doi:10.1006/jabr.2001.8844, available online at http://www.idealibrary.com on IDE

Indecomposable Decompositions of Pure-Injective Objects and the Pure-Semisimplicity

Pedro A. Guil Asensio¹

Departamento de Matemáticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain E-mail: paguil@um.es

and

Daniel Simson²

Faculty of Mathematics and Informatics, Nicholas Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland E-mail: simson@mat.uni.torun.pl

Communicated by Susan Montgomery

Received June 21, 2000

DEDICATED TO RÜDIGER GÖBEL ON THE OCCASION OF HIS 60TH BIRTHDAY

We give a criterion for the existence of an indecomposable decomposition of pure-injective objects in a locally finitely presented Grothendieck category \mathcal{A} (Theorem 2.5). As a consequence we get Theorem 3.2, asserting that an associative unitary ring R is right pure-semisimple if and only if every right R-module is a direct sum of modules that are pure-injective or countably generated. Some open problems are formulated in the paper. © 2001 Academic Press

1. INTRODUCTION

Let R be an associative ring with identity. We denote by J(R) the Jacobson radical of R, by Mod(R) the category of right R-modules, and by

² Partially supported by Polish KBN Grant 2 PO 3A.

¹ Partially supported by the DGI (Spain) and the Fundación Séneca (PB16FS97).

mod(R) the full subcategory of Mod(R) formed by finitely generated right *R*-modules.

It was proved in [9] that a finitely presented pure-injective right R-module M has an indecomposable decomposition if and only if every pure submodule of M is pure-projective. This result has been partially extended in [5] by proving that a pure-projective right R-module M, which is pure-injective, has an indecomposable decomposition if and only if every pure submodule of M is pure-projective. Furthermore, it is shown in [5] that a pure-injective R-module M has an indecomposable decomposition if every pure submodule of M is a direct sum of countably generated modules. However, there are no general criteria for the existence of an indecomposable decomposition of an arbitrary pure-injective R-module (see [5, Remark, p. 3719]). The main goal of this paper is to give a criterion of this kind for any

The main goal of this paper is to give a criterion of this kind for any pure-injective module, and more generally, for any pure-injective object M in a locally finitely presented Grothendieck category \mathcal{A} . Our main result asserts that a pure-injective object M of \mathcal{A} has an indecomposable decomposition if and only if every directly pure subobject of M (in the sense of Definition 2.1 below) is a direct sum of objects that are pure-injective or countably generated (Theorem 2.4). As a consequence we get the main indecomposable decomposition results proved in [5, 9]. By applying Theorem 2.4 we show in Section 3 that a right R-module M

By applying Theorem 2.4 we show in Section 3 that a right *R*-module *M* is \sum -pure-injective if and only if every pure (or perfectly pure) submodule *N* of a pure-injective envelope of a direct sum of countably many copies of *M* is a direct sum of modules that are pure-injective or countably generated (see Theorem 3.1).

In Section 3 we apply our main results to the study of right puresemisimple rings [17]. We show in Theorem 3.2 that a ring R is right pure-semisimple if and only if every right R-module is a direct sum of modules that are pure-injective or countably generated. We remark that if R is a ring for which every right R-module is a direct sum of modules that are pure-injective or pure-projective, then every indecomposable right R-module is pure-injective or pure-projective. Thus, Theorem 3.2 sheds a light on the following open question posed by Simson in [20, Problem 3.2]: "Is a semiperfect ring R right artinian or right pure semisimple if every indecomposable right R-module is pure-injective or pure-projective?"

This question is also discussed in Section 4, and a partial answer is given in Theorem 4.2.

2. THE MAIN DECOMPOSITION RESULTS

We recall that a Grothendieck category \mathcal{A} is said to be locally finitely presented if there exists a set of finitely presented generators in \mathcal{A} (see [14]).

 \mathscr{A} has enough injective objects and every object M of \mathscr{A} admits an essential embedding in an injective object E(M), called an **injective envelope** of M. The object E(M) is uniquely determined by M up to isomorphism. It is well known that indecomposable injective objects of \mathscr{A} have local endomorphism rings and the Azumaya's decomposition theorem remains valid for \mathscr{A} (see [1, 14]).

Following [11], a concept of an algebraically compact object of \mathcal{A} was introduced in [16, Sect. 4]. It was proved there that the algebraically compactness and the pure-injectivity in \mathcal{A} coincide (see also [11]), and every object M of \mathcal{A} admits a pure-essential embedding into a pure-injective object $E_{pure}(M)$. The object $E_{pure}(M)$ is uniquely determined by M up to isomorphism and is called a **pure-injective envelope** of M.

The following simple lemma is a consequence of [13, Theorem 2.17], but we are including a direct proof for the sake of completeness.

LEMMA 2.1. Let \mathcal{A} be a locally finitely presented Grothendieck category. Let E be a non-zero injective object of \mathcal{A} such that any subobject E' of E is injective if E' is a direct sum of injective objects. Then E is a direct sum of indecomposable objects.

