copies of injective objects are
injectives, this means that Im�f � is not contained in any finite direct subsum
of ⊕i∈IEi. Thus, the set 
j ∈ I � πj ◦ f �= 0� must be infinite.

The following result is basic for the proof of our main theorem.

Theorem 2.4. Let E be a non-zero injective object of a locally finitely
presented Grothendieck category �. The following conditions are equivalent:

(a) E is a direct sum of indecomposable objects.
(b) Every non-zero perfectly pure subobject of E is a direct sum of inde-

composable injective objects.
(c) Every non-zero perfectly pure subobject of E is a direct sum of

objects that are injective or countably generated.

Proof. �a� ⇒ �b�. Suppose that E = ⊕s∈SEs is a direct sum of inde-
composable objects Es. It follows that the endomorphism ring End�Es� of
Es is local for any s ∈ S.

Let L be a non-zero perfectly pure subobject of E. By definition, L =⋃
β Lβ is a directed union of its subobjects Lβ such that the composed

monomorphism Lβ ⊆ L ⊆ E splits for all indices β. We shall show that L
is direct sum of indecomposable injective objects.

Let �L be the set consisting of families 
Qj�j∈J of indecomposable injec-
tive subobjects Qj of L such that L ⊇ ∑

j∈J Qj = ⊕j∈JQj and each Qj is a
subobject of some Lβ. We view �L as a partially ordered set with respect
to the inclusion. It is easy to see that �L is an inductive set.

Now we show that the set �L is non-empty. Since L is not zero and is
a directed union of injective subobjects Lβ, then there exists a non-zero
finitely generated subobject X of L. This means that X embeds in Lβ
for some ordinal β and thus, the injective envelope E�X� of X is also a
subobject of Lβ. By our assumption, E�X� is a direct sum of (finitely many)
indecomposable subobjects Q1� � � � �Qr of Lβ ⊆ L and therefore the family

Q1� � � � �Qr� belongs to �L.

By Zorn’s lemma, there exists a maximal element 
Qj�j∈J in �L. We shall
show that L = ∑

j∈J Qj = ⊕j∈JQj . By [1, Proposition 25.5] the decomposi-
tion E = ⊕s∈SEs complements direct summands. Since ⊕j∈J ′Qj is injective
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for any finite subset J ′ of J then the composed monomorphism ⊕j∈JQj ⊆
L ⊆ E splits (see, e.g., [5, Theorem 3.4]). Consequently, L = �⊕j∈JQj� ⊕L′

for some subobject L′ of L. We claim that L′ is zero. If L′ is not zero then
L′ contains a finitely generated subobject M . Its injective envelope E�M�
is a subobject of some Lγ. By assumption, the object E�M� has an inde-
composable direct summand Q′ contained in Lγ. Since Q′ ∩ �⊕j∈JQj� ⊆
E�M� ∩ �⊕j∈JQj� = 0 then the family 
Q′� ∪ 
Qj�j∈J belongs to �L, con-
trary to the maximality of 
Qj�j∈J . Consequently L′ is zero and L = ⊕j∈JQj .

�b� ⇒ �c�. Obvious.
�c� ⇒ �a�. Suppose that (c) holds but E is not a direct sum of inde-

composable objects. By Lemma 2.1, there exists a non-injective subobject
E′ of E such that E′ = ⊕i∈IEi is a direct sum of non-zero injective sub-
objects Ei of E, for each i ∈ I, where I is an infinite set. By Lemma 2.3,
there exists a subobject N of a finitely generated object M and a morphism
f � N → ⊕i∈IEi such that the set I ′ = 
j ∈ I � πj ◦ f �= 0� is infinite, where
πj � ⊕i∈IEi → Ej denotes the canonical projection. Let J be an infinite
countable subset of I ′.

