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a b s t r a c t

Very recently, a new theory known as set dynamic equations on time scales has been built.
In this paper, notions of stability for the solutions of set dynamic equations on time scales,
using Lyapunov-like functions are considered. Criteria for the equistability, equiasymptotic
stability, uniform and uniform asymptotic stability are developed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The interesting feature of the set differential equations is that the results obtained in this new framework become the
corresponding results of ordinary differential equations as the Hukuhara derivative and the integral used in formulating the
set differential equations reduce to the ordinary vector derivative and integral when the set under consideration is a single
valued mapping. Also, we have only semilinear complete metric space to work with, in the present setup, compared to the
complete normed linear space that one employs in the usual study of the ordinary differential equations. The study of set
differential equations has been initiated as an independent subject and several results of interest can be found in [1–9]. The
basic theory, comparison results and the stability considerations for hybrid dynamical systemswere discussed in [10]. Since
then, much progress has been made in studying various fundamental aspects of the stability of set differential equations
(see [11–16]). For instance, certain Lyapunov-like functions were used to study their stability criteria by Lakshmikantham,
Leela and Devi [12]. In [13], Bhaskar and Devi studied the Lyapunov stability for the solutions of set differential equations,
using Lyapunov-like functions which are continuous. Moreover, an important comparison result in the light of Lyapunov
functions was employed in [13] to investigate the qualitative behaviour of the solutions of the following set differential
equation

DHU = F(t,U), U(t0) = U0 ∈ Kc(Rn),

such as, the equistability, equiasymptotic stability, uniform and uniform asymptotic stability. Here Kc(Rn) denotes the
collection of all nonempty, compact and convex subsets of Rn. Gnana Bhaskar and Shaw explored the stability criteria for
set difference equations in [16].
On the other hand, a theory known as dynamic systems on time scales has been built which incorporates both continuous

and discrete times, namely, time as arbitrary closed sets of reals, and permits us to handle both systems simultaneously
(see [17,18]). This theory allows one to get some insight into and better understanding of the subtle difference between
discrete and continuous systems. The theory of dynamical systems on time scales recently received much attention and is
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undergoing rapid development (see [17–20]). Recently,manymonographs to investigate the stability criteria for the solution
of dynamic systems on time scales can be found (see [21–28]).
Based on the abovementioned notions, Hong [29] introduced a class of new derivatives of multivalued functions on time

scales and developed a new theory of set dynamic equations (SDEs) by extending set valued differential equations onto time
scales, also, author provided some results on the existence of their solution. In this paper, provided inspiration by [13,16], we
shall consider the stability criteria for the solutions of set dynamic equations as in the original Lyapunov results for ordinary
differential equations. Our purpose is to explore such a stability criteria in a unified way of the study in set differential
equations and set difference equations and to offer more general conclusions. We employ an important comparison result
in terms of Lyapunov functions and investigate the qualitative behaviour of the solutions of the initial value problem for the
following SDE

∆HU = F(t,U), U(t0) = U0 ∈ Kc(R), (1)

where∆H denotes the derivative of multivalued functions defining on the time scales (see [29, Definition 3.1]). As a result,
the mapping U ∈ C1rd(JT, Kc(R)), JT = [t0, t0 + a]T (a > 0) is said to be a solution of (1) on JT if it satisfies (1) on JT. Since
U ∈ C1rd(JT, Kc(R)) we have U(t) = U0 +

∫ t
t0
∆HU(s)1s, t ∈ JT. Thus we associate with the initial value problem (1) the

following

U(t) = U0 +
∫ t

t0
F(s,U(s))1s, t ∈ JT.

As an analogue of [2], these Lyapunov-like functions serve as a vehicle to transform the set dynamic equations into
scalar comparison differential equations, and therefore, it is enough to consider the qualitative properties of the simpler
comparison equation under suitable conditions for Lyapunov-like functions.

2. Preliminaries

In this section we give all the necessary background material needed for a self-contained presentation of our study.
We begin with a brief but complete description of the basic known results for Hausdorff metrics, continuity and

differentiability for multivalued mappings on time scales, also, the concept of time scales, single-valued functions and their
corresponding properties within the framework of time scales.
Let Kc(Rn) denote the collection of nonempty, compact and convex subsets of Rn. The following operations can be

naturally defined on it:

X + Y = {x+ y : x ∈ X, y ∈ Y }, λ · X = {λ · x : x ∈ X}, λ ∈ R+.
XY = {xy : x ∈ X, y ∈ Y } for X, Y ∈ Kc(R).

In addition, the set Z ∈ Kc(Rn) satisfying X = Y + Z is known as the geometric difference of the sets X and Y and is denoted
by the symbol X − Y . It is worthy to note that the geometric difference of two sets does not always exist but if it does it is
unique.
We define the Hausdorff metric as

D[X, Y ] = max
{
sup
y∈Y
d(y, X), sup

x∈X
d(x, Y )

}
,

where d(x, Y ) = inf{d(x, y) : y ∈ Y } and X, Y are bounded subsets of Rn. The Hausdorff metric satisfies the following
relations:

D[X, Y ] ≥ 0 with D[X, Y ] = 0 if and only if X = Y ,
D[X, Y ] = D[Y , X],
D[X, Y ] ≤ D[X, Z] + D[Z, Y ],

for any X, Y , Z ∈ Kc(Rn).
Notice that Kc(Rn) with the metric is a complete metric space. Moreover Kc(Rn) equipped with the above-mentioned

natural algebraic operations of addition and nonnegative scalar multiplication becomes a semilinear metric space which
can be embedded as a complete cone into a corresponding Banach space [4]. On the other hand, the Hausdorff metric D is
compatible with the operations defined on it as described by the following properties: for any X, Y , Z,W ∈ Kc(Rn) and
µ, ν ∈ R+,

