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Abstract

Metastatic tumors generally exhibit aerobic glycolysis

(the Warburg effect). The advent of [18F]fluorodeoxy-

glucose positron emission tomography imaging,

coupled with recent findings linking hypoxia-inducible

factor (HIF-1A) overexpression to aggressive cancers,

has rekindled an interest in this aspect of tumor

metabolism. These studies explore the role of HIF-1A

in human breast cancer lines and its relationship to

glycolytic regulation. Here we demonstrate that, under

normal oxygen conditions, nonmetastatic cells con-

sume less glucose and express low HIF-1A, whereas

metastatic cells constitutively express high glycolysis

and HIF-1A, suggesting that dysregulation of HIF-1A

may induce the Warburg effect. This hypothesis was

tested by renormalizing HIF-1A levels in renal carci-

noma cells, leading to inhibition of aerobic glycolysis.

Neoplasia (2005) 7, 324–330

Keywords: Warburg effect, hypoxia-inducible factor, glucose consumption,
lactate, glycolysis.

Introduction

Warburg [1] first established a correlation between aggres-

sive tumor phenotypes and elevated glycolysis when he

observed that many tumors produce excessive levels of

lactic acid even in the presence of oxygen. Interest in the

regulation of tumor glycolysis was rekindled, in part, due to

thousands of [18F]fluorodeoxyglucose positron emission

tomography ([18F]FdG-PET) patient scans demonstrating

that a vast majority (>90%) of metastatic tumors are highly

glycolytic [2,3]. The glycolytic phenotype expressed in

metastatic cancers may be selected in periods of cyclic

hypoxia during early tumor growth [4]. In this model, cells

expressing constitutively high glycolysis survive bouts of

ischemia characteristic of tumor perfusion [5]. Many tumors

contain intermittently hypoxic microenvironments due to

poor perfusion from an irregular and inefficient vasculature

[6]. Furthermore, tumor hypoxia has been associated with

cancer progression and resistance to radiation and chemo-

therapies, despite the fact that high microvessel density is

also linked to poor prognosis [4,7,8]. This apparent dichot-

omy is likely explained by the observation that excessive

angiogenesis leads to vascular imbalance and poor perfu-

sion [9]. Acute hypoxia causes increased glycolysis at the

substrate level (the Pasteur effect), likely mediated through

intracellular redox balance. In contrast, chronic hypoxia can

lead to high rates of glycolysis through stabilization of a

hypoxia-inducible transcription factor, hypoxia-inducible factor

(HIF-1a).

The recent discovery and study of HIF-1a have implicated a

possible molecular mechanism for the Warburg effect in ma-

lignant tumors. First discovered by Semenza and Wang [10],

HIF-1a plays an important role in cellular responses to hypoxia

and other stresses. HIF-1a combines with HIF-1b to form a

heterodimeric transcription factor that regulates the expression

of glycolytic and angiogenic proteins. HIF-1a is constitutively

expressed and destabilized in the presence of O2 by proline

hydroxylation and is targeted for proteosomal degradation by

the von Hippel-Lindau (vH-L) ubiquitin ligase [11–15]. When

accumulated (e.g., under hypoxia), the HIF-1 complex binds

hypoxia response elements (HREs; canonically CCATG) in the

promoter region of target genes. These include enzymes

involved in glycolysis and pH regulation, such as phosphoglyc-

erate kinase (PGK) [16], glucose transporters GLUT-1 and

GLUT-3 [17,18], and carbonic anhydrase CA9 [19], as well

as growth factors involved in angiogenesis and erythropoie-

sis, such as vascular endothelial growth factor (VEGF) [18,20]

and erythropoietin (EPO) [10,21]. This is significant to the

pathophysiology of tumors, as immunohistochemistry has

shown that most metastatic cancers exhibit elevated levels of

HIF-1a [22], which may be attributed to hypoxia or upregulated

expression for survival purposes, even in a well-oxygenated

environment [4].