Choose a finitely generated subobject Xj of Ej with the property that
0 �= Xj ⊆ Im�Nj · f � for any j ∈ J. Denote by Qj an injective envelope of
Xj in Ej . Since the set J is countable and each Xj is finitely generated then
⊕j∈JXj is countably generated, and obviously it is essential in ⊕j∈JQj . Let
Q = E�⊕j∈JQj� be an injective envelope of ⊕j∈JQj in E, and let

π � ⊕
i∈I
Ei →

⊕
j∈J
Qj

be the epimorphism that carries Ei to zero if i ∈ I\J, whereas the restriction
of π to Ei is the composition of the natural direct summand projection on
Ei → Qi with the canonical monomorphism Qi → ⊕j∈JQj for all i ∈ J. We
claim that the composed morphism

g = π ◦ f � N −→ ⊕
j∈J
Qj

admits no extensions to a morphism h �M → ⊕j∈JQj along the monomor-
phism u � N → M . In particular, ⊕j∈JQj is not injective. Suppose to the
contrary that g admits such an extension h. Since M is finitely generated
then Im�h�, and so Im�g�, is contained in ⊕j∈FQj for some finite subset F
of J. Thus, πj ◦ g = 0 for each j ∈ J\F , but this contradicts our construction
of each object Qj .

Consider the set � of subobjects L of Q satisfying the following three
conditions:

(1) ⊕j∈JQj ⊆ L ⊆ Q,
(2) L is a direct sum of injective subobjects of Q,
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(3) the morphism g = π ◦ f � N → ⊕j∈JQj ⊆ L admits no extensions
to a morphism h �M → L along the monomorphism u � N →M .

It is clear that � is not empty, because the object ⊕j∈JQj belongs to �.
We shall show that � is an inductive set with respect to the inclusion. Let

Lk�k∈K be a chain in � and let L = ⋃

k∈K Lk. Since L is a directed union
of direct sums of injective subobjects of Q, it is a perfectly pure subobject
of E (since it is the direct union of the finite direct sums of copies of these
injective objects). Thus, by hypothesis,

L =
( ⊕
u∈U

Yu

)
⊕

(⊕
v∈V
Zv

)

is a direct sum of injective objects Yu and countably generated objects Zv.
Moreover, U and V are countable sets, because L contains a countably
generated subobject ⊕j∈JXj that it is essential in it, as it was so in Q.
Thus, Z = ⊕v∈V Zv is countably generated. We can perform the object Z =∑
n∈�Z′

n as a countable sum of finitely generated subobjects.
Since Z′

1 is finitely generated, it is contained in
⋃
k∈F Lk for some finite

subset F ⊆ K. Furthermore, since each Lk is a direct sum of injective
objects, then L contains an injective envelope E�Z′

1� of Z′
1. Moreover,

E�Z′
1� ∩ �⊕u∈UYu� = 0, because Z′

1 ∩ �⊕u∈UYu� = 0. Thus,

E�Z′
1� ∼=

�⊕u∈UYu� ⊕ E�Z′
1�

⊕u∈UYu
⊆ �⊕u∈UYu� ⊕ �⊕v∈V Zv�

⊕u∈UYu
∼= ⊕
v∈V
Zv = Z

and it is clear that the above isomorphism fixes Z′
1. Thus, Z contains the

injective envelope E�Z′
1� of Z′

1, and therefore there is a decomposition Z =
E�Z′

1� ⊕Z′′
1 . Denote by Z′

1� n the image of Z′
n under the natural projection

on Z′′
1 for n ≥ 2. Further, we set Z′

1� 1 = Z′
1 for simplicity.

It is easy to check that Z = E�Z′
1� ⊕

∑
n≥2 Z

′
1� n, and therefore we get a

decomposition L = �⊕u∈UYu� ⊕ E�Z′
1� ⊕

∑
n≥2 Z

′
1� n.

