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A b s t r a c t - - W e  formalize a class of abstract and simple biochemical models that  have been pro.- 
posed for understanding the origin of life. We then analyse conditions under which "life-like" sub- 
structures will tend to arise in such models. @ 2000 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

The emergence of properties (for example, cycles) in random combinatorial structures, such as 
(di)graphs has been suggested as a simple way to model and understand early biological processes, 
such as the origin of life (see [1,2]). 

Kauffman [3,4] introduced and analysed a simple abstract origin-of-life model based oil large 
numbers of polymers randomly catalysing the concatenation and subdivision of other polymers. 
He claimed that life-like subsystems ("connected, reflexively autocatalytic" sets) must sponta- 
neously arise (with high probability) once the number of polymers becomes sufficiently large, a 
conclusion that was subsequently criticised by Lifson [5]. 

A close reading of [3,4] suggests, however, that Kauffman's original model imposes a stronger 
assumption, concerning the probability that a polymer calalyses any particular reaction, than the 
one that Lifson analyses. With that stronger assumption, Kauffman's claim holds. Nevertheless, 
Lifson's interpretation of what Kauffman was assuming in his model is arguably more realistic (see 
also [6]) and in that case, Kauffman's sufficient condition for the emergence of life-like subsystems 
does indeed break down. However, the question of whether this interpretation of Kauffman's 
model should give rise to life-like subsystems remains. In this note, we partially answer this 
question. First, we formalize precisely the types of model and "life" described semiformally by 
Kauffman. We then consider in more detail conditions for the emergence of life-like substructures 
in these models. In particular, we show that the degree of catalysation required for the emergence 
of life-like structures is less than Kauffman required, but more than some models of the type 
considered by Lifson. 
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1.1. Connected, Relexively Autocatalytic (CRA) Sets 

We first set up some general terminology, which allows us to consider Kauffman's  model and 
other variations as special cases. 

DEFINITIONS. 

• Let  X denote a set of  molecules. A reaction r will denote a pair r = ({a, b}, c), a, b, c E X 
which represents an allowable chemical reaction: 

a + b ~ - c  

(both the forward and backward reactions). Note that we may  allow a = b in case a+a ~- b 

is an allowable reaction. 

• Let  F (for 'food') denote a distinguished subset of  X .  

• Let  TZ be the set of  allowable reactions. A catalysation is a pair (x, r) where x E X,  r E ~ ,  
denoting that molecule x catalyses reaction r. Let C C_ X × 7~ be a set o f  catalysations. 

• For r = ({a,b},c)  E T~, let supp(r)  := {a,b,c}, and for a subset 7~' o f  reactions define its 

support, written supp(7~'), by setting supp(T~') = Urete, supp(r) .  Thus, supp(7~') is the 

set of  all molecules that are involved in at least one reaction from T~'. 

• Given a subset 7~' of  T~, and a subset X '  of  X ,  define the closure of  X '  relative to ~ ' ,  
denoted cite, (X ' )  to be the (unique) minimai subset W of  X that satisfies the condition: 

for each reaction a + b ~ c in T~' : 

a, bE  X ' U W  ~ c E  W, 

c E W ==~ a, b E W. 

Informally, clte, (X ' )  is the set of  all molecules that can be constructed from X '  by repeated 

application of  (forward and backward) reactions in T~'. Note tha t  cite, (X ' )  C_ supp(T~'), 
and that clTe, (X) is well defined since the collection of  subsets of  W C_ X satisfying the 

condition described is dosed under intersection, and nonempty. 

• Given the quadruple (X, F, TZ, C), a subset 7~' of  TZ is 

reflexively autocatalytic (RA),  i f  

for all r E ~ ' ,  there exists an s E supp(7~') : (s, r) E C, 

connected to F f f  

supp(T~') = cite, (F),  

connected, reflexively autocatalytic (CRA)  i f  T~' is both R A  and connected to F.  

Informally, a CRA set of reactions 7~' is one in which every reaction is catalysed by an element 
in the support  of T~', and every element in the support  can be constructed from the food set F 
by successive applications of reactions from T~'. I t  thus captures the abstract  idea of "life" as a 
self-catalysing system able to sustain itself by using a suitable food source. 

