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Abstract--The performance of an assembly cell consisting of a set of machines, a sufficiently large local 
storage, an adjacent automated quality control station, a loading and an unloading station is modeled 
by a G/M/I queuing system with generally distributed interarrival time, a single Markovian server, the 
first come first served queuing discipline, and with a fixed delay Bernoulli feedback mechanism, in steady 
state. In a queuing system with a fixed delay Bernoulli feedback mechanism, a fraction of the departing 
units will merge with the incoming arrival units to be reprocessed, after being delayed for a fixed length 
of time. The performance of this system is approximated by a recursive algorithm. Furthermore, 
approximation outcomes are compared against those from a simulation study. 

1. I N T R O D U C T I O N  

The primary objectives of this paper are to develop a model and test an approximation algorithm 
for analyzing the performance of an assembly cell. This model could then be used to quantify the 
effect of the quality control mechanism on the performance of the assembly cell. In this system, 
the assembly cell consists of a set of machines, capable of processing workpieces belonging to the 
same family of parts, contains a local storage with a sufficiently large capacity, and is placed 
adjacent to an inspection station. In this paper, it is assumed that no matter how many stages of 
operation each workpiece requires at different machines of the assembly cell, the aggregated 
duration of the processing time at the work station can be approximated by an exponentially 
distributed random variable. This aggregation assumption is based on the group technology 
concept. That is, the assembly cell is intelligently designed such that a compatible group of 
machines are placed in it for processing various stages of operation of a compatible group of 
workpieces. For a review of the literature of the group technology, see Waghodekar and Sahu 
(1983). Additionally, the inspection station is used to identify the defective parts. In general, the 
workpieces which are transported to the assembly cell, after being processed, leave the assembly 
cell and arrive at the inspection station; there after being inspected, the non-defective workpieces 
leave the system and the defective workpieces after a fixed inspection time at the quality control 
station, are rerouted to the assembly cell to be reprocessed. 

To develop the model, the performances of the assembly cell and the inspection station are jointly 
modeled by an infinite capacity G/M/1 queuing system with generally distributed interarrival time, 
a single Markovian server, the first come first served queuing discipline (e.g. dispatching rule), and 
a Bernoulli feedback mechanism. That is, the performance of the inspection station is modeled by 
a Bernoulli filter which operates as a binary mechanism for identifying defective or non-defective 
workpieces. It is noted that this problem has never been considered in the literature. However, when 
the length of the delay time is equal to zero, the same problem has been considered in the literature 
by Kuehn (1979) and Whitt (1982), and algorithms different than the one presented in this paper 
are proposed by the latter authors for approximating the performance of a G/M/1 queuing system 
with an instantaneous Bernoulli feedback mechanism. 

The motivation behind developing the proposed algorithm is that the performance of the above 
system is too complex, and its performance cannot be analytically quantified. Hence, to be able 
to understand how the above system behaves, a heuristic algorithm is proposed. 
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Fig. 1. An assembly system consisting of an assembly cell and a quality control station. 

Queuing systems with an instantaneous Bernoulli feedback mechanism have previously been 
considered in the literature, see Kuehn (1979) and Whitt (1983). For a review of the performance 
modeling literature of the manufacturing systems, see Buzacott and Yao (1986). 

Notice that the approximation algorithm which has been provided by Kuehn (1979) and Whitt 
(1983) does not perform very well under light traffic conditions. Notice that Kuehn's (1979) 
algorithm and Whitt's (1983) algorithm are almost identical, the only difference between these 
algorithms in approximating a G/M/I queuing system is expression (36) of Kuehn (1979) which 
has been modified in expression (17) of Whitt (1983). In this paper, it will be demonstrated that 
under low traffic intensities, for approximating the performance of a G/M~1 queuing system with 
a Bernoulli feedback mechanism, the proposed algorithm performs better than Kuehn's (1979) and 
Whitt's (1983) algorithms. 

The organization of this paper is as follows. In Section 2, the components of the model are 
delineated. In Section 3, numerical results are presented. Finally, in Section 4, the concluding 
remarks are discussed. 