D[X ± Z, Y ± Z] = D[X, Y ],
D[µX, µY ] = µD[X, Y ],
D[X ± Z, Y ±W ] ≤ D[X, Y ] + D[Z,W ],
D[µX, νY ] ≤ max{µ, ν} · D[X, Y ] + |µ− ν| · (‖X‖ + ‖Y‖),

where ‖V‖ = D[V , {0}] for V ∈ Kc(Rn). Here we assume that the differences appearing in the above formulas exist.
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A multivalued mapping F : I → Kc(Rn), where I ⊂ Rn, is said to have the limit at x0 ∈ I if there exists a element
A ∈ Kc(Rn) such that, for any ε > 0, there exists a δ = δ(ε, x0) > 0 such that D[F(x), A] < ε, for all x ∈ I with ‖x− x0‖ < δ.
We denote the limit by limx→x0 F(x), that is, A = limx→x0 F(x). Let F(x0) be well defined. F is called continuous at x0 ∈ I if
its limit at x0 exists and limx→x0 F(x) = F(x0).
Alternatively, we may write, in terms of the convergence of sequences that

lim
xn→x0

D[F(xn), F(x0)] = 0

for all sequences {xn} in I with lim xn → x0.
It is significant to refer that if we restrict ourselves to single valued mappings, then the previous notions reduce to their

classical counterparts, i.e. to ordinary continuity in Rn.
We recall also briefly the notions of time scales and Hilger derivative on them.
Let T be a closed nonempty subset of real number set R. In the light of some of the current literature, T is called a time

scale or measure chain. The calculus of time scales we refer readers to Bohner and Peterson [18]. Here we introduce the
basic notions connected to time scales and differentiability of functions on them. Let us start by defining the forward and
backward jump operators.
Let T be a time scale. For t ∈ Twe define the forward jump operator σ : T→ T by
σ(t) = inf{τ ∈ T : τ > t}

and the graininess function µ : T→ R+ by

µ(t) = σ(t)− t,

while the backward jump operator ρ : T→ T is defined by
ρ(r) = sup{τ ∈ T : τ < r}.

In this definitionwe put inf∅ = sup T (i.e. σ(t) = t if T has amaximum t) and sup∅ = inf T (i.e. ρ(t) = t if T has aminimum
t), where ∅ denotes the empty set. t is said to be right scattered if σ(t) > t and t is said to be right dense (rd) if σ(t) = t . t
is said to be left scattered if ρ(t) < t and t is said to be left dense (ld) if ρ(t) = t . A point is said to be isolated (dense) if it
is right-scattered (right-dense) and left-scattered (left-sense) at the same time. We introduce the sets Tk and Tk which are
derived from the time scale T as follows. If T has a right scattered minimumm, then Tk = T− {m}; otherwise set Tk = T. If
T has a left scattered maximumM , then Tk = T− {M}; otherwise set Tk = T.
A function f is left(right)-dense continuous (ld(rd)-c, for short) if f is continuous at each left(right) dense point in T and

its right(left)-sided limits exist at each right(left) dense points in T. By Cld(T,R) and Crd(T,R) we denote the set of all left
and right dense continuous functions from T to R, respectively.
The set of functions f : T→ R that are differentiable and whose derivative is rd-continuous is denoted by

C1rd = C
1
rd(T,R).

For f : T→ R and t ∈ Tk, S. Hilger defined the delta (or Hilger) derivative of f (t), f ∆(t), to be the number (when it exists),
with the property that, for each ε > 0, there exists a neighborhood U of t (i.e. U = (t − δ, t + δ) ∩ T for some δ > 0) such
that

|f (σ (t))− f (s)− f ∆(t)(σ (t)− s)| ≤ ε|σ(t)− s|,

for all s ∈ U . We say f is∆-differentiable at t if its delta derivative exists at t . Moreover, we say f is∆-differentiable on Tk if
its delta derivative exists at each t ∈ Tk. The function f ∆ : Tk → R is then called the delta (or Hilger) derivative of f on Tk.
For f : T → R and t ∈ Tk, we define the nabla derivative of f (t), f ∇(t), to be the number (when it exists), with the

property that, for each ε > 0, there exists a neighborhood U of t such that

|f (ρ(t))− f (s)− f ∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|,

for all s ∈ U .
If T = R then f ∆(t) = f ∇(t) = f ′(t). If T = Z then f ∆(t) = f (t + 1) − f (t) is the forward difference operator while

f ∇(t) = f (t)− f (t − 1) is the backward difference operator.
A continuous function f : T→ R is called pre-differentiable with (region of differentiation) D, provided D ⊂ Tk, Tk \ D

is countable and contains no right-scattered elements of T, and f is differentiable at each t ∈ D.
For an interval of real numbers I , by IT we mean the set I ∩ T and by C∆ld (IT) we mean the set of all functions from IT to

[0,∞)which are∆-differentiable on ITk .
If F∆(t) = f (t) for t ∈ [a, T ]T, then we define the delta integral by∫ t

a
f (s)1s = F(t)− F(a).

If F∇(t) = f (t), then we define the nabla integral by∫ t

a
f (s)∇s = F(t)− F(a).



S.H. Hong / Computers and Mathematics with Applications 59 (2010) 3444–3457 3447

By L∆(IT), L∇(IT) we denote the set consisting of all functions which are delta integrable on IT and the set consisting of
all functions which are nabla integrable on IT, respectively. Some useful relationships concerning the Hilger derivative are
given next.
A function f : T→ R is called regulated provided its right-sided limits exist (belong to R) at all right-dense points in T

and its left-sided limits exist (belong to R) at all left-dense points in T.

Lemma 2.1 ([18, Theorem 8.12]). Suppose fn : T → R is pre-differentiable with D for each n ∈ N (a set consisting of all
nature numbers). Assume that for each t ∈ Tk there exists a compact interval neighborhood U(t) such that the sequence {f ∆n }n∈N
converges uniformly on U(t) ∩ D.
(i) If {fn} converges at some t0 ∈ U(t) for some t ∈ Tk, then it converges uniformly on U(t).
(ii) If {fn} converges at some t0 ∈ T, then it converges uniformly on U(t) for all t ∈ Tk.
(iii) The limit mapping f = limn→∞ fn is pre-differentiable with D and we have

f ∆(t) = lim
n→∞

fn(t)

for all t ∈ D.

Lemma 2.2 ([18, Theorem 8.13]). Let t0 ∈ T, c ∈ R, and a regulated map f : Tk → R be given. Then there exists exactly one
pre-differentiable function F satisfying{

F∆(t) = f (t) ∀t ∈ D,
F(t0) = c.

Definition 2.1 ([29]). Assume F : T → Kc(R) is a multivalued function and let t ∈ Tk. Let ∆HF(t) be an element of Kc(R)
(provided it exists) with the property that given any ε > 0, there exists a neighborhood UT of t (i.e. UT = (t − δ, t + δ) ∩ T
for some δ > 0) such that

D[F(t + h)− F(σ (t)),∆HF(t)(h− µ(t))] ≤ ε(h− µ(t)),
D[F(σ (t))− F(t − h),∆HF(t)(µ(t)+ h)] ≤ ε(µ(t)+ h)

for all t − h, t + h ∈ UT with 0 ≤ h < δ, where µ(t) is the graininess function. We call ∆HF(t) the ∆H-derivative of F at
t . We say that F is∆H-differentiable at t if its∆H-derivative exists at t . Moreover, we say F is∆H-differentiable on Tk if its
∆H-derivative exists at each t ∈ Tk. The multivalued function ∆HF : Tk → Kc(R) is then called the ∆H-derivative of F on
Tk.

