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a b s t r a c t

Of concern is the Cauchy problems for fractional integro-differential equations with
nonlocal initial conditions. Using a new strategy in terms of the compactness of the
semigroup generated by the operator in the linear part and approximating technique, a new
existence theorem for mild solutions is established. An application to a fractional partial
integro-differential equation with a nonlocal initial condition is also considered.
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1. Introduction

Since the differential equations involving fractional derivatives in time, compared with those of integer order in time,
aremore realistic to describemany phenomena in nature (for instance, to describe thememory and hereditary properties of
various materials and processes), the study of such equations has become an object of extensive study during recent years
(see, e.g., [1–10] and references therein).

On the other hand, the nonlocal Cauchy problems, in many cases, take much better effect in applications than the
traditional problems with a local initial datum. For more detailed information about the importance of nonlocal initial
conditions in applications, we refer to, e.g., [11–17].

Let−A : D(A) → X be the infinitesimal generator of a compact analytic semigroup of uniformly bounded linear operators
{T (t)}t≥0 on a Banach space (X, ‖ · ‖) and let 0 ∈ ρ(A). Denote by Xα the Banach space D(Aα) endowed with the graph norm

‖u‖α = ‖Aαu‖ for u ∈ Xα.

Consider the following Cauchy problem for fractional integro-differential equations in Xα with nonlocal initial conditionscDβ
t u(t) + Au(t) = f (t, u(t)) +

∫ t

0
K(t − s)g(s, u(s))ds, t ∈ [0, T ],

u(0) = H(u)
(1.1)
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where cDβ
t , 0 < β < 1, is the Caputo fractional derivative of order β , K : [0, T ] → R+ is a continuous function, and

f , g : [0, T ] × Xα → X , H : C([0, T ]; Xα) → Xα are given operators to be specified later. As can be seen, H constitutes a
nonlocal condition.

In some existing articles, the fractional Cauchy problems with nonlocal initial conditions were treated under the
hypothesis that the nonlocal item is compact or Lipschitz continuous. To make things more applicable, in this work we
will prove the existence of mild solutions to (1.1) under a much weaker hypothesis in which H has not Lipschitz continuity
nor the compactness. More precisely, H has only continuity and some growth condition. A new strategy which relies on
the compactness of the semigroup generated by A and approximating technique is used to obtain the existence results.
The theorems formulated are extensions of many previous results on the fractional Cauchy problems with nonlocal initial
conditions.

The paper is organized as follows. In Section 2, some required notations, definitions and lemmas are given. In Section 3,
we present our main results. An example in Section 3 is given to illustrate our abstract results.

2. Results and proofs

Throughout this paper, let C([0, T ]; Xα) be the Banach space of all continuous functions from [0, T ] into Xα with the norm

|u|α = sup{‖u(t)‖α, t ∈ [0, T ]}.

L(X) stands for the Banach space of all linear and bounded operators on X . Let

M = sup{‖T (t)‖L(X), t ∈ [0, ∞)}.

For any r > 0, write

Ωr = {u ∈ C([0, T ]; Xα); |u|α ≤ r}.

The following are basic properties of Aα(0 ≤ α < 1).

Theorem 2.1 ([18], pp. 69–75).

(a) T (t) : X → Xα for each t > 0, and AαT (t)x = T (t)Aαx for each x ∈ Xα and t ≥ 0.
(b) AαT (t) is bounded on X for every t > 0 and there exist Mα > 0 and δ > 0 such that

‖AαT (t)‖L(X) ≤
Mα

tα
e−δt .

(c) A−α is a bounded linear operator on X with D(Aα) = Im(A−α).
(d) If 0 < α1 ≤ α2, then Xα2 ↩→ Xα1 .

Lemma 2.1 ([19]). The restriction of T (t) to Xα is exactly the part of T (t) in Xα and is an immediately compact semigroup in Xα ,
and hence it is immediately norm-continuous.

For x ∈ X , define two families {Sβ(t)}t≥0 and {Pβ(t)}t≥0 of operators by

Sβ(t)x =

∫
∞

0
Ψβ(s)T (tβs)xds, Pβ(t)x =

∫
∞

0
βsΨβ(s)T (tβs)xds, 0 < β < 1,

where

Ψβ(s) =
1

πβ

∞−
n=1

(−s)n−1 Γ (1 + βn)
n!

sin(nπβ), s ∈ (0, ∞)

is the function of Wright type defined on (0, ∞) which satisfies

Ψβ(s) ≥ 0, s ∈ (0, ∞),

∫
∞

0
Ψβ(s)ds = 1, and∫

∞

0
sζ Ψβ(s)ds =

Γ (1 + ζ )

Γ (1 + βζ)
, ζ ∈ [0, 1].