This communication investigates the relationship between

HIF-1a stabilization in oxygenated conditions and the Warburg

effect. We explored this by comparing glucose transport,

lactate production, HIF-1a protein, and HRE-induced tran-

script levels in metastatic (MDA-mb-435) and nonmetastatic

(MCF-7) breast cancer lines. Under a 20% oxygen atmo-

sphere (normoxia), MDA-mb-435 cells have elevated glycoly-

sis, HIF-1a, and HRE transcripts, whereas these parameters
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aremeasurably lower in MCF-7 cells. Hypoxia (V2% oxygen)

induced no change in the glycolytic phenotype in MDA-

mb-435 cells, whereas HIF-1a, HRE transcripts, and glycol-

ysis were profoundly induced in MCF-7 cells.

Controversial findings have identified MDA-mb-435 cells

with melanoma cells due to the expression of specific

melanocyte genes [23] and lack of expression of breast

cell line genes in MDA-mb-435 sublines [24]. To account

for this possible discrepancy, we also included the MDA-

mb-231 metastatic breast cell line for comparison to MCF-7

cells. We maintain the view, however, that MDA-mb-435

cells are breast epithelium cells that express melanocyte-

specific genes from possible lineage infidelity during tumor

progression [25].

Our findings were verified in examinations of a renal cell

carcinoma (RCC4) where transfection of the vH-L gene into

a vH-L–null line directly modulated HIF-1a levels. Parental

RCC4 cells functioned similarly to the MDA-mb-435 and

MDA-mb-231 lines by expressing high levels of HIF-1a and

exhibiting high glycolysis under normoxic conditions. There

was a minimal effect when these cells were switched to

hypoxia. Restoration of vH-L activity led to normalization

of the HIF-1a response. Under normoxia, RCC4/vH-L cells

demonstrated low rates of glycolysis, which subsequently

increased in hypoxia. Hence, these data implicate that

dysregulation of HIF-1a can be a causal factor in the

Warburg effect.

Materials and Methods

Cell Culture

MCF-7, MDA-mb-435, and MDA-mb-231 cells were

obtained from the American Type Culture Collection (ATCC;

Rockville, MD). The vH-L–null RCC4 (vH-L–transfected and

vector-alone ‘‘mock’’-transfected) cell lines were kindly do-

nated by Garth Powis (Arizona Cancer Center, Tuczon, AZ).

Cells were cultured in DMEM (Invitrogen, Carlsbad, CA)

supplemented with 10% fetal calf serum (Omega Scientific,

Inc., Tarzana, CA). Both RCC4 cell lines were selected and

cultured in 400 mg/ml Geneticin (G418) (Gibco, Grand Island,

NY). Exposure to hypoxia was carried out for 16 to 20 hours

in V2% O2, 93% N2, and 5% CO2 at 37jC.

Western Blot Analysis

Cells grown to approximately 80% confluence in 10-cm

culture dishes were harvested for cytoplasmic protein.

Cytoplasmic extracts were prepared according to the man-

ufacturer’s instructions included in NE-PER Nuclear and

Cytoplasmic Extraction Reagents (Pierce, Rockford, IL).

Protein concentration was assayed by Bradford assay

(Pierce). Western blot analysis was performed as described

previously [40]. Blots were probed overnight at 4jC, or

for 2 hours at ambient temperature, with a 1:250 dilution

of mouse antihuman HIF-1a (Transduction Laboratories,

Lexington, KY) and a 1:1000 dilution of goat antihuman

laminin (Santa Cruz Biotechnology, Santa Cruz, CA). Pri-

mary antibodies were followed by a 1:5000 dilution of horse-

radish peroxidase–conjugated goat antimouse or donkey

antigoat IgG secondary antibody (Santa Cruz Biotech-

nology) and developed using chemiluminescence kit

(Amersham Pharmacia, Uppsala, Sweden).