Proof. First we claim that the injective envelope of any finitely generated subobject of E is a (finite) direct sum of indecomposable objects. Assume to the contrary, that M is a non-zero finitely generated subobject of E such that its injective envelope E(M) is not a direct sum of finitely many indecomposable objects. It follows that E(M) contains an infinite direct sum $\bigoplus_{j=1}^{\infty} Q_j$ of non-zero injective objects. Applying our hypothesis, we deduce that $\bigoplus_{j=1}^{\infty} Q_j$ is injective and thus, a direct summand of E(M). Say that $E(M) = (\bigoplus_{j=1}^{\infty} Q_j) \oplus Q'$. Since M is finitely generated, $E(M) = Q_1 \oplus \cdots \oplus Q_m \oplus Q'$ for some m, and we get a contradiction.

Let now Ω_E be the set consisting of families $\{E_i\}_{i\in I}$ of indecomposable injective subobjects E_i of E such that $E \supseteq \sum_{i\in I} E_i = \bigoplus_{i\in I} E_i$. We view Ω_E as a partially ordered set with respect to the inclusion. By our claim, the set Ω_E is not empty. It is easy to check that Ω_E is inductive. By Zorn's lemma, there exists a maximal family $\{E_i\}_{i\in I}$ in Ω_E . Since the object $\bigoplus_{i\in I} E_i$ is injective by our hypothesis, then $E = \bigoplus_{i\in I} E_i$, because otherwise the family $\{E_i\}_{i\in I}$ is not maximal (by applying the above claim).

The following definition will be useful throughout this paper.

DEFINITION 2.2. Let *B* be a subobject of an object *A* in a locally finitely presented Grothendieck category \mathcal{A} . Then *B* is called a **perfectly pure subobject** of *A* if $B = \bigcup_{\beta} B_{\beta}$ is a directed union of its subobjects B_{β} such that the composed monomorphism $B_{\beta} \subseteq B \subseteq A$ splits for all indices β .

It is easy to see that every perfectly pure subobject of A is a pure subobject of A. The following easy lemma will be useful later on. LEMMA 2.3. Let \mathscr{A} be a locally finitely presented Grothendieck category. Let $\bigoplus_{i \in I} E_i$ be a direct sum of injective objects of \mathscr{A} that is not injective. Let us denote by $\pi_j : \bigoplus_{i \in I} E_i \to E_j$ the canonical projections. Then there exist a subobject N of a finitely generated object M and a morphism $f : N \to \bigoplus_I E_i$ such that the set $\{j \in I \mid \pi_j \circ f \neq 0\}$ is infinite.

Proof. By Baer's Injectivity Criterium for Grothendieck Categories (see [21, Proposition V.2.9]), there must exist a finitely generated object M of \mathcal{A} and a morphism f from a subobject N of M to $\bigoplus_{i \in I} E_i$ that cannot be extended to M. Since finite direct sums of copies of injective objects are injectives, this means that Im(f) is not contained in any finite direct subsum of $\bigoplus_{i \in I} E_i$. Thus, the set $\{j \in I \mid \pi_j \circ f \neq 0\}$ must be infinite.

The following result is basic for the proof of our main theorem.

THEOREM 2.4. Let E be a non-zero injective object of a locally finitely presented Grothendieck category \mathcal{A} . The following conditions are equivalent:

(a) *E* is a direct sum of indecomposable objects.

(b) Every non-zero perfectly pure subobject of E is a direct sum of indecomposable injective objects.

(c) Every non-zero perfectly pure subobject of E is a direct sum of objects that are injective or countably generated.

Proof. (a) \Rightarrow (b). Suppose that $E = \bigoplus_{s \in S} E_s$ is a direct sum of indecomposable objects E_s . It follows that the endomorphism ring $\text{End}(E_s)$ of E_s is local for any $s \in S$.

Let L be a non-zero perfectly pure subobject of E. By definition, $L = \bigcup_{\beta} L_{\beta}$ is a directed union of its subobjects L_{β} such that the composed monomorphism $L_{\beta} \subseteq L \subseteq E$ splits for all indices β . We shall show that L is direct sum of indecomposable injective objects.

Let Ω_L be the set consisting of families $\{Q_j\}_{j\in J}$ of indecomposable injective subobjects Q_j of L such that $L \supseteq \sum_{j\in J} Q_j = \bigoplus_{j\in J} Q_j$ and each Q_j is a subobject of some L_β . We view Ω_L as a partially ordered set with respect to the inclusion. It is easy to see that Ω_L is an inductive set.

Now we show that the set Ω_L is non-empty. Since L is not zero and is a directed union of injective subobjects L_β , then there exists a non-zero finitely generated subobject X of L. This means that X embeds in L_β for some ordinal β and thus, the injective envelope E(X) of X is also a subobject of L_β . By our assumption, E(X) is a direct sum of (finitely many) indecomposable subobjects Q_1, \ldots, Q_r of $L_\beta \subseteq L$ and therefore the family $\{Q_1, \ldots, Q_r\}$ belongs to Ω_L .