The following lemma follows from the results in [20,21].

Lemma 2.2. The following properties are valid.

(1) For every t ≥ 0, Sβ(t) and Pβ(t) are linear and bounded operators on X, i.e.,

‖Sβ(t)x‖ ≤ M‖x‖, ‖Pβ(t)x‖ ≤
βM

Γ (1 + β)
‖x‖ for all x ∈ X and 0 ≤ t < ∞.



R.-N. Wang et al. / Applied Mathematics Letters 24 (2011) 1435–1442 1437

(2) For every x ∈ X, t → Sβ(t)x, t → Pβ(t)x are continuous functions from [0, ∞) into X.
(3) Sβ(t) and Pβ(t) are compact operators on X for t > 0.
(4) For all x ∈ X, ‖AαPβ(t)x‖ ≤ Cαt−αβ

‖x‖, where Cα =
MαβΓ (2−α)

Γ (1+β(1−α))
.

(5) The restriction of Sβ(t) to Xα and the restriction of Pβ(t) to Xα are norm-continuous.

We can also prove the following compactness criterion.

Lemma 2.3. For every t > 0, the restriction of Sβ(t) to Xα and the restriction of Pβ(t) to Xα are compact operators in Xα .

Proof. First consider the restriction of Sβ(t) to Xα . For any r > 0 and t > 0, it is sufficient to show that the set {Sβ(t)u;
u ∈ Br} is relatively compact in Xα , where Br := {u ∈ Xα; ‖u‖α ≤ r}.

Since by Lemma 2.1, the restriction of T (t) to Xα is compact for t > 0 in Xα , for each t > 0 and ε ∈ (0, t),∫
∞

ε

Ψβ(s)T (tβs)uds; u ∈ Br


=


T (tβε)

∫
∞

ε

Ψβ(s)T (tβs − tβε)uds; u ∈ Br


is relatively compact in Xα . Also, for every u ∈ Br , as∫

∞

ε

Ψβ(s)T (tβs)uds → Sβ(t)u, ε → 0

in Xα , we conclude, using the total boundedness, that the set {Sβ(t)u; u ∈ Br} is relatively compact, which implies that
the restriction of Sβ(t) to Xα is compact. The same idea can be used to prove that the restriction of Pβ(t) to Xα is also
compact. �

Based on an overall observation of the previous related literature, in this paper we adopt the following definition of mild
solution of (1.1).

Definition 2.1. By a mild solution of (1.1), we mean a function u ∈ C([0, T ]; Xα) satisfying

u(t) = Sβ(t)H(u) +

∫ t

0
(t − s)β−1Pβ(t − s)


f (s, u(s)) +

∫ s

0
K(s − τ)g(τ , u(τ ))dτ


ds

for t ∈ [0, T ].

For the sake of convenience, we write

k :=

∫ T

0
K(t)dt, Cα,γ :=


1 − γ

(1 − α)β − γ

1−γ

.

Here, we will obtain mild solutions under the following assumptions.

(H1) f , g : I × Xα → X are continuous, for some r > 0 there exist a constant γ ∈ [0, β(1 − α)) and functions ϕr(·) ∈

L1/γ (0, T ; R+), φr(·) ∈ L∞(0, T ; R+) such that for all t ∈ [0, T ] and x ∈ Xα satisfying ‖x‖α ≤ r ,

‖f (t, x)‖ ≤ ϕr(t), ‖g(t, x)‖ ≤ φr(t),

and

lim inf
r→+∞

‖ϕr‖L1/γ (0,T )

r
= σ1 < ∞, lim inf

r→+∞

‖φr‖L∞(0,T )

r
= σ2 < ∞.

(H2) (i) H : C([0, T ]; Xα) → Xα is continuous, there exists a nondecreasing functionΦ : R+
→ R+ such that for all u ∈ Ωr ,

‖H(u)‖α ≤ Φ(r), and lim inf
r→+∞

Φ(r)
r

= µ < ∞.

(ii) There is a η ∈ (0, T ) such that for any u, w ∈ C([0, T ]; Xα) satisfying u(t) = w(t) (t ∈ [η, T ]), H(u) = H(w).