Quantitative Real-Time PCR

Cells were incubated for approximately 20 hours in V2%

O2, 93% N2, and 5% CO2 (hypoxia) or 20% O2, 75% N2, and

5% CO2 (normoxia). RNA was extracted using TRIZOL

reagent (Invitrogen). Nucleic acid purity and concentration

were measured on a spectrophotometer. Reverse tran-

scription reaction was performed using the First Strand Syn-

thesis kit (Invitrogen). Four micrograms of RNA was used in

each RT reaction, and oligo dTs were used as primers. The

cDNA was diluted with an equal part of filter-sterilized H2O.

Real-time PCR was performed with a light cycler (Cepheid,

Foster City, CA) using SYBR Green reporter dye and Plat-

inum Taq enzyme (Invitrogen). Twomicroliters of each cDNA

sample was used per reaction. Primers (Table 1) were

designed using the GCG/SeqLab http://bcf.arl.arizona.edu/

gcg.html) and Primer3 (http://www-genome.wi.mit.edu) soft-

ware. b-Actin, which was normalized between the cells lines

with 18S RNA primers (forward: atcaactttcgatggtagtcg; re-

verse: ggcacacgcagctcattg), was used as the control gene

for these experiments. Expression levels were determined

as described previously using the following formula [41]:

Relative gene expression = 2([b-actin Ct] � [target gene Ct]).

Statistical significance was determined by Student’s t test.

Glucose Uptake Assay

Replicates of cells were seeded in assay plates and

cultured in growth media to 80% confluency. For measure-

ments of hypoxic glucose uptake rates, culture plates were

transferred to a hypoxic incubator for 20 hours prior to

assay. Cells were then washed in glucose-free RPMI 1640

media supplemented with 12 mM NaHCO3. Glucose-free

wash media for cells to be assayed in hypoxia were also

treated with a 100-mM dilution of deferoxamine mesylate

(DFO) iron-chelating reagent (Sigma, St. Louis, MO). Cells

were then treated with 4 mCi of [3H]2-deoxy-D-glucose (2dG)

in RPMI 1640 media supplemented with 5.56 mM D-(+)-

glucose and 12 mM NaHCO3 and incubated in normoxia or

hypoxia. Postincubation supernatant was sampled for liquid

scintillation counting (LSC) using a 5000TD series liquid

scintillation counter (Beckman Coulter, Inc., Brea, CA). Cells

were washed three times in glucose-free media and lysed

with 0.1 N NaOH for 1 minute. A lysate fraction was sampled

for LSC. The remaining lysate was neutralized with 0.1 N

Table 1. Primer Sequences.

Gene Forward Primer (5V–3V) Reverse Primer (5V–3V)

PGK aggaagaagggaagggaaaag tcatcaaaaacccaccagc

GLUT-1 tcaatgctgatgatgaacctgct ggtgacacttcacccacataca

GLUT-3 gacagcccatgcatcatttcc gaacaaaaagccatccctcc

EPO gtcccagacaccaaagttaa aggccactgacggctttat

VEGF gtccaacatcaccatgcag gcaagtacgttcgtttaactc

CA9 ctttgaatgggcgagtgatt tctcatctgcacaaggaacg
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HCl and assayed for protein concentration using Bradford

reagent (Pierce). Statistical significance was determined by

Student’s t test.

Lactate Assay

Replicates of cells were seeded in assay plates and

cultured in growth media to 80% confluency. Cells were

washed three times with glucose-free RPMI supplemented

with 12 mM NaHCO3 and treated with RPMI 1640 media

supplemented with 5.56 mM D-(+)-glucose and 12 mM

NaHCO3 and incubated for 16 hours in either hypoxic or

normoxic conditions. The supernatant was assayed for lac-

tate concentration using a lactate reagent (Sigma). Statistical

significance was determined by Student’s t test.