By Zorn's lemma, there exists a maximal element $\{Q_j\}_{j\in J}$ in Ω_L . We shall show that $L = \sum_{j\in J} Q_j = \bigoplus_{j\in J} Q_j$. By [1, Proposition 25.5] the decomposition $E = \bigoplus_{s\in S} E_s$ complements direct summands. Since $\bigoplus_{j\in J'} Q_j$ is injective for any finite subset J' of J then the composed monomorphism $\bigoplus_{j \in J} Q_j \subseteq L \subseteq E$ splits (see, e.g., [5, Theorem 3.4]). Consequently, $L = (\bigoplus_{j \in J} Q_j) \oplus L'$ for some subobject L' of L. We claim that L' is zero. If L' is not zero then L' contains a finitely generated subobject M. Its injective envelope E(M) is a subobject of some L_{γ} . By assumption, the object E(M) has an indecomposable direct summand Q' contained in L_{γ} . Since $Q' \cap (\bigoplus_{j \in J} Q_j) \subseteq E(M) \cap (\bigoplus_{j \in J} Q_j) = 0$ then the family $\{Q'\} \cup \{Q_j\}_{j \in J}$ belongs to Ω_L , contrary to the maximality of $\{Q_j\}_{j \in J}$. Consequently L' is zero and $L = \bigoplus_{j \in J} Q_j$.

(b) \Rightarrow (c). Obvious.

(c) \Rightarrow (a). Suppose that (c) holds but *E* is not a direct sum of indecomposable objects. By Lemma 2.1, there exists a non-injective subobject *E'* of *E* such that $E' = \bigoplus_{i \in I} E_i$ is a direct sum of non-zero injective subobjects E_i of *E*, for each $i \in I$, where *I* is an infinite set. By Lemma 2.3, there exists a subobject *N* of a finitely generated object *M* and a morphism $f: N \rightarrow \bigoplus_{i \in I} E_i$ such that the set $I' = \{j \in I \mid \pi_j \circ f \neq 0\}$ is infinite, where $\pi_j: \bigoplus_{i \in I} E_i \rightarrow E_j$ denotes the canonical projection. Let *J* be an infinite countable subset of *I'*.

Choose a finitely generated subobject X_j of E_j with the property that $0 \neq X_j \subseteq \text{Im}(N_j \cdot f)$ for any $j \in J$. Denote by Q_j an injective envelope of X_j in E_j . Since the set J is countable and each X_j is finitely generated then $\bigoplus_{j \in J} X_j$ is countably generated, and obviously it is essential in $\bigoplus_{j \in J} Q_j$. Let $Q = E(\bigoplus_{j \in J} Q_j)$ be an injective envelope of $\bigoplus_{j \in J} Q_j$ in E, and let

$$\pi:\bigoplus_{i\in I}E_i\to\bigoplus_{j\in J}Q_j$$

be the epimorphism that carries E_i to zero if $i \in I \setminus J$, whereas the restriction of π to E_i is the composition of the natural direct summand projection on $E_i \to Q_i$ with the canonical monomorphism $Q_i \to \bigoplus_{j \in J} Q_j$ for all $i \in J$. We claim that the composed morphism

$$g = \pi \circ f : N \longrightarrow \bigoplus_{j \in J} Q_j$$

admits no extensions to a morphism $h: M \to \bigoplus_{j \in J} Q_j$ along the monomorphism $u: N \to M$. In particular, $\bigoplus_{j \in J} Q_j$ is not injective. Suppose to the contrary that g admits such an extension h. Since M is finitely generated then Im(h), and so Im(g), is contained in $\bigoplus_{j \in F} Q_j$ for some finite subset F of J. Thus, $\pi_j \circ g = 0$ for each $j \in J \setminus F$, but this contradicts our construction of each object Q_j .

Consider the set Ω of subobjects L of Q satisfying the following three conditions:

- (1) $\oplus_{j\in J}Q_j\subseteq L\subseteq Q$,
- (2) L is a direct sum of injective subobjects of Q,

(3) the morphism $g = \pi \circ f : N \to \bigoplus_{j \in J} Q_j \subseteq L$ admits no extensions to a morphism $h : M \to L$ along the monomorphism $u : N \to M$.

It is clear that Ω is not empty, because the object $\bigoplus_{j \in J} Q_j$ belongs to Ω . We shall show that Ω is an inductive set with respect to the inclusion. Let $\{L_k\}_{k \in K}$ be a chain in Ω and let $L = \bigcup_{k \in K} L_k$. Since L is a directed union of direct sums of injective subobjects of Q, it is a perfectly pure subobject of E (since it is the direct union of the finite direct sums of copies of these injective objects). Thus, by hypothesis,

$$L = \left(\bigoplus_{u \in U} Y_u\right) \oplus \left(\bigoplus_{v \in V} Z_v\right)$$

is a direct sum of injective objects Y_u and countably generated objects Z_v . Moreover, U and V are countable sets, because L contains a countably generated subobject $\bigoplus_{j \in J} X_j$ that it is essential in it, as it was so in Q. Thus, $Z = \bigoplus_{v \in V} Z_v$ is countably generated. We can perform the object $Z = \sum_{n \in \mathbb{N}} Z'_n$ as a countable sum of finitely generated subobjects.