2. THE MODEL 

2(a) Assumptions 
In this paper, the following assumptions are made. First, no matter how many stages of operation 

each workpiece requires at different machines of the assembly cell, the aggregated duration of the 
processing time at the assembly cell can be approximated by an exponentially distributed random 
variable. This aggregation assumption is based on the group technology concept. Second, the 
loading process is a stationary process with identically distributed interarrival times. Third, the 
non-renewal superposition arrival process can be approximated with a renewal process. Fourth, 
the flow of the defective parts can be approximated with a thinned renewal process. Fifth, the fixed 
inspection time does not influence the performance of the system in steady state. 

2(b) Notation 
Throughout the paper, the following notation will be used. 

j--Iteration index. It is noted that this index counts the number of 
times a fraction of the departing units will merge with the arrival 
units. 

e--The minimum required number of iterations for reaching the 
steady state. 

A(t), ,~a and ca--The distribution of the interarrival time of the incoming arrival 
process, the arrival rate, and coefficient of variation (c.v.) of the 
distribution of the interarrival time, respectively. 

Fj(t), ;t~ and c~--Tbe distribution of the interarrival time of the superposition 
arrival process at iteration j, the superposition arrival rate at 
iteration j, the c.v. of the corresponding process at iteration j, 
respectively. 

Dj(t), 2] and c~--The distribution of the interdcparture time at iteration j, the 
departure rate at iteration j, the c.v. of the distribution of the 
interdeparture time at iteration j, respectively. 
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gd and ?d--The departure rate and the c.v. of the distribution of the interde- 
parture time of the thinned departure process which superimposes 
with the incoming arrival process, at iteration j. 

I~, Pj, Nj and IlTj--The service rate, the service utilization factor at iteration j, the 
average queue length at iteration j, and the average waiting time 
in the queue at iteration j, respectively. 

p- -The fraction of the departure units which will not merge with the 
incoming arrival units. 

z--The fixed inspection time at the quality control station. 

Also, let D~(s) and (-l)mD*m(0) be the Laplace-Stieltjes transform of Dy(t) and its mth 
moment, respectively. 

Before describing the approximation steps, it is noted that at every iteration, a fraction of 
departing units will merge with the incoming arrival units to form a new arrival process. We call 
the latter process, the superposition arrival process. 

2(c) Algorithm 
To approximate the performance of a G/M/1 queuing system with a Bernoulli feedback 

mechanism in steady state, the following steps will be implemented. 
Step 1. At iteration j, ignore the dependencies among the interarrival times of the superposition 

arrival process. That is, approximate the superposition arrival process by a renewal process. Notice 
that at the first iteration, the superposition arrival process is identical to the original arrival process. 

Step 2. Given that at least the first two moments of the distribution of the interarrival time of 
the superposition arrival process are known, fit a compatible (e.g. a phase type) distribution 
function to those moments, see the Appendix A. That is, at iteration j, if c~ is less than one, 
approximate the performance of the G/M/1 queuing system with a Bernoulli feedback mechanism 
by a compatible Ek/M/1 queuing system with a Bernoulli feedback mechanism, a renewal arrival 
process and hypoexponentially distributed interarrival time with k parameters; and for c} greater 
than or equal to one, the performance of the queuing system is approximated by a compatible 
H~/M/I queuing system with a Bernoulli feedback mechanism, a renewal arrival process, and 
hyperexponentially distributed interarrival time with two parameters and balanced means. For 
further details, see the Appendices A and B. 

Step 3. Obtain at least the first two moments of the distribution of the interdeparture time from 
the queuing system, see Appendix B. 

Step 4. Ignore the dependencies among the interdeparture times. That is, treat the departure 
process as a renewal process. 

Step 5. Approximate both the departure processes corresponding to the departing units which 
will permanently leave the system and the departing units which will merge with the incoming 
arrival units. For this purpose, the approximated renewal departure process can be thinned based 
on Gnedenko and Kovalenko's (1968) results on thinning of a renewal process. The parameters 
of (~d and ~d) of the thinned departure process which superimposes with the incoming arrival 
process can be obtained as follows: 

/ ~ - - ( l - p ) ~ a ,  j > l l ,  (1) 
2] = [p + (I --p) (c])2] '/2, j >I I. (2) 

Step 6. Superimpose the thinned departure process with the incoming arrival process to form 
a new superposition arrival process at the next iteration. The resulted non-renewal superposition 
arrival process can be approximated based on the asymptotic method of Whitt (1982) for 
approximating a finite number of stationary processes, as follows: 

2:+, =, ( :+) ,",  j /> 1 (3) 

c:+'=l _ j , j>~l (4) 

It is noted that at iteration j = I, ).i = 2" and cl --c". 