Proposition 2.1 ([29]). Some easy and useful relationships concerning the∆H-derivative are given next.
(i) If the∆H-derivative of F at t exists, then it is unique. Hence, the∆H-derivative is well defined.
(ii) Assume F : T→ Kc(R) is a multivalued function and let t ∈ Tk. Then we have the following:
(1) If F is∆H-differentiable at t, then F is continuous at t.
(2) If F is continuous at t and t is right scattered, then F is∆H-differentiable at t with

∆HF(t) =
F(σ (t))− F(t)

µ(t)
.

(3) If t is right-dense, then F is∆H-differentiable at t iff the limits

lim
h→0+

F(t + h)− F(t)
h

and lim
h→0+

F(t)− F(t − h)
h

exist and satisfy the equations

lim
h→0+

F(t + h)− F(t)
h

= lim
h→0+

F(t)− F(t − h)
h

= ∆HF(t).

(4) If F is differentiable at t, then
F(σ (t)) = F(t)+ µ(t)∆HF(t).

(iii) Assume that multivalued functions F ,G : T→ Kc(R) are∆H-differentiable at t ∈ Tk. Then
(1) The sum F + G : T→ Kc(R), defined by (F + G)(t) = F(t)+ G(t) = {x+ y : x ∈ F(t), y ∈ G(t)} for each t ∈ T, are

∆H-differentiable at t ∈ Tk with
∆H(F + G)(t) = ∆HF(t)+∆HG(t).

(2) For any nonnegative constant λ, λF : T→ Kc(R) is∆H-differentiable at t with
∆H(λF)(t) = λ∆HF(t).

(iv) Assume that multivalued functions F ,G : T→ Kc(R) are∆H-differentiable at t ∈ Tk. Then the product function FG defined
by (FG)(t) = F(t)G(t) for t ∈ T is∆H-differentiable at t ∈ Tk with

∆H(FG)(t) = F(σ (t))∆HG(t)+ G(t)∆HF(t) = F(t)∆HG(t)+ G(σ (t))∆HF(t).

Inwhat follows, in order to define the integral ofmultivalued functions on time scales,we first need the following notions.
Let D ⊂ T. A function f : D→ R is called a sector of the multivalued function F : D→ Kc(R) if f (t) ∈ F(t) for all t ∈ D. By
SF (D)we mean the set of all∆-integrable sectors of F on D.
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Definition 2.2 ([29]). Amultivalued function F : T→ Kc(R) is called∆H-integrable on D ⊂ T if F has a∆-integrable sector
on D. In this case, we define the∆H-integral of F on D, denoted by

∫
D F(s)1s, as the set∫

D
F(s)1s =

{∫
D
f (s)1s : f ∈ SF (D)

}
.

Proposition 2.2 ([29]). Assume that t0, T ,∈ T and F ,G : [t0, T ]T → Kc(R) are∆H-integrable and have rd-continuous sectors,
then we have

(i)
∫ T
t0
[F(s)+ G(s)]1s =

∫ T
t0
F(s)∆s+

∫ T
t0
G(s)1s.

(ii)
∫ t
t0
λF(s)1s = λ

∫ t
t0
F(s)1s, λ ∈ R+, t ∈ [t0, T ]T.

(iii)
∫ T
t0
F(s)1s =

∫ t
t0
F(s)∆s+

∫ T
t F(s)s1s, t ∈ [t0, T ]T with t0 ≤ t ≤ T .

(iv)
∫ t0
t0
F(s)1s = {0}.

(v) If f ∈ SF ([t0, T ]T) implies that f ∈ Crd([t0, T ]T), then ‖F(·)‖ : [t0, T ]T → R+ is∆-integrable and∥∥∥∥∫ T

t0
F(s)1s

∥∥∥∥ ≤ ∫ T

t0
‖F(s)‖1s.

(vi) If f ∈ SF ([t0, T ]T) and g ∈ SG([t0, T ]T) imply that f ∈ Crd([t0, T ]T) and g ∈ Crd([t0, T ]T), respectively, then D[F(·),G(·)] :
[t0, T ]T → R+ is∆-integrable and

D
[∫ T

t0
F(s)1s,

∫ T

t0
G(s)1s

]
≤

∫ T

t0
D[F(s),G(s)]1s.

Definition 2.3. A multivalued function F : T→ Kc(R) is called regulated provided its regulated sectors exist.
A multivalued function F : T→ Kc(R) is called rd-continuous provided its rd-continuous sectors exist.

In this paper, the set of rd-continuous multivalued functions F : D ⊂ T→ Kc(R)will be denoted by

Crd = Crd(D) = Crd(D, Kc(R)).

The set of multivalued functions F : D ⊂ T→ Kc(R) that are∆H-differentiable and whose∆H-derivative is rd-continuous
is denoted by

C1rd = C1rd(D) = C1rd(D, Kc(R)).

Definition 2.4. A continuousmultivalued function F : T→ Kc(R) is called pre-differentiablewith (region of differentiation)
D, providedD ⊂ Tk, Tk\D is countable and contains no right-scattered elements of T, and F is∆H-differentiable at each t ∈ D.

Proposition 2.3 ([29]). (i) Let I ⊂ R is an interval. If t0 ∈ T, thenF defined by

F (t) = X0 +
∫ t

t0
F(s)1s, for t ∈ IT and X0 ∈ Kc(R),

where F : IT → Kc(R) is rd-continuous, is∆H-differentiable and one has the equality

∆HF (t) = F(t), a.e. on IT

(ii) If F is rd-continuous and t ∈ Tk, then∫ σ(t)

t
F(s)1s = µ(t)F(t).

3. Comparison results

In this section, we will formulate a comparison theorem for the solutions of SDE (1). As an application of the comparison
result, we also prove a global existence result. In what follows, we always assume that T is the time scale with t0 ≥ 0 as
the minimal element and has nomaximal element. Throughout this paper, unless otherwise mentioned, U(t, t0,U0) always
stands for the solution of SDE (1) on JT corresponding the initial value (t0,U0).

Theorem 3.1 (Comparison Result). Assume that F ∈ Crd(Ω, Kc(R)), where Ω = JT × {U ∈ Kc(R) : D[U,U0] ≤ b} with
JT = [t0, t0 + a]T and a, b > 0, and for t ∈ T, U(t) = U(t, t0,U0), V (t) = V (t, t0,U0) ∈ Kc(Rn),
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D[F(t,U(t)), F(t, V (t))] ≤ g(t,D[U(t), V (t)]),

where g ∈ Crd(Ω0,R+) withΩ0 = JT × {w ∈ R : |w − w0| ≤ b} and g(t, w) is nondecreasing inw for each t ∈ JT. Moreover,
we require that there exists the maximal solution r(t, t0, w0) of the scalar equation

w∆(t) = g(t, w), w(t0) = w0 ≥ 0, t ∈ JT. (2)

Then we have

D[U(t), V (t)] ≤ r(t, t0, w0), t ∈ JT,

provided that D[U0, V0] ≤ w0.