Since Z'_1 is finitely generated, it is contained in $\bigcup_{k \in F} L_k$ for some finite subset $F \subseteq K$. Furthermore, since each L_k is a direct sum of injective objects, then L contains an injective envelope $E(Z'_1)$ of Z'_1 . Moreover, $E(Z'_1) \cap (\bigoplus_{u \in U} Y_u) = 0$, because $Z'_1 \cap (\bigoplus_{u \in U} Y_u) = 0$. Thus,

$$E(Z'_1) \cong \frac{(\bigoplus_{u \in U} Y_u) \oplus E(Z'_1)}{\bigoplus_{u \in U} Y_u} \subseteq \frac{(\bigoplus_{u \in U} Y_u) \oplus (\bigoplus_{v \in V} Z_v)}{\bigoplus_{u \in U} Y_u} \cong \bigoplus_{v \in V} Z_v = Z$$

and it is clear that the above isomorphism fixes Z'_1 . Thus, Z contains the injective envelope $E(Z'_1)$ of Z'_1 , and therefore there is a decomposition $Z = E(Z'_1) \oplus Z''_1$. Denote by $Z'_{1,n}$ the image of Z'_n under the natural projection on Z''_1 for $n \ge 2$. Further, we set $Z'_{1,1} = Z'_1$ for simplicity.

It is easy to check that $Z = E(Z'_1) \oplus \sum_{n \ge 2} Z'_{1,n}$, and therefore we get a decomposition $L = (\bigoplus_{u \in U} Y_u) \oplus E(Z'_1) \oplus \sum_{n \ge 2} Z'_{1,n}$.

By applying the same construction to L and $Z'_{1,2}$ we get

$$L = \left(\bigoplus_{u \in U} Y_u\right) \oplus E(Z'_{1,1}) \oplus E(Z'_{2,2}) \oplus \sum_{n \ge 3} Z'_{2,n}.$$

Repeating this process, we construct an infinite set $\{E(Z'_{n,n})\}_{n\in\mathbb{N}}$ of injective subobjects of L such that for each $m \in \mathbb{N}$, we have that $(\bigoplus_{u \in U} Y_u) \oplus (\bigoplus_{n=1}^m E(Z'_{n,n})) \subseteq L$.

Moreover, by construction, $Z'_m \subseteq \bigoplus_{n=1}^m Z'_{n,n}$, for each $m \in \mathbb{N}$. As a consequence, $Z \subseteq \bigoplus_{n \in \mathbb{N}} E(Z'_{n,n})$, the object L admits a decomposition

$$L = \left(\bigoplus_{u \in U} Y_u\right) \oplus \left(\bigoplus_{n \in \mathbb{N}} E(Z'_{n,n})\right)$$

and we have proved that L satisfies (2).

Finally, we have to show that the morphism $g = \pi \circ f : N \to \bigoplus_{j \in J} Q_j \subseteq L$ admits no extensions to a morphism $h : M \to L$ along the monomorphism $u : N \to M$.

Suppose to the contrary that g admits such an extension h. Then Im(h) is finitely generated, since so is M. We deduce that there exists a $k \in K$ such that $\text{Im}(h) \subseteq L_k$. But this is a contradiction, because $L_k \in \Omega$ and therefore the morphism g cannot be extended to a morphism $M \to L_k$ by hypothesis.

We have proved that $L \in \Omega$, and so Ω is an inductive set. By Zorn's lemma, there exists a maximal element L_0 in Ω . By our hypothesis, the object L_0 is a direct sum of injective objects. Let

$$L_0 = \bigoplus_{t \in T} W_t,$$

where W_t is injective for any $t \in T$. Denote by $q_t : L_0 \to W_t$, the canonical projections. Since g cannot be extended to a morphism $h : M \to L_0$, there exists an infinite subset $T' \subseteq T$ such that $q_t \circ g \neq 0$ for each $t \in T'$ (because otherwise Im(g) would be contained in a finite subsum of the W_t 's, say $\bigoplus_{t \in F} W_t$, that would be injective, and g would extend to a morphism $M \to \bigoplus_{t \in F} W_t \subseteq L_0$).

Let us write the set T' as a disjoint union $T' = T_1 \cup T_2$ of infinite subsets T_1 and T_2 . Denote by $q_{T_1} : \bigoplus_{t \in T} W_t \to \bigoplus_{t \in T_1} W_t$ and $q_{T_2} : \bigoplus_{t \in T} W_t \to \bigoplus_{t \in T_2} W_t$ the canonical projections. It is clear that the morphism $q_{T_i} \circ g$ cannot be extended to a morphism $h : M \to \bigoplus_{t \in T_i} W_t$, for i = 1, 2, because otherwise Im(h) would be contained in some finite subsum $\bigoplus_{t \in F} W_t$ of $\bigoplus_{t \in T_i} W_t$, as M is finitely generated. It follows that $q_t \circ g = q_t \circ q_{T_i} \circ g = 0$ for each $t \in T_i \setminus F$, and we get a contradiction.