By applying the same construction to L and Z′
1� 2 we get

L =
(⊕
u∈U

Yu

)
⊕ E�Z′

1� 1� ⊕ E�Z′
2� 2� ⊕

∑
n≥3

Z′
2� n�

Repeating this process, we construct an infinite set 
E�Z′
n� n��n∈� of injec-

tive subobjects of L such that for each m ∈ �, we have that �⊕u∈UYu� ⊕
�⊕mn=1E�Z′

n� n�� ⊆ L.
Moreover, by construction, Z′

m ⊆ ⊕mn=1Z
′
n� n, for each m ∈ �. As a con-

sequence, Z ⊆ ⊕n∈�E�Z′
n� n�, the object L admits a decomposition

L =
(⊕
u∈U

Yu

)
⊕

( ⊕
n∈�
E�Z′

n� n�
)

and we have proved that L satisfies (2).
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Finally, we have to show that the morphism g = π ◦ f � N → ⊕j∈JQj ⊆ L
admits no extensions to a morphism h �M → L along the monomorphism
u � N →M .

Suppose to the contrary that g admits such an extension h. Then Im�h�
is finitely generated, since so is M . We deduce that there exists a k ∈ K
such that Im�h� ⊆ Lk. But this is a contradiction, because Lk ∈ � and
therefore the morphism g cannot be extended to a morphism M → Lk by
hypothesis.

We have proved that L ∈ �, and so � is an inductive set. By Zorn’s
lemma, there exists a maximal element L0 in �. By our hypothesis, the
object L0 is a direct sum of injective objects. Let

L0 =
⊕
t∈T
Wt�

where Wt is injective for any t ∈ T . Denote by qt � L0 → Wt , the canonical
projections. Since g cannot be extended to a morphism h �M → L0, there
exists an infinite subset T ′ ⊆ T such that qt ◦ g �= 0 for each t ∈ T ′ (because
otherwise Im�g� would be contained in a finite subsum of the Wt ’s, say
⊕t∈FWt , that would be injective, and g would extend to a morphism M →
⊕t∈FWt ⊆ L0�.

Let us write the set T ′ as a disjoint union T ′ = T1 ∪ T2 of infinite subsets
T1 and T2. Denote by qT1

� ⊕t∈TWt → ⊕t∈T1
Wt and qT2

� ⊕t∈TWt → ⊕t∈T2
Wt

the canonical projections. It is clear that the morphism qTi ◦ g cannot be
extended to a morphism h � M → ⊕t∈TiWt , for i = 1� 2, because otherwise
Im�h� would be contained in some finite subsum ⊕t∈FWt of ⊕t∈TiWt , as
M is finitely generated. It follows that qt ◦ g = qt ◦ qTi ◦ g = 0 for each
t ∈ Ti\F , and we get a contradiction.

Let us choose an injective envelope E�⊕t∈T1
Wt� of ⊕t∈T1

Wt in Q.
Note that ⊕t∈T1

Wt �= E�⊕t∈T1
Wt�, because qT1

◦ g has no extension to
a morphism M → ⊕t∈T1

Wt . Thus, L0 = ⊕t∈TWt is strictly contained
in E�⊕t∈T1

Wt� ⊕ �⊕t∈T2
Wt� and the morphism g has no extension to

a morphism M → E�⊕t∈T1
Wt� ⊕ �⊕t∈T2

Wt�, because otherwise qT2
◦ g

extends to a morphism M → ⊕t∈T2
Wt , and consequently the object

E�⊕t∈T1
Wt� ⊕ �⊕t∈T2

Wt� belongs to �, a contradiction with the maximality
of L0. This finishes the proof of the theorem.

Now we are able to prove the main result of this section.

Theorem 2.5. Let E be a non-zero pure-injective object of a locally finitely
presented Grothendieck category �. The following conditions are equivalent:

(a) E is a direct sum of indecomposable objects.
(b) Every perfectly pure subobject of E is a direct sum of indecompos-

able pure-injective objects.
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(c) Every perfectly pure subobject of E is a direct sum of objects that
are pure-injective or countably generated.

Proof. It was shown in [18] that there exists a locally finitely presented
Grothendieck category D��� and a fully faithful additive functor

t � � −→ D���(2.5)

with the following properties:

(i) The functor t admits a right adjoint functor g � D��� → �.