Of  course, one  may wish to restrict at tention to minimal C R A s - - t h a t  is, CRAs which have the 
proper ty  tha t  no proper subset also forms a CRA. Since we are only concerned with the existence 
of a CRA in T~ and this is equivalent to the existence of a minimal CRA, we do not need to worry 
about  this distinction. One may also wish to impose further restrictions on a CRA to exclude 
certain trivial s i tuat ions--for  example, one may require that  not all reactions in R are catalysed 
by elements of F ,  or, more strongly, one may require at least one element of X - F to form a 
cycle in the digraph on X defined by placing directed edges from a polymer x to the elements in 
the support  of any reaction which x calalyses. However, these considerations do not affect our 
conclusions at all, as may be easily checked. 
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1.2. K a u f f m a n ' s  A b s t r a c t  M o d e l  

Kauffman (see [3,4]) considered a somewhat abstract  model in which the set X of molecules 

comprises all polymers (sequences) up to a given length, n over a k-letter a l p h a b e t - - t h a t  is, 
X = Xn = {0, 1 , . . . ,  k - 1} <-n, and F denotes all sequences of length < t for some small and 
fixed t (for example, t = 2). Actually, Kauffman considered in detail only the case k = 2, 
but we will consider the more general case as the calculations are similar. Following [3,4], the 
elements of X~ are regarded as oriented, and the set 7"4 = T4,~ of allowable reactions (representing 

ligation/cleavage reactions) is the set of pairs r = ({a, b}, c), a, b, c e Xn for which c = ab or 
c = ba where ab is the concatenation of a with b (in case a = b, c is the concatenation of a with 
itself). 

C is randomly generated, by assigning elements of Xn x T4n as follows: each x E Xn catalyses 
any given reaction r with probabili ty p~ (not dependent on x or r) and these assignments are 

made independently over X n  x Tin. 

In Kauffman 's  original model, Pn is constant ("each polymer has a chance P of catalysing 
the first reaction, the second reaction and so forth" [4, p. 307]), while in Lifson's interpretation 
(see [5]), p,~ is inversely proportional to IT4nl (an even more realistic extension would allow 

catalysat ion probabilities to depend on lengths of polymers, but we do not explore this here). 
For the general model we have described--which includes both interpretions as special cases - -  
questions of interest include the following. 

1. Let Pn := P[3 T4' C_ T4 n : 7~' is CRA] and let Poo = limn--.oo Pn. Under what  conditions 
on the sequence Pn does Poo = 1? More generally, how does Po~ depend on {Pn}? 

2. As n grows, at what  value will we expect to first observe a CRA, and how large (in terms 
of the number of reactions) will a minimal CRA be? 

In this paper, we consider only the first of these two problems. 

2. R E S U L T S  

The number  of elements of Xn is clearly just the sum ~i~=1 k i. Thus, we have 

k n + l  - k k n + l  

IXnl -= k --1 ~ k----~- l '  (1) 

where --~ denotes asymptot ic  equivalence ( f ( n )  ..~ g(n) precisely if limn--.oo f ( n ) / g ( n )  = 1). 
Also of importance to us is the ratio of the number of reactions to polymers. Extending the 

argument  from [3,4] from two-state to k-state sequences, the number of reactions r = ({a, b}, c) 

can be counted by noting that ,  for each of the c e Xn of length (i = 2 , . . . ,  n), there are i - 1 
places to cut c to obtain the pair {a, b}. Thus, 17~nl ~ ~ i n _ 2 ( i  - -  1)k ~ ,.~ ( n k n + l ) / ( k  - 1) {:where 
the first aymptot ic  equivalence fails to be an equality since we have overlooked the asymptotical ly 
negligible effect of palindromic polymers). Thus, from (1), we obtain 

Ir nl 
- -  " ~  n .  ( 2 )  

One of Kauffman 's  principal claims is that  if pn is constant (as a function of n), then no mat te r  
how small this value is, one has 

P o ¢ = l .  

We generalize this result as follows, by allowing p~ to tend to zero (but not too quickly). 

THEOREM 1. I f  pn >_ cn2/[T~n[, where c > loge(k), then limn--.ooP[/7.~ is a CRA] = 1 and in 

particular, Po~ = 1. 

PROOF. First, since supp(T4n) = X,~ = clT~, (F),  T4n is connected to F. Thus, it suffices to show 
the probabil i ty of T4n being reflexively autocatalytic converges to 1, as n --* c~. We have 

~ ' [ n ~ i s R A ] = l - P [ ~ r e ~ n : V x e X ~ , ( x , r ) ¢ C ] > l -  y ~  P [ V x • X n , ( x , r ) ~ C ] ,  
fETe,, 
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by the Bonferroni inequality. Now, for any r e An, we have 

e ¢ c] = (1 

by the assumptions of the model. Thus, 

? [~n  is RA] > 1 -[7~n[(1 - p n )  Ixnl. 