Results

Expression of HIF-1–Regulated Genes

The Western blot analysis in Figure 1A illustrates that

HIF-1a levels in MCF-7 cells were low under normoxic

conditions and elevated after 20 hours in hypoxia. In

contrast, MDA-mb-435 and MDA-mb-231 cells expressed

elevated HIF-1a levels under normoxic conditions, which

increased further after incubation in hypoxia. The internal

b-actin controls exhibited no variation between normoxic

and hypoxic conditions within each cell line tested. b-Actin
expression levels differed between individual cell lines. This

was also observed in the RNA expression studies, indicating

that b-actin production in these cell lines was unaltered by

any experimental variables. To investigate whether the

HIF-1a was transcriptionally active in these cells, mRNA

was extracted fromMDA-mb-435, MDA-mb-231, and MCF-7

cells, and quantitative real-time polymerase chain reaction

(qRT-PCR) was carried out using primers designed for the

HIF-1a–inducible genes (Table 1). Results are provided in

Figure 2. Under normoxia, GLUT-1, GLUT-3, PGK, EPO,

and VEGF expressions were all increased in metastatic

lines compared to MCF-7. GLUT-1 expression levels were

three-fold higher in MDA-mb-435 and MDA-mb-231 than in

MCF-7. The greatest difference was observed in GLUT-3,

where MDA-mb-435 and MDA-mb-231 expression levels

were elevated 400-fold over MCF-7 GLUT-3 transcripts.

PGK expression levels, although significant, were only

marginally higher in MDA-mb-435 (by a factor of 2) and

MDA-mb-231 (by a factor of 1.5) compared to MCF-7. EPO

transcripts were four- to six-fold elevated in the metastatic

cells compared to MCF-7. VEGF mRNA expression was

Figure 1. HIF-1a expression and the glycolytic phenotype in MDA-mb-435, MDA-mb-231, and MCF-7 cells. (A) Western blots of HIF-1a with internal �-actin

controls in MDA-mb-231, MDA-mb-435, and MCF-7 cells. Cells were exposed to hypoxia (V2% oxygen; �) or normoxia (20% oxygen; +) for 16 hours. (B)

Normoxic time course (240 minutes) of 2dG trapping in MDA-mb-435, MDA-mb-231, and MCF-7 cells. Glucose consumption rates were normalized from zero time

point values and expressed as nanomoles per milligram of protein. (C) Normoxic and hypoxic 2dG trapping rates in MDA-mb-435, MDA-mb-231, and MCF-7 cells.

Cells were grown under either normal (+) oxygen conditions (20%) or limiting (�) oxygen conditions (V2%) in 2dG for 60 minutes. Glucose consumption values

were normalized against normoxic uptake rate of MCF-7 cells. *Significant difference between expression of normoxia and hypoxia within each cell line ( P < .05).

(D) Normoxic and hypoxic lactate production. MDA-mb-435, MDA-mb-231, and MCF-7 cells were grown under either normal (+) oxygen conditions (20%) or limiting

(�) oxygen conditions (V2%) for approximately 16 hours. Lactate expression values were normalized against normoxic lactate production rate of MCF-7 cells.

*Significant difference between expression of normoxia and hypoxia within each cell line ( P < .05).
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increased by approximately three- to six-fold in the meta-

static cells over MCF-7. No differences between the cell lines

were observed for CA9 expression under normoxia. Nor-

moxic gene expression between the two metastatic cells

lines was similar in all genes tested, with the exception of

PGK where MDA-mb-435 levels were twice those observed

in MDA-mb-231.

Under hypoxia, all cells displayed significant increases in

all transcripts except EPO. Hypoxic induction of GLUT-3

(>25-fold), PGK (>6-fold), and VEGF (>17-fold) was more

dramatic in MCF-7 than induction levels observed in the

metastatic cell lines. GLUT-3, PGK, VEGF, and CA9

transcripts were significantly induced by hypoxia in MDA-

mb-435 cells. Transcript induction from hypoxia was similar

between MDA-mb-231 and MDA-mb-435. GLUT-1 expres-

sion was also significantly induced in MDA-mb-231 cells by

greater than 2.5-fold. The data from these experiments

imply that GLUT-1 expression might be inducible under hyp-

oxia in MDA-mb-435, but the results were not significant.