(ii) A short exact sequence X � 0 → X ′ → X → X ′′ → 0 in � is pure
if and only if the sequence t�X� is exact in D���, or equivalently, if and
only if the sequence t�X� is pure exact in D���.

(iii) t carries finitely generated objects to finitely generated ones.

(iv) The image of � under the functor t is the full subcategory of D���
formed by all FP-injective objects.

(v) An objectA of � is pure-injective if and only if t�A� is an injective
object of D���.

It follows that A is a perfectly pure subobject of E if and only if t�A� is
a perfectly pure subobject of t�E�.

Consequently, the conditions �a�� �b�� and �c� are equivalent to the
corresponding conditions �a�� �b�� and �c� for t�E� in t�E� with “pure-
injective” and “injective” interchanged. Thus, the result is an immediate
consequence of Theorem 2.3 applied to the injective object t�E� of the
category D���.

As an immediate consequence of Theorem 2.5 we get

Corollary 2.6. Let E be a pure-injective object of a locally finitely pre-
sented Grothendieck category �. If every pure subobject of E is a direct sum of
countably generated objects, then E is a direct sum of indecomposable objects.

By applying Theorem 2.4 to the category � = Mod�R� of right
R-modules we get [6, Theorem 2.5], which is the main result of [6].

3. --PURE-INJECTIVITY AND THE PURE SEMISIMPLICITY

We recall that a module M is --pure-injective if any direct sum of copies
of M is a pure injective module (see [10, 23]).

An interesting consequence of Theorem 2.4 is the following characteri-
zation of --pure-injective modules (compare with [23]).
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Corollary 3.1. LetM be a right R-module. The following conditions are
equivalent:

(a) M is --pure-injective.

(b) Every pure submodule of a pure-injective envelope of a direct sum
of arbitrary many copies ofM is a direct sum of modules that are pure-injective
or countably generated.

(b′) Every pure submodule of a pure-injective envelope of a direct sum of
countably many copies of M is a direct sum of modules that are pure-injective
or countably generated.

(c) Every perfectly pure submodule of a pure-injective envelope of a
direct sum of copies of M is a direct sum of modules that are pure-injective or
countably generated.

(c′) Every perfectly pure submodule of a pure-injective envelope of a
direct sum of countably many copies of M is a direct sum of modules that are
pure-injective or countably generated.

Proof. �a� ⇒ �b�. It is well known that every pure-submodule of a --
pure-injective module is again --pure-injective (see, e.g., [8, Corollary 1.4]).

The implications �b� ⇒ �b′� ⇒ �c′� and �b� ⇒ �c� ⇒ �c′� are trivial.

�c′� ⇒ �a�. Let E = Epure�M���� be a pure-injective envelope of a
direct sum of countably many copies of M . By Theorem 2.4, E is a direct
sum of indecomposable modules. On the other hand, E contains a direct
sum Epure�M���� of countably many copies of the pure-injective envelope
Epure�M� ofM as a pure submodule. Then Epure�M���� is a direct summand
of E by [5, Theorem 3.4]. Consequently, Epure�M� is --pure-injective, and
in view of [8, Corollary 1.4], M is --pure-injective, because M is a pure
submodule of Epure�M�.

We recall from [17] that a ring R is called right pure semisimple if every
right R-module is a direct sum of finitely presented modules, or equiva-
lently, if every right R-module is algebraically compact (i.e., pure-injective)
[11]. These rings are always right artinian (see, e.g., [4, Proposition 5]). The
reader is referred to [10, 19, 25] for a background on right pure semisimple
rings.

The above corollary yields to the following characterization of pure-
semisimple rings.

Theorem 3.2. Let R be a ring. The following conditions are equivalent:

(a) R is right pure semisimple.

(b) Every right R-module is a direct sum of modules that are pure-
injective or pure-projective.
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(c) Every right R-module is a direct sum of modules that are pure-
injective or countably generated.