Remark 2.1. Let us note that (H2) (ii) is the case when the values of the solution u(t) for t near zero do not affect H(u).
A typical example of the operator H is that H(u) =

∑p
i=1 Ciu(ti), where Ci (i = 1, . . . , p) are given constants and 0 <

t1 < · · · < tp−1 < tp < +∞ (p ∈ N), which is used to describe the diffusion phenomenon of a small amount of gas in a
transparent tube.

We are now ready to state our main result.

Theorem 2.2. Let (H1) and (H2) hold. Then Cauchy problem (1.1) has at least one mild solution provided that

Mµ + CαCα,γ σ1T (1−α)β−γ
+

Cα
kσ2T (1−α)β

(1 − α)β
< 1. (2.1)



1438 R.-N. Wang et al. / Applied Mathematics Letters 24 (2011) 1435–1442

Proof. We proceed in three steps.
Step 1. Letm ≥ 1 be fixed. Consider the Cauchy problem of the form

cDα
t u(t) = Au(t) + f (t, u(t)) +

∫ t

0
K(t − s)g(s, u(s))ds, t ∈ [0, T ],

u(0) = T


1
m


H(u).

(2.2)

With the help of (H1), (H2)(i) and (2.1), we prove that for everym ≥ 1, Cauchy problem (2.2) has at least a mild solution um.
To this end, we define an operator on C([0, T ]; Xα) by

(Γ βu)(t) = Sβ(t)T


1
m


H(u) +

∫ t

0
(t − s)β−1Pβ(t − s)


f (s, u(s)) +

∫ s

0
K(s − τ)g(τ , u(τ ))dτ


ds, t ∈ [0, T ].

Then, it is sufficient to show that Γ β has a fixed point. Note first that Γ β is well defined. In what follows, we prove that
there is a positive number k0 such that Γ β maps Ωk0 into itself. If this is not the case, then for each k > 0, there would
exist uk ∈ Ωk and tk ∈ [0, T ] such that ‖(Γ βuk)(tk)‖α > k. Thus, we see, from Lemma 2.2(4), (H1), (H2) (i) and the Hölder
inequality, that

k < ‖(Γ βuk)(tk)‖α

≤

Sβ(tk)T


1
m


H(uk)


α

+

∫ tk

0
(tk − s)β−1

Pβ(tk − s)

f (s, uk(s)) +

∫ s

0
K(s − τ)g(τ , uk(τ ))dτ


α

ds

≤

Sα(tk)T


1
m


L(X)

‖H(uk)‖α +

∫ tk

0
(tk − s)β−1

‖Pβ(tk − s)‖α

f (s, uk(s)) +

∫ s

0
K(s − τ)g(τ , uk(τ ))dτ

 ds

≤ M‖H(uk)‖α + Cα

∫ tk

0
(tk − s)β−1−αβ(ϕk(s) +k‖φk‖L∞(0,T ))ds

≤ MΦ(k) + CαCα,γ T (1−α)β−γ
‖ϕk‖L1/γ (0,T )

+
Cα

kT (1−α)β

(1 − α)β
‖φk‖L∞(0,T ).

Dividing on both sides by k and taking the lower limit as k → ∞, we have

1 ≤ Mµ + CαCα,γ σ1T (1−α)β−γ
+

Cα
kσ2T (1−α)β

(1 − α)β
.

This contradicts (2.1).
Next, we prove that Γ β is continuous on Ωk0 . Taking u1, u2 ∈ Ωk0 , we note, from (H1), that∫ t

0
(t − s)β−1−αβ

‖f (s, u1(s)) − f (s, u2(s))‖ds ≤ 2
∫ t

0
(t − s)β−1−αβϕk0(s)ds

≤ 2Cα,γ T (1−α)β−γ
‖ϕk0‖L1/γ (0,T )

,

and ∫ t

0
(t − s)β−1−αβ

∫ s

0
K(s − τ)g(τ , u1(τ ))dτ −

∫ s

0
K(s − τ)g(τ , u2(τ ))dτ

 ds

≤ 2k‖φk0‖L∞(0,T )

∫ t

0
(t − s)β−1−αβds

≤
2kT (1−α)β

(1 − α)β
‖φk0‖L∞(0,T ).