All cell lines appeared to have relatively similar EPO and

CA9 transcript levels under normoxia and hypoxia. These

genes may have different thresholds for HIF-1a activation

possibly due to the activity of other transcriptional activators

or repressors. Comparing HIF-1a expression and transcript

levels between cell lines demonstrates that there is no

strict correlation between transcript and HIF-1a levels, indi-

cating differential regulation of mRNA levels for these

genes in the assayed cell lines. Although not stoichiometric,

these data show that expression of HIF-1– inducible genes

is triggered by hypoxia (with the exception of EPO) to a

greater extent in MCF-7, compared to MDA-mb-435 and

MDA-mb-231 cells.

Glucose Uptake and Lactate Production in MDA-mb-435,

MDA-mb-231, and MCF-7 Cells

Rates of glycolysis were investigated in MDA-mb-435,

MDA-mb-231, and MCF-7 cells by monitoring the trapping

of 2dG. These data demonstrate that 2dG trapping in MDA-

mb-435 and MDA-mb-231 cells was significantly greater

than that of MCF-7 cells under normoxic conditions. Glu-

cose uptake rates were typically three-fold greater in MDA-

mb-435 and MDA-mb-231 cells with respect to MCF-7

(Figure 1B). Figure 1C illustrates that 2dG trapping in

MDA-mb-231 cells was not significantly different between

normoxia and hypoxia. In MDA-mb-435 cells, there was a

modest 1.4-fold increase in 2dG consumption under hyp-

oxia, whereas the rate of 2dG trapping increased by over

12-fold in MCF-7 under hypoxic conditions. These results

Figure 2. HIF-1a– inducible gene expression in MDA-mb-435, MDA-mb-231, and MCF-7 cells. Cells were incubated under normoxia (+) or hypoxia (�), as

described in the Materials and Methods section, for approximately 20 hours. Quantitative RT-PCR was carried out on extracted mRNA using primers for GLUT-1,

GLUT-3, PGK, EPO, VEGF, and CA9. Ordinate values are based on standardization of target gene expression to that of �-actin. *Significant difference between

expression of normoxia and hypoxia within each cell line ( P < .05).
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were consistent with those reported earlier using a nonradio-

active assay for glucose consumption [26].

Although trapping of 2dG is reflective of the changes

taking place in [18F]FdG-PET measurements, this endpoint

is regulated only by glucose transporter (GLUT-1 or GLUT-3)

and hexokinase activities and may not be indicative of overall

glycolysis. Therefore, lactate production levels were also

measured under normoxic and hypoxic conditions to deter-

mine if glycolysis was similarly affected. MDA-mb-435 cells

produced lactate at similar levels under both normoxia and

hypoxia, approximately five times the rate of MCF-7 cells

under normoxia. MCF-7 cells, the lowest-expressing line

under normoxia, significantly increased lactate production

when exposed to hypoxia (approximately 2.2-fold). Meta-

static cell line MDA-mb-231 demonstrated levels of lactate

production three times the levels observed in MCF-7 cells

under normoxia. These cells produced a small, but signifi-

cant, increase (1.1-fold) in lactic acid when introduced to

hypoxia in a manner similar to what was observed in MDA-

mb435 glucose uptake experiments. Hence, both 2dG con-

sumption and lactate production indicate that nonmetastatic

MCF-7 cells have a ‘‘normal’’ metabolic response (i.e., low

glycolysis under normoxia and a pronounced significant

increase on hypoxia). In contrast, the metastatic MDA-

mb-435 and MDA-mb-231 cells exhibited the Warburg effect

(i.e., high aerobic glycolysis). These behaviors are qualita-

tively similar to the differences in the HIF-1a levels observed

in both cell lines. Aerobic HIF-1a levels were higher in MDA-

mb-435 and MDA-mb-231 compared to MCF-7, concomitant

with higher glycolytic rates. Interestingly, HIF-1a levels in-

creased further in MDA-mb-435 and MDA-mb-231 cells

under hypoxia, without a further increase in glycolysis. This

suggests that glycolytic rates are maximally stimulated with

only moderate increases in HIF-1a, and this is consistent

with a high expression of the low Km GLUT-3 transcript. It is

also notable that HIF-1a levels in MCF-7 cells under hypoxia

were higher than those in MDA-mb-435 and MDA-mb-231

cells under normoxia, yet glycolytic rates were lower. Thus,

although these data suggest that HIF-1amight be involved in

the regulation of the Warburg effect, the correlation is not

exact and is likely to be cell type–dependent.