Proof. Since U(t), V (t) are solutions of SDE (1), the differences U(s) − U(t), V (s) − V (t) exist for small s − t > 0. Set
m(t) = D[U(t), V (t)] for t ∈ T. As an application of the properties of Hausdorff metric, we obtain the estimation

m(s)−m(t) = D[U(s), V (s)] − D[U(t), V (t)]
≤ D[U(s),U(t)+ (s− t)F(t,U)] + D[U(t)+ (s− t)F(t,U), V (t)+ (s− t)F(t, V )]
+D[V (t)+ (s− t)F(t, V ), V (s)] − D[U(t), V (t)]

≤ D[U(s),U(t)+ (s− t)F(t,U)] + D[V (t)+ (s− t)F(t, V ), V (s)] + (s− t)D[F(t,U), F(t, V )]
= D[U(s)− U(t), (s− t)F(t,U)] + D[(s− t)F(t, V ), V (s)− V (t)] + (s− t)D[F(t,U), F(t, V )].

This implies that

m(s)−m(t)
s− t

≤ D
[
U(s)− U(t)
s− t

, F(t,U)
]
+ D

[
F(t, V ),

V (s)− V (t)
s− t

]
+ D[F(t,U), F(t, V )]. (3)

If t is a right-dense point, taking lim sup as s→ t+, then inequality (3), together with Proposition 2.1(3), yields

m∆
+
(t) = lim sup

s→t+

m(s)−m(t)
s− t

≤ D[∆HU(t), F(t,U)] + D[∆HV (t), F(t, V )] + D[F(t,U), F(t, V )]
= D[F(t,U), F(t, V )],

where m∆
+
(t) is the right-derivative of m(t). On the other hand, if t is a right-scattered point, let us take s = σ(t) in (3).

From Proposition 2.1(3) it follows that

m∆(t) =
m(σ (t))−m(t)

µ(t)

≤ D
[
U(σ (t))− U(t)

σ (t)− t
, F(t,U)

]
+ D

[
F(t, V ),

V (σ (t))− V (t)
σ (t)− t

]
+ D[F(t,U), F(t, V )]

= D[∆HU(t), F(t,U)] + D[∆HV (t), F(t, V )] + D[F(t,U), F(t, V )]
= D[F(t,U), F(t, V )].

In addition, the fact that D[U0, V0] ≤ w0 implies that m(t0) ≤ w0. Consequently, the comparison theorem for ordinary
dynamic equations (see [25, Theorem 5.2]) gives

D[U(t), V (t)] ≤ r(t, t0.w0), t ∈ JT.

This proof is complete. �

Remark 3.1. Assume F satisfies the hypotheses of Theorem 3.1 and ‖F(t,U)‖ ≤ M0 on Ω . In addition, g is assumed to
satisfy that g ∈ C(JT × [0, 2b],R+), g(t, w) ≤ M1 on [0, 2b], g(t, 0) ≡ 0, g(t, w) is increasing in w for each t ∈ JT and
w(t) ≡ 0 is the only solution of

w∆(t) = g(t, w), w(t0) = 0.

Then the successive approximations defined by

Un+1(t) = U0 +
∫ t

t0
F(s,Un(s))1s, n = 0, 1, 2, . . . .

exist on IT = [t0, t0 + α] with α = min(a, bM ], M = max{M0,M1}, as continuous functions and converge uniformly to the
unique solution U(t) = U(t, t0,U0) of SDE (1) on IT.

The proof of Remark 3.1 exhibits the idea of the comparison result.
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Theorem 3.2. Assume that

(s1) F ∈ Crd(T× Kc(R), Kc(R)) satisfies

‖F(t,Φ)‖ ≤ g(t, ‖Φ‖)

for each (t,Φ) ∈ T× Kc(R), where g ∈ Crd(T× R+,R+) and g(t, w) is nondecreasing inw for each t ∈ T.
(s2) The solutionw(t, t0, w0) of the equation

w∆(t) = g(t, w(t)), w(t0) ≥ w0,

exists for t ∈ T.

If F is smooth enough to ensure the local existence, then the largest interval of existence of any solution U(t, t0, w0) of (1)with
‖U0‖ ≤ w0 is [t0,∞)T.

Proof. Let us assume that V (t) = V (t, t0,U0) is a solution of (1) with ‖U0‖ ≤ w0 existing on the largest interval [t0, τ )T.
We will show that τ is infinity. On the contrary, there exists β ≤ τ such that V (t) is a solution of (1) existing on interval
[t0, β]T and β cannot be increased. For t ∈ [t0, β]T, set m(t) = D[V (t), {0}]. Employing the procedure used in the proof of
the Theorem 3.1, we obtain the differential inequality

m∆(t) ≤ g(t,m(t)), t ∈ [t0, β]T.

Note that ‖U0‖ ≤ w0, we have

D[V (t), {0}] ≤ r(t, t0, w0), t ∈ [t0, β]T. (4)

Now we select that t1, t2 ∈ t ∈ [t0, β]T such that t1 < t2. By means of the properties of Hausdorff metric, we have

D[V (t1), V (t2)] = D
[
V (t1), V (t1)+

∫ t2

t1
F(s,U)1s

]
= D

[
{0},

∫ t2

t1
F(s,U)1s

]
≤

∫ t2

t1
D[{0}, F(s,U(s))]1s

≤

∫ t2

t1
g(s,D[U(s), {0}])1s.

In view of the nondecreasing of g inw and from (4) it follows that

D[V (t1), V (t2)] ≤
∫ t2

t1
g(s, r(s, t0, w0))1s

= r(t2, t0, w0)− r(t1, t0, w0).

If β is a left-dense point, we allow t1, t2 → β in the above relation, since limt→β− r(t) exists and is finite, from the above
inequality it follows that the limit of V (t) exists and is finite as t tends to β− by Cauchy’s criterion of convergence. We can
define V (β) = limt→β− V (t). We observe that a solution can have finite escape time only before left-dense points t ∈ T,
since their neighborhoods contain infinitely many points to the left of t . Hence it is sufficient that we are only allowed to
suppose that β is a left-dense point of T. Consequently, we considerW0 = V (β) as a new initial function at t = β . Then,
by the assumption of local existence, there exists a solution V (t, β,W0) of (1) on the interval [β, γ ] with γ > β . This
implies that the solution V (t) can be continued beyond β , which contradicts our assumption that β cannot be increased.
This completes the proof of the theorem. �

Following the idea in [12, Theorem 3.1], we present the following comparison theorem in terms of Lyapunov-like
functions on time scales is very important to investigate the stability criteria of SDE (1). In order to discuss the stability
criteria of the solution of SDE (1), we state some notions and definitions.
On the Lyapunov-like function on time scales, Kaymakcalan [21] defined the Dini derivative of the function V ∈

Crd(T× Rn,R+) along the solutions of SDE (1) when we restrict ourselves into single valued mappings U = u and F = f by

D−∆V (t, u) = lim
µ(t)→0

inf
V (t, u)− V (t − µ(t), u− µ(t)f (t, u))

µ(t)
,

D+∆V (t, u) = lim
µ(t)→0

sup
V (t + µ(t), u+ µ(t)f (t, u))− V (t, u)

µ(t)
.