20 B. POURBABAI 

Notice that to approximate the performance of a G/M/1 queuing system with a fixed delay 
Bernoulli feedback mechanism: the previous steps can be applied and the algorithm for approxi- 
mating a G/M/I queuing system with an instantaneous Bernoulli feedback can be used to 
approximate a G/M/1 queuing system with a delayed Bernoulli feedback mechanism. For this 
purpose, the length of time which takes for a departing unit which is going to be superimposed 
with the arrival units will be set equal to zero (e.g. z = 0), and then the thinned departure process 
will be superimposed with the incoming arrival process to form a new superposition arrival process 
at iteration j + 1, same as before. Based on a simulation analysis, as will be shown in the next 
section, it has been demonstrated that the value of " z "  does not significantly influence the 
approximation results in steady state. 

Step 7. Repeat the previous steps until a steady state is reached at iteration "e".  The steady state 
is identified as follows. Let 6 be a sufficiently small value (e.g. 1 x 10 -3) and 

m = rain(j; ;~;+, - ~.; ~< <$), (5) 

n = min(j;  c]+ i - c; ~< 6), (6) 

then 

e = max(m, n). (7) 

Step 8. After reaching the steady state, approximate the performance of the system, based on 
the average queue length, the average waiting time in the queue, and the service utilization factor, 
see Appendix B. It is noted that for 6 = 0.001 (0.000001), it only takes e = 3 (e = 7) iterations to 
approximate the performance of the system in steady state. 

For a summary of the approximation steps, see Fig. 2. 

3. N U M E R I C A L  RESULTS 

In this section, several examples are presented for # = 1.0, p = 0.9, and the approximation 
outcomes are compared against those from both a simulation study and Whitt's (1983) results. 

In the simulation study, the performance of the system with both an instantaneous Bernoulli 
feedback mechanism and the fixed delay Bernoulli feedback mechanism are quantified. In the latter 
case, in the simulation study, we set z = 100. The numerical results are presented in Figs 3'14. The 
approximation outcomes are obtained based on the proposed algorithm and the results provided 
in the Appendix B. The simulation results are obtained based on using the SLAM simulation 
package of Pritsker and Pegden (1979). Each simulation outcome is obtained based on 50,000 
departing units and two independent runs. 

To generate the approximation outcomes based on our algorithm, the interarrival times were 
generated based on one of the following three distributions: a hyperexponential distribution with 
two parameters and balanced means [i.e. expressions (A.1)-(A.4)], or an exponential distribution, 
or a hypoexponential distribution [i.e. expressions (A.5)-(A.7)]. In Figs 3-14, the service rate is set 
equal to one. Hence, because Pe = 2d/#, the values of the departure rate from the system and the 
service utilization factor are identical, also see expression (B.9). 

To generate the simulation outcomes, for the cases with the c.v. of the distribution of the 
interarrival time greater than or equal to (less than) one, a hyperexponential (shifted exponential) 
distribution with two parameters and balanced means was used, see expressions (A.1)-(A.4) 
[(A.8)-(A.10)] in the Appendix A. The reason for not using a hypoexponential distribution in the 
simulation study was that a shifted exponential distribution can easily be simulated and as can be 
observed in Figs 3-14, it can accurately approximate the behavior of a compatible hypoexponential 
distribution. 

We conclude this section by making the following observations based on Figs 3-14: firstly, the 
fixed inspection time does not significantly influence the values of any of the performance measures; 
secondly, under low to medium traffic intensities, the proposed algorithm performs better than 
Kuehn's (1979) and Whitt's (1983) algorithms. The reason for the superior performance of our 
algorithm is that the approximate outcomes in Figs 3-14 of Kuehn's (1979) and Whitt's (1983) are 
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based on Marshall's (1968) approximate expression for the variance of the interdeparture times of a 
GI/M/I queuing system, but our algorithm is based on the exact expression for the variance of the 
intcrdeparture times of a GI/M/I queuing system. Notice that even in our algorithm, the exact ex- 
pression for the variance of the interdeparture times of a GI/M/I queuing system serves only as an 

0 . 0 4 2  n 
- X 

0.038 

0.034 

0.030 

0.02( 

Ne 0.02; 

0,018 

0.014 

0.010 - -  

0 . 0 0 6  

0 ~ ) 0 2  t "  , , , 

0 

A Pourbabai's approximation 
0 Whitt's / approx imat ion 

SimuLation with instantaneous BernouLLi feedback 
SimuLation 

I I I I [~  I I I I I I I I I I I ] I I I I I I I I I I 

t 2 3 

Co 

Fi 8. 3. Average queue length vs the c.v. o f  the distr ibution o f  the interarrival times for/~ -- I and A" = 0.1. 