Glycolytic Phenotype in Renal Cell Lines Recapitulates

Findings in Breast Cell Lines

To address this question, vH-L–null renal cell carcinoma

(RCC4) cells were transfected to constitutively reexpress the

vH-L enzyme. As shown in Figure 3A, RCC4 cells expressed

elevated levels of HIF-1a under normoxia, attributable to

Figure 3. HIF-1a expression and the glycolytic phenotype in RCC4 and RCC4/vH-L cells. (A) Western blots measuring HIF-1a with internal lamin controls in RCC4

and RCC4/vH-L cells under normoxia and hypoxia. Cells were exposed to hypoxia (V2% oxygen; �) or normoxia (20% oxygen; +) for 16 hours. (B) Normoxic time

course (240 minutes) of 2dG trapping in RCC4 and RCC4/vH-L cells. Glucose consumption rates were normalized from zero time point values and expressed as

nanomoles per milligram of protein. (C) Normoxia and hypoxic 2dG trapping rates in RCC4 and RCC4/vH-L cells. RCC4 and RCC4/vH-L cells were grown under

either normal (+) oxygen conditions (20%) or limiting (�) oxygen conditions (V2%) in 2dG for 60 minutes. Glucose consumption values were normalized against

normoxic uptake rate of RCC4/vH-L cells. *Significant difference between expression of normoxia and hypoxia within each cell line ( P < .05). (D) Normoxic and

hypoxic lactate expression. RCC4 and RCC4/vH-L cells were grown under either normal (+) oxygen conditions (20%) or limiting (�) oxygen conditions (V2%) for

approximately 16 hours. Lactate expression values were normalized against normoxic lactate production rate of RCC4/vH-L cells. *Significant difference between

expression of normoxia and hypoxia within each cell line ( P < .05).
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defective vH-L activity, and this was not affected by hypoxia.

Reintroduction of vH-L activity with stable transfection re-

stored ‘‘normal’’ destabilization of HIF-1a in the presence

of oxygen, leading to low or absent levels under normoxia,

which increased dramatically after incubation under hypoxia.

These data are consistent with similar experiments per-

formed previously [11].

Under normoxic conditions, the vH-L–null RCC4 cells

exhibited 2dG trapping at an elevated rate similar to that

seen in MDA-mb-435 and MDA-mb-231 cells, whereas the

RCC4/vH-L cells demonstrated a 2dG uptake rate compa-

rable to MCF-7 cells (Figure 3B). Similar to the metastatic

cell lines, the vH-L–null RCC4 cells demonstrated no signif-

icant difference in 2dG trapping between normoxia and

hypoxia, whereas the RCC4/vH-L transfectants were more

akin to MCF-7 cells in that hypoxic glucose uptake increased

almost two-fold over normoxia (Figure 3C). In both cell lines,

lactate production rates correlated to the glucose consump-

tion results (Figure 3D) in that RCC4 cells demonstrated

higher normoxic lactate production than the vH-L transfec-

tants and did not upregulate lactate production when grown

under hypoxia, whereas a lactic acid increase was observed

in the vH-L transfectants. These findings are consistent with

a recent study wherein transfection of pancreatic cancer cell

lines with a dominant-negative HIF-1a resulted in reduced

aerobic glucose consumption [27]. In this same study, angio-

genesis was unaffected, underscoring the functional rela-

tionship between HIF-1 activity and glycolysis.

Discussion

The current study indicates a causal role for HIF-1a in

regulating glycolysis. Moreover, these data suggest that

aerobic stabilization of HIF-1a could potentially drive glycoly-

sis in tumors without dependence on a hypoxic environment.