Now, to avoid the nonexistence of the above derivative when µ(t) ≥ h (a positive constant), we present a class of new
generalized Dini derivatives of the Lyapunov-like function on T as follows
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Definition 3.1. For A ∈ Crd(T, Kc(R)), t ∈ T and V ∈ Crd(T × Kc(R),R+), we call ∆rV (t, A) and ∆rV (t, A) the right upper
(ru) and the right lower (rl) derivatives of the function V at (t, A(t)), respectively, if

∆rV (t, A(t)) =


V (σ (t), A(σ (t)))− V (t, A(t))

µ(t)
, σ (t) > t,

lim
s→t+

sup
V (s, A(t)+ (s− t)F(t, A(t)))− V (t, A(t))

s− t
, σ (t) = t.

∆rV (t, A(t)) =


V (σ (t), A(σ (t)))− V (t, A(t))

µ(t)
, σ (t) > t,

lim
s→t+

inf
V (s, A(t)+ (s− t)F(t, A(t)))− V (t, A(t))

s− t
, σ (t) = t.

Similarly, we call∆lV (t, A(t)) and∆lV (t, A(t)) the left upper (lu) and left lower (ll) derivatives of the function V at (t, A(t)),
respectively, if

∆lV (t, A(t)) =


V (t, A(t))− V (ρ(t), A(ρ(t)))

t − ρ(t)
, t > ρ(t),

lim
s→t−

sup
V (s, A(t)+ (s− t)F(t, A(t)))− V (t, A(t))

s− t
, ρ(t) = t.

∆lV (t, A(t)) =


V (t, A(t))− V (ρ(t), A(ρ(t)))

µ(t)
, t − ρ(t),

lim
s→t−

inf
V (s, A(t)+ (s− t)F(t, A(t)))− V (t, A(t))

s− t
, ρ(t) = t.

Theorem 3.3. Assume that V given as in Definition 3.1 satisfies

∆rV (t,U(t)) ≤ g(t, ‖U(t)‖), t ∈ T,
|V (t,U(t))− V (t, V (t))| ≤ LD[U(t), V (t)], L ≥ 0, t ∈ T,

where g ∈ Crd(T×R+,R) and U(t) = U(t, t0,U0), V (t) = V (t, t0, V0). Then, if U(t) is such that V (t0,U0) ≤ w0 on [t0,∞)T,
we have

V (t,U(t)) ≤ r(t, t0, w0), t ∈ [t0,∞)T, (5)

where r(t, t0, w0) is the maximal solution of DE (2) existing on [t0,∞)T.

Proof. Definem(t) = V (t,U(t)) so thatm(t0) = V (t0,U0) ≤ w0, U(t) = U(t, t0,U0) is any solution of SDE (1) existing on
[t0,∞)T. Now for s ∈ Twith s > t , by our assumptions it follows that

m(s)−m(t) = V (s,U(s))− V (t,U(t))
≤ V (s,U(s))− V (s,U(t)+ (s− t)F(t,U(t)))+ V (s,U(t)+ (s− t)F(t,U(t)))− V (t,U(t))
≤ LD[U(s),U(t)+ (s− t)F(t,U(t))] + V (s,U(t)+ (s− t)F(t,U(t)))− V (t,U(t)). (6)

Since U(·) is the solution of SDE (1), the Hukuhara difference Z(t) = U(s) − U(t) exists for s, t ∈ T and small s − t > 0.
Hence employing the properties of Hausdorff metric, we have

D[U(s),U(t)+ (s− t)F(t,U(t))] = D[U(t)+ Z(t),U(t)+ (s− t)F(t,U(t))]
= D[Z(t), (s− t)F(t,U(t))] = D[U(s)− U(t), (s− t)F(t,U(t))].

This shows that

1
s− t

D[U(s),U(t)+ (s− t)F(t,U(t))] = D
[
U(s)− U(t)
s− t

, F(t,U(t))
]
.

Lending this to (6), we obtain

m(s)−m(t)
s− t

≤ LD
[
U(s)− U(t)
s− t

, F(t,U(t))
]
+
V (s, (s− t)F(t,U(t)))− V (t,U(t))

s− t
.

Employing the procedure used in the proof of Theorem 3.1, we obtain that

lim
s→t+

sup
1
s− t

D[U(s),U(t)+ (s− t)F(t,U(t))] = lim
s→t+

supD
[
U(s)− U(t)
s− t

, F(t,U(t))
]

= D[∆HU(t), F(t,U(t))] = 0.
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Employing the procedure used in the proof of Theorem 3.1, again, we find from Definition 3.1 and Proposition 2.1(ii)(4) that

m∆
+
(t) = ∆r(t,U(t)) ≤ g(t,m(t)), t ∈ [t0,∞)T.

Consequently, by [24, Theorem 5.2] we arrive at the estimate

m(t) ≤ r(t, t0, w0), t ∈ [t0,∞)T,

where r(t, t0, w0) is the maximal solution of DE (2) existing on [t0,∞)T. This proof is complete. �

4. Stability criteria

In order to discuss the stability criteria of the solutions of SDE (1), we state some notions and definitions.
Since the cause of the problem in SDE is due to the requirement of the existence of Hukuhara difference in the SDE, we

may need to incorporate the Hukuhara difference in the initial conditions also, in order to match the behaviour of solutions
of SDE with the corresponding DE (see (2), for example), we assume, following the idea in [12,13], as a standard hypothesis
that the Hukuhara difference exists for any given initial values U0, V0 ∈ Kc(R) such that U0 − V0 = W0 is defined. Then we
consider the solutions U(t, t0,U0 − V0) = U(t, t0,W0) of SDE (1).
We are now in a position to formulate the stability criteria for the solution of SDE (1). In this section we assume that

F(t, {0}) = {0} and the solutions are unique and exist for all t ∈ T with t ≥ t0. Let us first define the stability of the trivial
solution and set our notations.