Proof. The implications �a� ⇒ �b� ⇒ �c� are obvious.

�c� ⇒ �a�. Suppose that (c) holds. By Corollary 3.1, every right
R-module is --pure-injective. Thus, R is right pure-semisimple (see, e.g.,
[4, Proposition 5]).

Remark 3.3. (a) The implication �b� ⇒ �c� of Theorem 3.2 sheds a
light on the following open question posed in [20, Problem 3.2] (compare
with [23]): “Is a semiperfect ring R right artinian or right pure semisimple if
every indecomposable right R-module is pure-injective or pure-projective?”

(b) A characterization of rings R for which every indecomposable
right R-module is pure-injective or pure-projective remains also an open
problem (see [20, Problem 3.2]).

It was pointed out by N. V. Dung that this class of rings contains a large
class of non-noetherian rings R having no indecomposable decomposition.
Namely, let R be a right semi-artinian V -ring, that is, every non-zero right
R-module contains a non-zero injective submodule (see [7]). It follows that
every indecomposable right R-module is simple and injective. The results of
Dung and Smith in [7] show that there are many non-noetherian algebras
which are semi-artinian V -rings.

We recall from [18] that a locally finitely presented Grothendieck cate-
gory � is pure-semisimple if every object of � is a direct sum of finitely
presented objects.

In relation with Theorem 3.2 and the discussion above the following
result proved in [18] would be of some interest.

Theorem 3.4. A locally finitely presented Grothendieck category � is
pure-semisimple if and only if there exists a cardinal number ℵ such that every
pure-injective object of � is a direct sum of ℵ-generated objects.

Proof. We recall from [18] that � is pure-semisimple if and only if the
category D���(2.5) is locally noetherian. On the other hand, by the prop-
erties of the functor (2.5) listed in the proof of Theorem 2.4, a cardinal
number ℵ such that every pure-injective object of � is a direct sum of
ℵ-generated objects does exist if and only if every injective object of D���
is a direct sum of ℵ-generated objects. By Roos [15] the last condition holds
if and only if D��� is locally noetherian, and we are done.

Thus, the following questions related with our previous results arise
naturally.
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Question 3.5. Let R be a ring and suppose that there exists a cardinal
number ℵ such that every right R-module is a direct sum of modules that are
pure-injective or ℵ-generated. Is R right pure-semisimple?

We do not know the answer even for ℵ=ℵ1.

Question 3.6. Let R be a ring which is right noetherian (or right artinian)
and suppose that the isomorphism classes of the indecomposable right
R-modules form a set. Is R right pure-semisimple?

4. WHEN ARE ALL STRICTLY INDECOMPOSABLE
COUNTABLY GENERATED OBJECTS PURE-PROJECTIVE?

We finish this paper by a discussion of a problem close to that one pre-
sented in Remark 3.3(b).

Following [4, 24] we call a non-zero object T of � strictly indecomposable
if the intersection of all non-zero pure subobjects of T is non-zero. It is
easy to see that strictly indecomposable objects are indecomposable.

The proof of Theorem 4.2 below will depend on the following simple but
useful observation.

Lemma 4.1. For every non-zero object M of a locally finitely presented
Grothendieck category � there exists a pure epimorphism v � M → T , where
T is a strictly indecomposable object.

Proof. We shall follow an idea in [4, Proposition 1; 22, 36.4; 24].
Let M be a non-zero object of �. If M is strictly indecomposable we

set T = M . Assume that M is not strictly indecomposable. Then there
exists a non-zero pure subobject N of M . Fix a non-zero finitely generated
subobject X of N and consider the family � of all non-zero pure subobjects
L ofM such that there is no monomorphism X → L. SinceM is not strictly
indecomposable and N is a pure subobject of M containing X then there
exists a non-zero pure subobject L of M which does not contain X, and
therefore L belongs to � . Since obviously � is an inductive family then
by Zorn’s lemma there exists a maximal object L in � . It follows that X
belongs to all pure subobjects ofM properly containing L. We set T =M/L
and we take for v � M → T the natural epimorphism. It is easy to check
that T is strictly indecomposable and the lemma follows.