The incidence of HIF-1a stabilization under normoxic con-

ditions in cancers is approximately 50%, as evidenced by

our survey of cancer cell lines [28]. These findings and

those in Figures 1A and 3A show that breast cancer lines

MDA-mb-435 and MDA-mb-231, U87 glioblastoma, DU145

prostate cancer, and renal cell carcinomas RCC4 and

CaKi express elevated HIF-1a under normoxic conditions.

These cell lines are aggressively metastatic. In contrast,

the more benign breast cancer MCF-7, HT-29 colon cancer,

MiaPaCa pancreatic cancer, A549 lung cancer, and BX-PC3

prostate cancers do not accumulate measurable HIF-1a

levels under normoxia. Although the cell lines exhibiting

visible HIF-1a under normoxia are more metastatic, these

data are too incomplete to imply an absolute correlation

between HIF-1a dysregulation and aggressiveness. None-

theless, within single cancers (i.e., for breast and prostate

cancers), the more aggressive cell lines (MDA-mb-435,

MDA-mb-231, and DU145, respectively) exhibit higher

levels of normoxic HIF-1a, unlike the less vigorous cell

lines (MCF-7 and BX-PC3, respectively). These data com-

plement HIF-1a immuno staining showing that metastatic

tumors were predominantly more positive compared to be-

nign tumors [22]. In addition to glycolysis, constitutive ex-

pression of HIF-1a would have other sequelae such as dys-

regulated angiogenesis because both VEGF and its receptor,

Flt-1, can be induced by HIF-1 activity [29]. Upregulation of

these angiogenic factors may play a part in morphogenesis

of chaotic vasculature, which is a hallmark of solid tumors

[30]. The high normoxic expression of VEGF and other

growth factors may be responsible for the correlation be-

tween microvessel density and tumor aggressiveness [31].

The mechanisms leading to accumulation of HIF-1a

under normoxic conditions in MDA-mb-435 and MDA-

mb-231 cells are unknown, and there are multiple possi-

bilities. As with other breast cancers, MDA-mb-435 and

MDA-mb-231 cells are unlikely to be vH-L–deficient [32], yet

they may lack other components of the vH-L–mediated deg-

radation pathway. HIF-1a accumulation could also occur by

Ras, Src, and/or Akt oncogene expression, leading to inhi-

bition of degradation or enhanced synthesis [33]. Increased

constitutive rates of expression lead to higher steady-state

HIF-1a levels even in the presence of active degradation.

For example, tyrosine kinase (pp60c-Src) transformation

leads to increased frequency of HIF-1a protein synthesis,

VEGF and PGK mRNA expression, and lactic acid produc-

tion, whereas the HIF-1a degradation pathway remained

functional [34]. Alternatively, HIF-1a stabilization could also

occur through the augmented activity of the molecular chap-

erone, Hsp90 [35,36]. Finally, the glycolytic endproduct,

pyruvate, promotes normoxic HIF-1a accumulation by pre-

venting degradation in a manner similar to hypoxia [37].

The data in this study indicate that elevated HIF-1 activity

is sufficient, but not necessary, for the Warburg effect. Other

mechanisms resulting in glycolytic induction are possible. A

recent report compared immunohistochemical staining pat-

terns to [18F]FdG uptake in a series of human tumors and

showed a higher correlation with GLUT-1 expression com-

pared to HIF-1a [38]. Hence, upregulated glucose transport

may be more closely associated with the high glycolysis of

the Warburg effect and elevated HIF-1a may be one of

numerous mechanisms used to achieve this phenotype.

The variable mechanisms used to enhance glycolysis, com-

bined with the almost uniform observation of high FdG

uptake in metastatic cancers, strongly suggest that elevated

glycolysis is not merely an epiphenomenon of underlying

molecular alterations, but is instead a key phenotype in

cancer progression [4,39].

Conclusion

Dysregulated HIF-1a is responsible for the Warburg effect

in some tumors.
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