Definition 4.1. Let U(t) = U(t, t0,U0). The trivial solution U(t) ≡ {0} is said to be
(I) equi-stable if for each ε > 0 and t0 ∈ T, there exists a δ = δ(t0, ε) > 0 such that ‖U0‖ < δ implies that

‖U(t)‖ < ε, t ∈ [t0,∞)T. (7)
(II) uniformly stable if in (I) the δ = δ(ε) > 0 is independent of t0.
(III) equi-asymptotically stable if (I) holds and for any ε > 0 there exists a T > 0 such that (7) holds for all t ∈ [t0+ T ,∞)T.
(IV) uniformly asymptotically stable if (II) and (III) hold simultaneously.

Let S(b) = {U ∈ Kc(R) : ‖U‖ ≤ b} for b > 0. Let K be the class consisting of functions ϕ ∈ C[[0, b),R+] such that
ϕ(0) = 0 and ϕ(w) is increasing inw. For the sake of convenient, the following basic notions are needed:

Definition 4.2. The function V ∈ Crd(T× Kc(R),R) is said to be positive definite if
(i) V (t, {0}) = 0 for all t ∈ T.
(ii) There exists the function ϕ ∈ K such that V (t, A) ≥ ϕ(‖A‖) for each (t, A) ∈ T× S(b).
V is said to be negative definite if−V is positive definite.

We begin the following result that follows the corresponding result of [25, Theorem 6.2] with appropriate modifications
and offers the first stability criteria of this paper.

Theorem 4.1. Suppose that F ∈ Crd(T× Kc(R), Kc(R)), g ∈ Crd(T× R+,R) with g(t, 0) ≡ 0 for all t ∈ T. Moreover,
(i) There exists V given as in Definition 3.1 such that V (t, {0}) = 0 for all t ∈ T and

∆rV (t,U(t)) ≤ g(t, ‖U(t)‖), t ∈ T.
|V (t,U(t))− V (t,W (t))| ≤ LD[U(t),W (t)], L ≥ 0, t ∈ T

with U(t) = U(t, t0,U0),W (t) = W (t, t0,W0).
(ii) g(t, w) is nondecreasing inw for each t ∈ T.
Then the equi-stability properties of the trivial solution of DE (2), in which t ∈ T instead of t ∈ JT, implies the corresponding

stability properties of the trivial solution of SDE (1).

Proof. Since V (t0, {0}) = 0 and V (t0, A) is continuous with respect to A, for any ε > 0, there exists δ1 = δ1(t0, ε) > 0 such
that ‖U0‖ < δ1 implies that V (t0,U0) ≤ w0.
Let the trivial solution of DE (2) be equi-stable. Then, given ε > 0 and t0 ≥ 0, there exists a δ2 = δ2(t0, ε) > 0 such that

0 ≤ w0 < δ2 impliesw(t) < ϕ(ε), t ∈ T, (8)

where w(t) = w(t, t0, w0) is any solution of (2). We claim that with these ε and δ = min{δ1, δ2}, the trivial solution of
SDE (1) is also equi-stable. Suppose that this were false, there would exist a solution U(t) = U(t, t0,U0) of SDE (1) with
‖U0‖ < δ and a t1 ∈ T, t1 > t0, such that

ϕ(ε) ≤ ‖U(t1)‖ and ‖U(t)‖ < ϕ(ε), t ∈ [t0, t1)T.

On the other hand, using the inequality (5) at t = t1, we arrive at the contradiction

ϕ(ε) ≤ ‖U(t1)‖ ≤ r(t1, t0, w0) < ϕ(ε),

which proves our claim. This proof is complete. �
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Theorem 4.2. Suppose that F ∈ Crd(T×Kc(R), Kc(R)). Moreover, there exists V given as in Definition 3.1 such that V is positive
definite and

∆rV (t,U(t)) ≤ 0, t ∈ T.
|V (t,U(t))− V (t,W (t))| ≤ LD[U(t),W (t)], L ≥ 0, t ∈ T,

where U(t) = U(t, t0,U0),W (t) = W (t, t0,U0). Then the trivial solution of SDE (1) is equi-stable.

Proof. Define m(t) = V (t,U(t)), we have, from the fact that V is positive definite, m(t) = V (t,U(t)) ≥ ϕ(‖U(t)‖) for
some ϕ ∈ K . Since V (t0, {0}) = 0 and V (t0, A) is continuous with respect to A, for any ε > 0, there exists δ = δ(t0, ε) > 0
(δ ≤ ϕ(ε)) such that ‖U0‖ < δ implies that V (t0,U0) < ϕ(ε), that is,m(t0) = V (t0,U0) < ϕ(ε).
On the other hand, the equation

u∆ = 0, u(t0) = V (t0,U0)

has only a solution u ≡ V (t0,U0). Now employing the procedure used in the proof of (5), the hypothesis ∆rV (t, A) ≤ 0
guarantees

m(t) = V (t,U(t)) ≤ V (t0,U0), t ∈ [t0,∞)T. (9)

Therefore, for all t ∈ [t0,∞)T, we have

ϕ(‖U(t)‖) ≤ V (t,U(t)) ≤ V (t0,U0) < ϕ(ε).

Note that ϕ is increasing, we infer U satisfies (7), i.e., the trivial solution of SDE (1) is equi-stable as desired. �

We will next consider the uniform stability criteria.

Theorem 4.3. Suppose that F ∈ Crd(T×Kc(R), Kc(R)). Moreover, there exists V given as in Definition 3.1 such that V is positive
definite and

∆rV (t,U(t)) ≤ 0, t ∈ T.
|V (t,U(t))− V (t,W (t))| ≤ LD[U(t),W (t)], L ≥ 0, t ∈ T,

where U(t) = U(t, t0,U0),W (t) = W (t, t0,U0). Also, there exists ψ ∈ K such that V (t, A) ≤ ψ(‖A‖) (t, A) ∈ T × S(b).
Then the trivial solution of SDE (1) is uniformly stable.

Proof. Theorem 4.2 guarantees the stability criteria. we next prove the uniform stability criteria. There exists ϕ ∈ K such
that

ϕ(‖A‖) ≤ V (t, A) ≤ ψ(‖A‖), (t, A) ∈ T× S(b).

For any ε > 0 satisfying ψ−1(ϕ(ε)) < b, set δ = ψ−1(ϕ(ε)). Since ϕ,ψ ∈ K , δ = δ(ε) exists uniquely and is independent
of t0. Hence if ‖U0‖ < δ, from (9) it follows that

ϕ(‖U(t)‖) ≤ V (t,U(t)) ≤ V (t0,U0) ≤ ψ(‖U0‖) < ψ(δ), t ∈ [t0,∞)T.

This yields that

‖U(t)‖ < ϕ−1(ψ(ε)) = ε for all t ∈ [t0,∞)T.

Hence the trivial solution of SDE (1) is uniformly stable and the proof is complete. �

The next result provides sufficient conditions for equi-asymptotic stability criteria.