Let us choose an injective envelope $E(\bigoplus_{t \in T_1} W_t)$ of $\bigoplus_{t \in T_1} W_t$ in Q. Note that $\bigoplus_{t \in T_1} W_t \neq E(\bigoplus_{t \in T_1} W_t)$, because $q_{T_1} \circ g$ has no extension to a morphism $M \to \bigoplus_{t \in T_1} W_t$. Thus, $L_0 = \bigoplus_{t \in T} W_t$ is strictly contained in $E(\bigoplus_{t \in T_1} W_t) \oplus (\bigoplus_{t \in T_2} W_t)$ and the morphism g has no extension to a morphism $M \to E(\bigoplus_{t \in T_1} W_t) \oplus (\bigoplus_{t \in T_2} W_t)$, because otherwise $q_{T_2} \circ g$ extends to a morphism $M \to \bigoplus_{t \in T_2} W_t$, and consequently the object $E(\bigoplus_{t \in T_1} W_t) \oplus (\bigoplus_{t \in T_2} W_t)$ belongs to Ω , a contradiction with the maximality of L_0 . This finishes the proof of the theorem.

Now we are able to prove the main result of this section.

THEOREM 2.5. Let *E* be a non-zero pure-injective object of a locally finitely presented Grothendieck category \mathcal{A} . The following conditions are equivalent:

(a) *E* is a direct sum of indecomposable objects.

(b) Every perfectly pure subobject of E is a direct sum of indecomposable pure-injective objects.

(c) Every perfectly pure subobject of E is a direct sum of objects that are pure-injective or countably generated.

Proof. It was shown in [18] that there exists a locally finitely presented Grothendieck category $D(\mathcal{A})$ and a fully faithful additive functor

 $(2.5) t: \mathscr{A} \longrightarrow D(\mathscr{A})$

with the following properties:

(i) The functor **t** admits a right adjoint functor $\mathbf{g}: D(\mathcal{A}) \to \mathcal{A}$.

(ii) A short exact sequence $\mathbf{X}: 0 \to X' \to X \to X'' \to 0$ in \mathcal{A} is pure if and only if the sequence $\mathbf{t}(\mathbf{X})$ is exact in $D(\mathcal{A})$, or equivalently, if and only if the sequence $\mathbf{t}(\mathbf{X})$ is pure exact in $D(\mathcal{A})$.

(iii) t carries finitely generated objects to finitely generated ones.

(iv) The image of \mathcal{A} under the functor **t** is the full subcategory of $D(\mathcal{A})$ formed by all *FP*-injective objects.

(v) An object A of \mathcal{A} is pure-injective if and only if $\mathbf{t}(A)$ is an injective object of $D(\mathcal{A})$.

It follows that A is a perfectly pure subobject of E if and only if $\mathbf{t}(A)$ is a perfectly pure subobject of $\mathbf{t}(E)$.

Consequently, the conditions (a), (b), and (c) are equivalent to the corresponding conditions (a), (b), and (c) for $\mathbf{t}(E)$ in $\mathbf{t}(E)$ with "pure-injective" and "injective" interchanged. Thus, the result is an immediate consequence of Theorem 2.3 applied to the injective object $\mathbf{t}(E)$ of the category $D(\mathcal{A})$.

As an immediate consequence of Theorem 2.5 we get

COROLLARY 2.6. Let *E* be a pure-injective object of a locally finitely presented Grothendieck category \mathcal{A} . If every pure subobject of *E* is a direct sum of countably generated objects, then *E* is a direct sum of indecomposable objects.

By applying Theorem 2.4 to the category $\mathcal{A} = Mod(R)$ of right *R*-modules we get [6, Theorem 2.5], which is the main result of [6].

3. Σ-PURE-INJECTIVITY AND THE PURE SEMISIMPLICITY

We recall that a module M is Σ -pure-injective if any direct sum of copies of M is a pure injective module (see [10, 23]).

An interesting consequence of Theorem 2.4 is the following characterization of Σ -pure-injective modules (compare with [23]).

COROLLARY 3.1. Let M be a right R-module. The following conditions are equivalent:

(a) *M* is Σ -pure-injective.

(b) Every pure submodule of a pure-injective envelope of a direct sum of arbitrary many copies of M is a direct sum of modules that are pure-injective or countably generated.

(b') Every pure submodule of a pure-injective envelope of a direct sum of countably many copies of M is a direct sum of modules that are pure-injective or countably generated.

(c) Every perfectly pure submodule of a pure-injective envelope of a direct sum of copies of M is a direct sum of modules that are pure-injective or countably generated.

(c') Every perfectly pure submodule of a pure-injective envelope of a direct sum of countably many copies of M is a direct sum of modules that are pure-injective or countably generated.