22 B. POURBABAI 

0.38 

0.34 

0 .30  

0 .26  

0.22 

0.18 

0.14 

0.10 

0.06 

0.02 

A Pourboboi's approximation 
0 Whitt's approximation c )  
O SimuLation with instantaneous BernouLLi feedback ~ -  
x SimuLation wi 

/ 
I I I I I I I I I I I I I I I I I I I I I I I I ! I I 

1 2 3 

e a 

F i g .  4. Average waiting t i m e  in the queue vs the c.v. of the distribution of the interarrival time for/~ = 1 

and 2 a = 0.1.  

approximate expression for the variance of the interdeparture times of a G/M/1 queuing system 
with a non-renewal input. However, it is interesting to note that even after ignoring the 
dependencies among the interarrival times, as can be seen in Figs 3-14, the proposed algorithm 
performs well; thirdly, for each value of the c.v. of the distribution of the interarrival time, as the 
arrival rate increases, the values of Ne, I~,, and pe also increase; fourthly, for each value of the 
arrival rate, as the c.v. of the distribution of the interarrival time increases, the values of N, and 
l~e also increase, but the value of p~ does not change. It is noted that the c.v. of the distribution 
of the interarrival time does not influence the value of the utilization factor. Because, pe = 2,a//~, 
2~ = 2~ and 2~ = 2 ° +  P2~. That is, the variability of the interarrival times does not affect the 
departure rate. 
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Notice that the other advantage of using the proposed algorithm is that it is flexible and if 
necessary, it can be improved to use more than the first two moments of the respective distributions 
of the interarrival and the interdeparture times. This capability does not exit in Kuehn's (1979) and 
Whitt's (1983) algorithms. Hence, if necessary, the accuracy of the proposed algorithm can be 
improved. 

4. C O N C L U D I N G  R E M A R K S  

In this paper, the performance of an assembly cell with an automated quality control station 
is modeled. For this purpose, a recursive algorithm is developed for approximating the performance 
of a G/M/1 queuing system with either an instantaneous Bernoulli feedback mechanism or a fixed 
delay Bernoulli feedback mechanism, in steady state. As is demonstrated in the previous section 
this algorithm is computationally efficient and simple to work with, and more importantly, it is 
relatively accurate (i.e. the approximation errors are less than 5%). However, the system 
performance can be improved, if more than the first two moments of the distribution of the 
interarrival time of the superposition arrival process is used. 

Finally, we conclude this paper by pointing out that the most significant aspect of our algorithm 
was to ignore the dependencies among the interarrival times and the interdeparture times, to be 
able to approximate the distribution of the interarrival time and the distribution of the 
interdeparture time, in steady state. Based on our numerical results in Section 3, it is obvious that 
ignoring the dependencies among the interarrival times and the interdeparture times do not 
significantly influence the accuracy of the proposed algorithm. 
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A P P E N D I X  A 

As discussed in Kuehn (1979) and W h i r  (1982), to approximate the distribution of  the intcrarrival time of a stationary 
arrival process with the arrival rate :. and the c.v. of the distribution of the interarrival time c >t I, the following 
hyperexponential distribution function with two parameters and balanced means can be used: 

H2(O,~; t ) =  1 - -0  exp(--~,lt ) - ( 1  - -0 )exp( - -72 t ) ,  t t>0, (A.I) 

where, the shape parameter is 

and the intensity parameters are, 

When 

'~1 = 20:. (A.3) 

~'2 = 2(1 - 0):.. (A.4) 

1 
- - < c < l ,  

the following hypoexponential  distribution function with two parameters can be used, 

E2(a; t ) =  1 - ~2 e x p ( - % t ) -  ~L e x p ( - % t ) ,  
~t 2 -- Ol I O[ l - -  Ot 2 

where the intensity parameters are, 

~l = 22/[1 + (2c 2 -- 1)t/2], 

a2 = 2:./[1 - (2c 2 - 1)ta]. 