Theorem 4.4. Let the assumptions of Theorem 4.2 hold except that the estimate∆rV (t, A) ≤ 0 be strengthened to

∆rV (t, A) ≤ −φ(‖A‖) (10)

for (t, A) ∈ T× Kc(R), where, φ ∈ K is given. Then the trivial solution of SDE (1) is equi-asymptotically stable.

Proof. Clearly, Theorem 4.2 guarantees that the trivial solution of SDE (1) is equi-stable. Thus, for any ε > 0, there exists
δ = δ(t0, ε) > 0 such that ‖U0‖ < δ implies that

‖U(t)‖ < ε, t ∈ [t0,∞)T.

From our assumptions it follows that

V (t,U(t))+
∫ t

t0
φ(‖U(s)‖)1s ≤ V (t0,U0), t ∈ [t0,∞)T.
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Note that V (t,U(t)) ≥ 0 and ∆rV (t, A) < 0 guarantees that the function VU(t) = V (t,U(t)) is decreasing in t ∈ T. It is
easy to see that the limit limt→∞ VU(t) exists. Let α denote the limit.
We next prove that α = 0. On the contrary, we have α > 0. By means of the decrease of VU(t), we have VU(t) ≥ α > 0

for all t ∈ [t0,∞)T. On the other hand, from the continuity of VU(t) = V (t,U(t)) with respect to U and V (t, 0) = 0, there
exists a positive constant ξ > 0 such that ‖U(t)‖ > ξ for each t ∈ [t0,∞)T. This, together with ψ ∈ K , yields that

V (t,U(t)) ≤ V (t0,U0)−
∫ t

t0
φ(‖U(s)‖)1s ≤ V (t0,U0)− φ(ξ)(t − t0), t ∈ [t0,∞)T.

Let t ∈ T be large enough, we obtain that VU(t) ≤ 0, a contradiction. Hence α = 0, that is, limt→∞ VU(t) = 0.
Finally, we will prove that limt→∞ ‖U(t)‖ = 0. If this were false, there would exists positive number ε0 > 0 such

that, for any natural number k, ‖U(tk)‖ > ε0 for some tk ∈ T with tk ≥ k. From this, combining the fact that V is
positive definite, there would exist ϕ ∈ K such that V (tk,U(tk)) ≥ ϕ(‖U(tk)‖) ≥ ϕ(ε0) > 0 for k = 1, 2, . . . . This
contradicts limt→∞ V (t,U(t)) = 0. Hence limt→∞ ‖U(t)‖ = 0 which guarantees that the trivial solution of SDE (1) is
equi-asymptotically stable and the proof is complete. �

The next theorem presents the sufficient conditions for the uniformly asymptotic stability.

Theorem 4.5. If the assumptions of Theorem 4.3 hold except that the estimate∆rV (t, A) ≤ 0 be strengthened to (10), then the
trivial solution of SDE (1) is uniformly asymptotically stable.

Proof. Theorem 4.3 guarantees that the uniformly stability follows. By our assumptions, there exist functions φ, ϕ,ψ ∈ K

such that

ϕ(‖A‖) ≤ V (t, A) ≤ ψ(‖A‖), (t, A) ∈ T× S(b), and (11)

∆rV (t,U(t)) ≤ −φ(‖U(t)‖) ≤ −φ(ψ−1(V (t,U(t)))) < 0. (12)

(12) shows

∆rVU(t)
φ(ψ−1(VU(t)))

≤ −1.

This yields that∫ VU (t)

VU (t0)

1
φ(ψ−1(VU(s)))

1VU(s) ≤ −(t − t0).

i.e. ∫ VU (t0)

VU (t)

1
φ(ψ−1(VU(s)))

1VU(s) ≥ (t − t0).

From (11) it follows that VU(t0) ≤ ψ(‖U0‖) ≤ ψ(b). For any ε > 0 (ε < b), from (11) we have∫ ψ(b)

ϕ(‖U(t)‖)

1
φ(ψ−1(VU(s)))

1VU(s) =
∫ ψ(ε)

ϕ(‖U(t)‖)

1
φ(ψ−1(VU(s)))

1VU(s)+
∫ ψ(b)

ϕ(ε)

1
φ(ψ−1(VU(s)))

1VU(s)

≥

∫ VU (t0)

VU (t)

1
φ(ψ−1(VU(s)))

1VU(s) ≥ (t − t0).

Let us take T = T (ε, b) >
∫ ψ(b)
ϕ(ε)

1
φ(ψ−1(VU (s)))

1VU(s), then T is independent of t0 and U0 and∫ ψ(b)

ϕ(‖U(t)‖)

1
φ(ψ−1(VU(s)))

1VU(s) ≥ t − t0 −
∫ ψ(b)

ϕ(ε)

1
φ(ψ−1(VU(s)))

1VU(s)

> t − t0 − T ≥ 0, t ∈ (t0 + T ,∞)T.

This reduces that ϕ(‖U(t)‖) < ϕ(ε) for all t ∈ (t0 + T ,∞)T. In view of the monotonicity of ϕ we obtain ‖U(t)‖ < ε for all
t ∈ (t0 + T ,∞)T. This guarantees the uniformly asymptotic stability criteria as desired and the proof is complete. �

Finally, we consider the unstable criteria of of the trivial solution of SDE (1).

Theorem 4.6. Suppose that V given as in Definition 3.1 such that V (t, {0}) = 0 and for any c > 0 there exists A ∈ S(c)
such that V (t, A) > 0, where t ∈ T. Moreover, if ∆rV (t, A) is positive definite, also, there exists ψ ∈ K such that
V (t, A) ≤ ψ(‖A‖) (t, A) ∈ T× S(b), then the trivial solution of SDE (1) is unstable.
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Proof. For any δ > 0, by our assumptions, there exists W0 ∈ S(δ) (i.e. ‖W0‖ < δ) such that V (t0,W0) > 0. If the trivial
solution of SDE (1) is stable, then for any ε > 0 (ε < b), there exists δ > 0 such that ‖W0‖ < δ implies ‖U(t)‖ < ε for each
t ∈ [t0,∞)T, where U(t) = U(t, t0,W0). Since∆rV (t,U) is positive definite, V (t,U(t)) is increasing. We have

V (t,U(t)) ≥ V (t0,W0) > 0, for all t > t0.

This yields that ψ(‖U(t)‖) ≥ V (t,U(t)) ≥ V (t0,W0) > 0, namely,

‖U(t)‖ ≥ ψ−1(V (t0,W0)) := α > 0.

Again, applying the hypothesis that∆rV (t,U) is positive definite, there exists ϕ ∈ K such that

∆rV (t,U(t)) ≥ ϕ(‖U(t)‖)

for (t,U(t)) ∈ T× Kc(R). Integrating this inequality with respect to t > t0 yields

V (t,U(t)) ≥ V (t0,W0)+
∫ t

t0
ϕ(‖U(s)‖)1s ≥ V (t0,W0)+ ϕ(α)(t − t0).