Proof. (a) \Rightarrow (b). It is well known that every pure-submodule of a Σ -pure-injective module is again Σ -pure-injective (see, e.g., [8, Corollary 1.4]).

The implications (b) \Rightarrow (b') \Rightarrow (c') and (b) \Rightarrow (c) \Rightarrow (c') are trivial.

 $(c') \Rightarrow (a)$. Let $E = E_{pure}(M^{(\mathbb{N})})$ be a pure-injective envelope of a direct sum of countably many copies of M. By Theorem 2.4, E is a direct sum of indecomposable modules. On the other hand, E contains a direct sum $E_{pure}(M)^{(\mathbb{N})}$ of countably many copies of the pure-injective envelope $E_{pure}(M)$ of M as a pure submodule. Then $E_{pure}(M)^{(\mathbb{N})}$ is a direct summand of E by [5, Theorem 3.4]. Consequently, $E_{pure}(M)$ is Σ -pure-injective, and in view of [8, Corollary 1.4], M is Σ -pure-injective, because M is a pure submodule of $E_{pure}(M)$.

We recall from [17] that a ring R is called **right pure semisimple** if every right R-module is a direct sum of finitely presented modules, or equivalently, if every right R-module is algebraically compact (i.e., pure-injective) [11]. These rings are always right artinian (see, e.g., [4, Proposition 5]). The reader is referred to [10, 19, 25] for a background on right pure semisimple rings.

The above corollary yields to the following characterization of puresemisimple rings.

THEOREM 3.2. Let R be a ring. The following conditions are equivalent:

(a) *R* is right pure semisimple.

(b) Every right R-module is a direct sum of modules that are pureinjective or pure-projective. (c) Every right R-module is a direct sum of modules that are pureinjective or countably generated.

Proof. The implications $(a) \Rightarrow (b) \Rightarrow (c)$ are obvious.

(c) ⇒ (a). Suppose that (c) holds. By Corollary 3.1, every right *R*-module is Σ -pure-injective. Thus, *R* is right pure-semisimple (see, e.g., [4, Proposition 5]). ■

REMARK 3.3. (a) The implication (b) \Rightarrow (c) of Theorem 3.2 sheds a light on the following open question posed in [20, Problem 3.2] (compare with [23]): "Is a semiperfect ring R right artinian or right pure semisimple if every indecomposable right R-module is pure-injective or pure-projective?"

(b) A characterization of rings R for which every indecomposable right R-module is pure-injective or pure-projective remains also an open problem (see [20, Problem 3.2]).

It was pointed out by N. V. Dung that this class of rings contains a large class of non-noetherian rings R having no indecomposable decomposition. Namely, let R be a right semi-artinian V-ring, that is, every non-zero right R-module contains a non-zero injective submodule (see [7]). It follows that every indecomposable right R-module is simple and injective. The results of Dung and Smith in [7] show that there are many non-noetherian algebras which are semi-artinian V-rings.

We recall from [18] that a locally finitely presented Grothendieck category \mathcal{A} is pure-semisimple if every object of \mathcal{A} is a direct sum of finitely presented objects.

In relation with Theorem 3.2 and the discussion above the following result proved in [18] would be of some interest.

THEOREM 3.4. A locally finitely presented Grothendieck category \mathcal{A} is pure-semisimple if and only if there exists a cardinal number \aleph such that every pure-injective object of \mathcal{A} is a direct sum of \aleph -generated objects.

Proof. We recall from [18] that \mathcal{A} is pure-semisimple if and only if the category $D(\mathcal{A})(2.5)$ is locally noetherian. On the other hand, by the properties of the functor (2.5) listed in the proof of Theorem 2.4, a cardinal number \aleph such that every pure-injective object of \mathcal{A} is a direct sum of \aleph -generated objects does exist if and only if every injective object of $D(\mathcal{A})$ is a direct sum of \aleph -generated objects. By Roos [15] the last condition holds if and only if $D(\mathcal{A})$ is locally noetherian, and we are done.

Thus, the following questions related with our previous results arise naturally.

QUESTION 3.5. Let R be a ring and suppose that there exists a cardinal number \aleph such that every right R-module is a direct sum of modules that are pure-injective or \aleph -generated. Is R right pure-semisimple?

We do not know the answer even for $\aleph = \aleph_1$.

QUESTION 3.6. Let R be a ring which is right noetherian (or right artinian) and suppose that the isomorphism classes of the indecomposable right *R*-modules form a set. Is *R* right pure-semisimple?

4. WHEN ARE ALL STRICTLY INDECOMPOSABLE COUNTABLY GENERATED OBJECTS PURE-PROJECTIVE?

We finish this paper by a discussion of a problem close to that one presented in Remark 3.3(b).

Following [4, 24] we call a non-zero object T of \mathcal{A} strictly indecomposable if the intersection of all non-zero pure subobjects of T is non-zero. It is easy to see that strictly indecomposable objects are indecomposable. The proof of Theorem 4.2 below will depend on the following simple but

useful observation.