On the other hand,  when 0 ~< c ~< 1, the following 

M ' ( b ,  IJ; t )  = 

where the intensity parameter is, 

and the shift parameter is 

t >t 0, (A.5) 

shifted exponential distribution function can be used: 

l - exp [ - f l ( t  - b)], t>~b, 

,,l 
f l = -  ¢ 

1 1 
b = ~  - - ~ .  

( A . 6 )  

(A.7) 

(A.8) 

(A.9) 

(A.10) 

A P P E N D I X  B 

Proposition 1 
Consider a GI/M/1 queuing system. Then, the distribution of  the interdeparture time for 0 ~< o < 1 is, 

fo[ f: ] D(x) = A(u) + exp[(- -#( i  -- o)(t - u ) ]  dA( t )  g e x p [ ( - # ( x  - u ) ]  du, 

where 

Proof. See Daley (1968). 

Consider a GI/M/I queuing system. 

(B . I )  

Proposition 2 

(i) Let the r.v. n denote the number  of units found in this system. Then 

P(n=k) - - (1 - -# )~k ,  k>10 (B.3) 

(ii) Let .~' and ~ '  be the average queue length and the average number  of  units in the system, respectively. 
Then, 

:.o 
"~' = u( l  - a ) '  (B.4) 

f l  ffi f l '  - - .  (n.5) 
# 

(iii) Let the r.v. w denote the waiting time in the system. Then 

P(w ~< t) = I - a e x p [ - # ( 1  - o ) t ] ,  t >! 0 (B.6) 

a = A *(# - / m ) .  (B.2) 
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(iv) Let I~ and  IT" be the average waiting t ime at the queue and at the system, respectively. Then,  

1,~' = _ _  

/z(1 - - t~) '  

1 
~F= ~F ' - - .  

It 
(v) The utilization factor  is 

Proof See Kleinrock (1975, Chap.  6). 

)- 

# 

Proposition 3 
The Laplace-Stiel t jes  t ransform of  the distr ibution of  the interdepar ture  time of  an H2/M/I queuing system is, 

where 

where 

(A l - z ) p  K, 
)-1 - - ~  

(A 2 -- 1 + z )#  
K2 

)-2 - / ~  
z)-, 

Ai 
21 -t- (1 -- tr)/z' 

(I - 0 ) -2  
A2 

)-2 + (1 -- o ' )p '  

o" = {()., +).2 + #)__+ x/()., + ).2 + , u ) 2 -  4 {).,).2 + / z  [~)., + ( 1  -- z)A2]}}/2/~. 

Proof Directly resulted f rom Proposi t ion  1. 

Proposition 4 

The first two momen t s  of  the distr ibution o f  the interdepar ture  time of  an HJM/1 queuing system are, 

D*"(0) = ~-5 + 2K , - + 2 K  2 - , 

where K~ and /(2 are similar as those in Proposi t ion 3. 
Proof Directly resulted f rom proposi t ion 1. 

Proposition 5 
The Laplace-Stiel t jes  t ransform o f  the distr ibution of  the interdeparture time of  an E2/M/I queuing system is, 

~,+s ~ s  ~,-~S +L~ ~~s  ~ ~ S '  
where 

and 

(A, - BOP 
L I - - ,  

)-1 - #  

(,42 - B2)P 
L 2 - - ,  

)-2 - # 

2: 
BI = )-: _ 2j 

B: = )-l - )-------2' 

B2)-, 
A , -  

2~ + (1 - a)p 

B2 ).2 
.42---- 

2 2 + (1 - a ) p '  

(B.7) 

(n.S) 

(B.9) 

(B.10) 

(B. l l) 

(B. 12) 

(8.13) 

(B. 14) 

(n.15) 

(B. 16) 

(B.17) 

(B.18) 

(B.19) 

(B.2o) 

(a.21) 

(B.22) 

(B.23) 

(B.24) 
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where 

o ---- [(A, + ,~2 +/~) -I- ~/(A, + A2 +/~)2 -- 4~t).2]/2/~. 

Proof Directly derived from Proposition 1. 

Proposition 6 
The first two moments of the distribution of the interdeparture time of an EJM/I queuing system are, 

1 o.~0~ . . . .  , ( ~  ,~ ~ 
.,, 2 {1 1 \  2 / 1  1 \  

where L, and L2 arc similar to those in Proposition 5. 
Proof Directly derived from Proposition 1. 

(B.25) 

(B.26) 

(B.27) 