By means of ‖U(t)‖ < ε, we have

ψ(ε) ≥ V (t0,W0)+ ϕ(α)(t − t0).

This a contradiction for t approaching infinity. Hence the trivial solution of SDE (1) is unstable. This proof is complete. �

5. Examples

A function p : T→ R is called regressive provided

1+ µ(t)p(t) 6= 0 for all t ∈ Tk.

For given regressive functions p, q, Bohner and Peterson in [18] defined the delta exponential function ep(·, s) as the
unique solution of the initial value problem y∆ = p(t)y, y(s) = 1 with s ∈ T. Furthermore, the ‘‘circle plus’’ and ‘‘circle
minus’’ are defined as, respectively,

p⊕ q = p+ q+ µpq, p	 q =
p− q
1+ µq

and 	 p = 0	 p.

It is easy to check that p⊕ (	q) = p	 q,	(	p) = p, p	 q = 	(q	 p) and p	 p = 0.
If p ≡ 1, let	 = 	1, e(t, s) = e1(t, s) for t, s ∈ T. Wewill start with a simple example of a SDE to illustrate our approach,

which is easy to be solved analytically.

Example 5.1. Let us consider the DE

u∆ = 	u, u(0) = u0 ∈ R, 0 ∈ T

and the corresponding SDE

∆HU = 	U, U(0) = U0 ∈ Kc(R). (13)

By means of Proposition 2.3 and the properties of the Hausdorff metric we see easily that the solution of (13) is unique if it
exists. We next prove that the values of the solution of (13) are interval function. In fact, let U = [u1, u2]with

u1(t) =
1
2
[u10 + u20]e(0, t)+

1
2
[u10 	 u20]e(t, 0),

u2(t) =
1
2
[u10 + u20]e(0, t)+

1
2
[u20 	 u10]e(t, 0).

In virtue of [18, Theorem 2.36], we have

u∆1 (t) = 	
1
2
[u10 + u20]e(0, t)+

1
2
[u10 	 u20]e(t, 0) = 	u2(t),

u∆2 (t) = 	
1
2
[u10 + u20]e(0, t)+

1
2
[u20 	 u10]e(t, 0) = 	u1(t).

This shows that the vector function (u1, u2) is the solution of the system of equations

u∆1 (t) = 	u2(t), u1(0) = u10,

u∆2 (t) = 	u1(t), u2(0) = u20.

Conclusively, U = [u1, u2] is a solution of (13) with the initial value U0 = [u10, u20].
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Conclusion 1. Given U0 ∈ Kc(R), let us choose V (t, A(t)) = ‖A(t)‖ for t ∈ T. Then, for U(t) = U(t, t0,U0), a solution of
(13) corresponding the initial value (0,U0), we have

∆rV (t,U(t)) =


‖U(σ (t))‖ − ‖U(t)‖

µ(t)
, σ (t) > t,

lim
s→t+

sup
‖U(t)+ (s− t)(	U(t))‖ − ‖U(t)‖

s− t
= −

1
1+ µ(t)

‖U(t)‖ = −‖U(t)‖, σ (t) = t.

Now, let us take g(t, w) = 1
1+µ(t)w. If t ∈ T is right dense, then ∆rV (t,U(t)) = −‖U(t)‖ ≤ g(t, ‖U(t)‖). If t is right

scattered, then∆rV (t,U(t)) = ‖U(σ (t))‖−‖U(t)‖
µ(t) ≤

‖U(σ (t))−U(t)‖
µ(t) = ‖∆HU(t)‖ = ‖ 	 U(t)‖ = 1

1+µ(t)‖U(t)‖ = g(t, ‖U(t)‖).
From Theorem 4.1 it follows that the equi-stability properties of the trivial solution of the DE (2) with g(t, w) = 1

1+µ(t)w

andw0 = ‖U0‖ implies the corresponding stability properties of the trivial solution of SDE (13).

Conclusion 2. By the above discussion we obtain assuming u10 6= −u20 that

U(t) =
1
2
[u10 − u20, u20 − u10] e(t, 0)+

1
2
[u10 + u20, u20 + u10] e(0, t).

By the analogical argument as in [12], for any general initial value U0, the solution of SDE (13) contains both the desired
and the undesired parts compared to the solution of the corresponding DE. Let us choose the appropriate initial value
U0 = [u10, u20], say U0 = [c, c] for some real number c , such that the term with e(t, 0) is eliminated and only the desirable
part of the solution compared with the DE is retained. In this case, note that 1 + µ(t) > 0, from [18, Theorem 2.36(viii)
and Theorem 2.48(1)] we have e(0, t) > 0 and e∆(0, ·) < 0. Hence ∆rV (t,U(t)) ≤ 0 with V (t, A(t)) = ‖A(t)‖. Now
Theorem 4.2 guarantees that the trivial solution of SDE (13) is equi-stable.
Letψ ∈ K withψ(w) = 2w forw ∈ R+. Then Theorem 4.3 guarantees that the trivial solution of SDE (13) is uniformly

stable.
From the above discussion it follows that ‖U(t)‖ = |c|e(0, t) > 0 and ‖U(t)‖ is decreasing. Now we take

φ(t) =


‖U(t)‖ − ‖U(σ (t)‖)

µ(t)
, σ (t) > t,

1
2
‖U(t)‖, σ (t) = t.

Then φ ∈ K and the inequality (10) holds. Therefore, Theorem 4.5 guarantees that the trivial solution of SDE (13) is
uniformly asymptotically stable.

Example 5.2. Consider the SDE as

∆HU = λ(t)U, U(0) = U0, (14)

which is generated by

u∆ = λ(t)u, u(0) = u0,

whereλ(t) > 0 is a real-valued function from T+ =: R+∩T intoR such thatλ ∈ L1(T) is rd-continuous and 1+µ(t)λ(t) > 0
for all t ∈ T, then we see that, with similar computation,

U(t) = U0eλ(t, 0), t ∈ T+,

is the unique solution of (14) corresponding the initial value (0,U0) for any U0 ∈ Kc(R). Note that eλ(0, 0) = 1 and
e∆λ (t, 0) = λ(t)eλ(t, 0) > 0, we obtain that eλ(t, 0) is increasing and eλ(t, 0) ≥ 1 on T+.
Let V (t, A) = ‖A‖ for A ∈ Kc(R). Then V (t,U(t)) = ‖U0‖eλ(t, 0) if U(t) is a solution of (14). It is easy to see that the

conditions of Theorem 4.6 are satisfied if ‖U0‖ > 0. consequently, the trivial solution of SDE (14) is unstable.
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