LEMMA 4.1. For every non-zero object M of a locally finitely presented Grothendieck category \mathcal{A} there exists a pure epimorphism $v: M \to T$, where T is a strictly indecomposable object.

Proof. We shall follow an idea in [4, Proposition 1; 22, 36.4; 24]. Let M be a non-zero object of \mathscr{A} . If M is strictly indecomposable we set T = M. Assume that M is not strictly indecomposable. Then there exists a non-zero pure subobject N of M. Fix a non-zero finitely generated subobject X of N and consider the family \mathscr{F} of all non-zero pure subobjects L of M such that there is no monomorphism $X \to L$. Since M is not strictly indecomposable and N is a pure subobject of M containing X then there exists a non-zero pure subobject L of M which does not contain X, and therefore L belongs to \mathscr{F} . Since obviously \mathscr{F} is an inductive family then by Zorn's lemma there exists a maximal object L in \mathscr{F} . It follows that Xby Zorn's lemma there exists a maximal object L in \mathcal{F} . It follows that X belongs to all pure subobjects of M properly containing L. We set T = M/L and we take for $v: M \to T$ the natural epimorphism. It is easy to check that T is strictly indecomposable and the lemma follows.

The following theorem answers partially the question stated in Remark 3.3(b). On the other hand, it generalizes the results given in [3, Theorem 4.5; 4, Propositions 4 and 5; 16, Theorem 6.3; 18, Theorem 1.3].

THEOREM 4.2. Let \mathcal{A} be a locally finitely presented Grothendieck category. The following conditions are equivalent:

(a) Every indecomposable object of \mathcal{A} is pure-projective.

(b) Every strictly indecomposable countably generated object of A is pure-projective.

(c) The category \mathcal{A} is pure-semisimple.

Proof. The implications $(c) \Rightarrow (a) \Rightarrow (b)$ are obvious.

(b) \Rightarrow (c). Suppose that every strictly indecomposable countably generated object of \mathscr{A} is pure-projective.

First we shall prove that every non-zero countably generated object M of \mathcal{A} is a continuous well-ordered union (in the sense of [12])

$$M = \bigcup_{\xi < \gamma} M_{\xi}$$

of subobjects M_{ξ} of M such that the following four conditions are satisfied:

(0) $\xi < \gamma$ are ordinal numbers and γ is at most the minimal uncountable number,

(1) the embedding $M_{\xi} \subseteq M$ is pure and the object M_{ξ} is countably generated for every $\xi < \gamma$,

(2) the object $M_{\xi+1}/M_{\xi}$ is strictly indecomposable and countably generated for every $\xi < \gamma$,

(3) $M_{\beta} = \bigcup_{\xi < \beta} M_{\beta}$ for any limit ordinal number $\beta < \gamma$.

Let M be a non-zero countably generated object of \mathscr{A} . By Lemma 4.1, there exists a pure epimorphism $v: M \to T_1$, where T_1 is strictly indecomposable and countably generated. By (b), the object T_1 is pure-projective and therefore the pure epimorphism v splits. Consequently M contains a countably generated strictly indecomposable pure-projective direct summand T'_1 isomorphic with T_1 . We take for M_1 the object T'_1 .

Assume that the object M_{ξ} is defined. If $M_{\xi} = M$ we set $\gamma = \xi + 1$. If $M_{\xi} \neq M$ we define $M_{\xi+1} \subseteq M$ as follows. By Lemma 4.1 applied to the non-zero countably generated object $M'_{\xi} = M/M_{\xi}$ there exists a pure epimorphism $v_{\xi} : M'_{\xi} \to T_{\xi}$, where T_{ξ} is strictly indecomposable and countably generated. By (b), the object T_{ξ} is pure-projective and therefore the composed pure epimorphism $M \longrightarrow M/M_{\xi} \longrightarrow^{v_{\xi}} T_{\xi}$ splits. Consequently, there exists a direct summand T'_{ξ} of M isomorphic with T_{ξ} such that $M_{\xi} \cap T'_{\xi} = 0$. We take for $M_{\xi+1}$ the object $M_{\xi} \oplus T'_{\xi} \subseteq M$. It is not difficult to check that the condition (2) is satisfied and (1) is satisfied with ξ and $\xi + 1$ interchanged. If β is a limit ordinal number and the objects M_{ξ} are defined for all ordinals $\xi < \beta$ such that (1) and (2) hold for $\xi < \beta$, we set $M_{\beta} = \bigcup_{\xi < \beta} M_{\beta}$. Obviously the condition (1) is satisfied with ξ and β interchanged.

Since *M* is countably generated then obviously there exists an ordinal number γ , which is at most the minimal uncountable number, such that *M* is a continuous well-ordered union $M = \bigcup_{\xi < \gamma} M_{\xi}$ of the subobjects M_{ξ} of *M* constructed above and the conditions (0)–(3) are satisfied.