The following theorem answers partially the question stated in
Remark 3.3(b). On the other hand, it generalizes the results given in [3,
Theorem 4.5; 4, Propositions 4 and 5; 16, Theorem 6.3; 18, Theorem 1.3].
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Theorem 4.2. Let � be a locally finitely presented Grothendieck category.
The following conditions are equivalent:

(a) Every indecomposable object of � is pure-projective.

(b) Every strictly indecomposable countably generated object of � is
pure-projective.

(c) The category � is pure-semisimple.

Proof. The implications (c)⇒(a)⇒(b) are obvious.

�b� ⇒ �c�. Suppose that every strictly indecomposable countably gen-
erated object of � is pure-projective.

First we shall prove that every non-zero countably generated object M
of � is a continuous well-ordered union (in the sense of [12])

M = ⋃
ξ<γ

Mξ

of subobjects Mξ of M such that the following four conditions are satisfied:

(0) ξ < γ are ordinal numbers and γ is at most the minimal
uncountable number,

(1) the embedding Mξ ⊆M is pure and the object Mξ is countably
generated for every ξ < γ,

(2) the object Mξ+1/Mξ is strictly indecomposable and countably
generated for every ξ < γ,

(3) Mβ = ⋃
ξ<β Mβ for any limit ordinal number β < γ.

Let M be a non-zero countably generated object of �. By Lemma 4.1,
there exists a pure epimorphism v �M → T1, where T1 is strictly indecom-
posable and countably generated. By (b), the object T1 is pure-projective
and therefore the pure epimorphism v splits. Consequently M contains
a countably generated strictly indecomposable pure-projective direct sum-
mand T ′

1 isomorphic with T1. We take for M1 the object T ′
1.

Assume that the object Mξ is defined. If Mξ = M we set γ = ξ + 1.
If Mξ �= M we define Mξ+1 ⊆ M as follows. By Lemma 4.1 applied to
the non-zero countably generated object M ′

ξ = M/Mξ there exists a pure
epimorphism vξ �M ′

ξ → Tξ, where Tξ is strictly indecomposable and count-
ably generated. By (b), the object Tξ is pure-projective and therefore the
composed pure epimorphism M −→ M/Mξ −→vξ Tξ splits. Consequently,
there exists a direct summand T ′

ξ of M isomorphic with Tξ such that
Mξ

⋂
T ′
ξ = 0. We take for Mξ+1 the object Mξ ⊕ T ′

ξ ⊆M . It is not difficult
to check that the condition (2) is satisfied and (1) is satisfied with ξ and
ξ + 1 interchanged.
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If β is a limit ordinal number and the objects Mξ are defined for all
ordinals ξ < β such that (1) and (2) hold for ξ < β, we set Mβ = ∪ξ<βMβ.
Obviously the condition (1) is satisfied with ξ and β interchanged.

Since M is countably generated then obviously there exists an ordinal
number γ, which is at most the minimal uncountable number, such that M
is a continuous well-ordered union M = ∪ξ<γMξ of the subobjects Mξ of
M constructed above and the conditions (0)–(3) are satisfied.

By the well-known theorem of Auslander in [2] (see also [12, 16]) there
exists an isomorphism M ∼= ⊕ξ<γMξ+1/Mξ, and therefore the object M is
pure-projective, because according to (2) the non-zero countably generated
objects Mξ+1/Mξ are strictly indecomposable, and therefore they are pure-
projective by our hypothesis (b).

Consequently, every countably generated object M of � is pure-
projective. It follows from [16, Theorem 6.3] that every object of � is
pure-projective, that is, the category � is pure semisimple. This finishes
the proof.

Remark 4.3. We hope that the condition (b) in Theorem 4.2 is equiv-
alent to the following one:

(b′) Every strictly indecomposable countably presented object of � is
pure-projective.
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