Thus, ifpn >  2/In l, then, letting g(n) = (~lX~l)/(m~l),  

ITCh[(1 -pn) Ixnl <_ ng(n)-lkn+le -cng(n) = kng(n)-le (l°g~(k)-cg(n))n, 

by virtue of (1) and the inequality, (1 - a) b < e -ab, a, b > 0. Now, from (2), limn-~oo g(n) = 1 and 
so if loge(k ) - c  < - 6  < 0, then, there exists some no, such that  for all n _> no, loge(k) - c g ( n )  < 
-6 /2 .  Consequently, for all n > no, [Rn[(1 -pn)  Ix'`l < kng(n)-le -n~/2 and so limn--,oo [/~n[(1 - 
pn) Ixnl = 0, as required. | 

Thus, if each polymer catalyses on average n 2 reactions in total, then it becomes increasingly 
certain that  the entire system of reactions is a CRA (under Kauffman's original model, the average 
number of reactions catalysed by a given polymer grows even faster than n2--i t  is proportionally 
to [T~n [ and thus grows exponentially with n). However, this assumption that  the average number 
of reactions catalysed by a given polymer grows quickly (or at all) with n has been questioned 
by Lifson, so it is useful to explore slower rates of growth, and see under what conditions a CRA 
(not necessarily all of 7~,) will arise. 

2.1. Lifson's Interpretation 

A major criticism of Kauffman's model (see [5,6]) is the assumption that  Pn should be constant 
with n. Lifson analyses a more modest scenario whereby each element x 6 Xn has a fixed 
probability p of catalysing some reaction, but in that  case, only one (uniformly selected) reaction 
is catalysed by x. We may model this by taking pn = p/l~nl. In [5], Lifson showed that  
Kauffman's proof (which shows that  7~n is a increasingly certain to be CRA) is no longer valid, 
but this leaves open the question of what value P ~  might take, since it could conceivably be the 
case that  7~n could contain a CRA, ~ ' .  The next theorem partially answers this question--in 
particular, it shows that  the analogue of Theorem 1 no longer holds (for the existence of CRAs), 
at least if p is small. 

THEOREM 2. Suppose Pn = p/[T~n[. Then, we have the following. 

i. For all e > O, there exists 5 > 0 such that if p < 5, then 

lim P [3 ~ '  C T~n : 7~'is RA ] < e. 
?~---*OO 

2. I f  p < 1/3e -1, then Poo = O. 

PROOF. 

PART 1. Consider the pair (T~',S'), where S ' := supp(T~'). Let r := [T~'t; s := IS'[. Under 
the assumptions of the model, the probability that  each element of T~' is catalysed by (at least) 
one element of S' is (1 - (1 - p/[7~n[)s) r < (ps/]7~n[) ~ < (3rp/[7~n[) r, where the last inequality 
follows from the observation that,  for any reaction r, [supp(r)] < 3 and so, s < 3r. Thus, by the 
Bonferroni inequality, 

(7~r ) (3rp)r P [ B T ~ ' C - T ~ n : ~ ' i s R A ] - < Z  Z e [ 7 ~ ' i s R A ] - < Z  I '~[ / 3 r p ~ < - Z  r! 
\ ln , , I ]  r > l  
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By Stirling's formula, (rr /r!)  < (er/2x/~7). Thus, if we write p = ( 1 / 3 ) e - l a ,  where a < 1, we 

have ~ > _ l  ( ( 3rp)~ /r!  ) < ~ > 1  r-° 'h a~ <- a /  (1 - a),  which establishes Par t  1 of the theorem. 

PART 2. Note tha t  if a subset T~' of 7~n is connected to F,  then supp(7~ ~) n F ¢ 0. Let f ::- IFI. 
The number  of r E Tgn such tha t  supp(r)  M F ¢ q~ is at most 2[Xn]f,  since for each x E X, f E F 
there exists at most two elements g E X such tha t  f + g ~ x is a reaction (and in case x E F,  

f '  + g' ~ x implies f ,  g' E F).  Thus, 

[{7~' c 7~  : 17Ui = r, supp (7~') n F ¢ 0}1 <_ ( l ~ ] )  _ ( i7~] - 2r [Xnl f ) .  

Consequently, if we let P(~) := ~[3T41 C_ T¢,~ : IT¢' I = r, 7-¢' is CRA] and once again apply the 

Bonferroni inequality, we have 

- r - r !  

Thus, 

p(r) _<: 1 - 1 ]7-¢n1 17~n[ rl --< lT~n-------~ + ~ r! (3) 

Now, if p < (1/3)e -1, the series ~-~>>_l(rt(3rp)~/r!) converges (for t = 1, 2) and the result now 

follows from (1)-(3) and the bound Poo -< limn--.oo ~_>1 f n  ~ from the Bonferroni inequality. | 

The question of determining Poo under Lifson's interpretation for p in the range (1/3)e -1 <_ 

p _< 1 appears  more difficult, however, I conjecture tha t  Poo = 0 in this case also, and make a 
further conjecture (whose t ru th  would improve Theorem 1): for some sub-quadratic function f ,  
the model in which each polymer catalyses on average f ( n )  reactions in total, satisfies P ~  = 1. 
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