By the well-known theorem of Auslander in [2] (see also [12, 16]) there exists an isomorphism $M \cong \bigoplus_{\xi < \gamma} M_{\xi+1}/M_{\xi}$, and therefore the object M is pure-projective, because according to (2) the non-zero countably generated objects $M_{\xi+1}/M_{\xi}$ are strictly indecomposable, and therefore they are pure-projective by our hypothesis (b).

Consequently, every countably generated object M of \mathcal{A} is pure-projective. It follows from [16, Theorem 6.3] that every object of \mathcal{A} is pure-projective, that is, the category \mathcal{A} is pure semisimple. This finishes the proof.

REMARK 4.3. We hope that the condition (b) in Theorem 4.2 is equivalent to the following one:

(b') Every strictly indecomposable countably presented object of \mathcal{A} is pure-projective.

ACKNOWLEDGMENT

The authors thank N. V. Dung for suggesting to them the problem of characterizing rings R for which every right R-module is a direct sum of modules that are pure-injective or pure-projective.

REFERENCES

- F. W. Anderson and K. R. Fuller, "Rings and Categories of Modules," Springer-Verlag, New York/Berlin, 1991.
- 2. M. Auslander, On the dimension of modules and algebras, III, *Nagoya Math. J.* 9 (1955), 67–77.
- G. Azumaya, Countable generatedness version of rings of pure global dimension zero, *in* London Math. Soc. Lecture Notes Series, Vol. 168, pp. 43–79, Cambridge Univ. Press, Cambridge, UK, 1992.
- G. Azumaya and A. Facchini, Rings of pure global dimension zero and Mittag–Leffler modules, J. Pure Appl. Algebra 62 (1989), 109–122.
- 5. N. V. Dung, Modules with indecomposable decompositions that complement maximal direct summands, *J. Algebra* **197** (1997), 449–467.
- N. V. Dung, Indecomposable decompositions of pure-injective modules, *Comm. Algebra* 26 (1998), 3709–3725.

- N. V. Dung and P. F. Smith, On semi-artinian V-modules, J. Pure Appl. Algebra 82 (1992), 27–37.
- J. L. García and N. V. Dung, Some decomposition properties of injective and pureinjective modules, *Osaka J. Math.* 31 (1994), 95–98.
- J. L. Gómez Pardo and P. A. Guil Asensio, Indecomposable decompositions of finitely presented pure-injective modules, J. Algebra 192 (1997), 200–208.
- C. U. Jensen and H. Lenzing, "Model Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules," Algebra, Logic and Applications, Vol. 2, Gordon & Breach, New York, 1989.
- R. Kielpiński, On Γ-pure injective modules, Bull. Polon. Acad. Sci. Ser. Math. 15 (1967), 127–131.
- 12. B. Mitchell, Rings with several objects, Adv. Math. 8 (1972), 1-161.
- S. H. Mohamed and B. J. Müller, "Continuous and Discrete Modules," Cambridge Univ. Press, Cambridge, UK, 1990.
- N. Popescu, "Abelian Categories with Applications to Rings and Modules," Academic Press, San Diego, 1973.
- J. E. Roos, Locally noetherian categories and linearly compact rings: Applications, *in* Lecture Notes in Math., Vol. 92, pp. 197–277, Springer-Verlag, New York/Berlin, 1969.
- D. Simson, On pure global dimension of locally finitely presented Grothendieck categories, *Fund. Math.* 96 (1977), 91–116.
- D. Simson, Pure semisimple categories and rings of finite representation type, J. Algebra 48 (1977), 290–296; Corrigendum, 67 (1980), 254–256.
- D. Simson, On pure semi-simple Grothendieck categories, I, Fund. Math. 100 (1978), 211–222.
- D. Simson, A class of potential counter-examples to the pure semisimplicity conjecture, in "Advances in Algebra and Model Theory" (M. Droste and R. Göbel, Eds.), Algebra, Logic and Applications Series, Vol. 9, pp. 345–373, Gordon & Breach, Australia, 1997.
- D. Simson, Dualities and pure semisimple rings, *in* "Proc. Conference, Abelian Groups, Module Theory and Topology, University of Padova, June 1997," *Lecture Notes in Pure and Appl. Math.*, Vol. 201, pp. 381–388, Dekker, New York, 1998.
- 21. B. Stenström, "Rings of Quotients," Springer-Verlag, New York/Berlin, 1975.
- 22. R. Wisbauer, "Foundations of Module and Ring Theory," Algebra, Algebra, Logic and Applications, Vol. 3, Gordon & Breach, New York, 1988.
- B. Zimmermann-Huisgen, Rings whose right modules are direct sums of indecomposable modules, *Proc. Amer. Math. Soc.* 77 (1979), 191–197.
- 24. W. Zimmermann, Einige Charakterisierung der Ringe über denen reine Untermoduln direkte Summanden sind, *Bayer. Akad. Wiss. Math.-Natur.* 2 (1973), 77–79.
- 25. W. Zimmermann and B. Zimmermann-Huisgen, On the sparsity of representations of rings of pure global dimension zero, *Trans. Amer. Math. Soc.* **320** (1990), 695–711.