This together with the Lebesgue dominated convergence theorem gives that

‖(Γ βu1)(t) − (Γ βu2)(t)‖α ≤

Sβ(t)T


1
m


L(X)

‖H(u1) − H(u2)‖α

+

∫ t

0
(t − s)β−1

‖Pβ(t − s)‖α‖f (s, u1(s)) − f (s, u2(s))‖ds
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+

∫ t

0
(t − s)β−1

‖Pβ(t − s)‖α

∫ s

0
K(s − τ)g(τ , u1(τ ))dτ

−

∫ s

0
K(s − τ)g(τ , u2(τ ))dτ

 ds

≤ M‖H(u1) − H(u2)‖α + Cα

∫ t

0
(t − s)β−1−αβ

‖f (s, u1(s)) − f (s, u2(s))‖ds

+ Cα

∫ t

0
(t − s)β−1−αβ

∫ s

0
K(s − τ)g(τ , u1(τ ))dτ −

∫ s

0
K(s − τ)g(τ , u2(τ ))dτ

 ds

→ 0, as u1 → u2 in Ωk0 ,

in view of the continuity of operator H and operators f , g with respect to second variables. That is to say that Γ β is
continuous.

In what follows we show that Γ β is a compact operator on Ωk0 . For this purpose we introduce the following two
operators:

(Γ
β

1 u)(t) = Sβ(t)T


1
m


H(u), t ∈ [0, T ],

(Γ
β

2 u)(t) =

∫ t

0
(t − s)β−1Pβ(t − s)


f (s, u(s)) +

∫ s

0
K(s − τ)g(τ , u(τ ))dτ


ds, t ∈ [0, T ].

Since the compactness of T (t) for every t > 0 implies that the restriction of T (t) to Xα is an immediately compact semigroup
in Xα (see Lemma 2.1), for everym ≥ 1 we can deduce, by the boundedness of Sβ(t) in Xα and (H2)(i), that

Γ
β

1 mapping Ωk0 into C([0, T ]; Xα) is compact.

Moreover, by (H1), Lemmas 2.1 and 2.2, an argument similar to that in [5, Theorem 3.2] shows that for all t ∈ (0, T ],

the set {(Γ
β

2 u)(t); u ∈ Ωk0} is relatively compact in Xα

and the set {(Γ β

2 u)(·); u ∈ Ωk0} is equicontinuous on [0, T ]. Hence by the Arzela–Ascoli theoremone has thatΓ β

2 is compact.
Consequently, we have proved that

Γ β
= Γ

β

1 + Γ
β

2 is compact.

At the end of this step, applying Schauder fixed point theorem we obtain that for each m ≥ 1, Γ β has at least a fixed
point in Ωr0 , denoted by um. Furthermore, it is clear that for eachm ≥ 1, um is a mild solution of Cauchy problem (2.2).
Step 2. We show that

the set {um}
∞

m=1 ⊂ Ωr0 is precompact in C([0, T ]; Xα).

Assume that the operators Γ
β

1 and Γ
β

2 are defined the same as in Step 1. Therefore, it is sufficient to show that the sets
{Γ

β

1 um;m ≥ 1} and {Γ
β

2 um;m ≥ 1} are precompact in C([0, T ]; Xα).
Firstly, noticing (H1), Lemmas 2.1 and 2.2, it is not difficult to prove, by the arguments similar to those for [5, Theorem

3.2], that the set {Γ
β

2 um;m ≥ 1} is precompact in C([0, T ]; Xα). Let ξ ∈ (0, η) be fixed, where η is the constant in (H2)(ii).
Note in particular that the set {Γ

β

2 um;m ≥ 1}|[ξ,T ] is precompact in C([ξ, T ]; Xα).
Next, we consider the set {Γ

β

1 um;m ≥ 1}. To prove that the set {Γ
β

1 um;m ≥ 1} is precompact in C([0, T ]; Xα), we only
need to prove that the set {Γ

β

1 um;m ≥ 1}|[0,ξ ] and the set {Γ
β

1 um;m ≥ 1}|[ξ,T ] are precompact in C([0, ξ ]; Xα) and in
C([ξ, T ]; Xα), respectively.

In view of (H2)(i) and Lemma 2.3 we have that for all t ∈ [ξ, T ], the set

{Γ
β

1 um(t);m ≥ 1} =


Sα(t)T


1
m


H(um);m ≥ 1


is relatively compact in Xα . On the other hand, for t1, t2 ∈ [ξ, T ] with t1 ≤ t2, by means of Lemma 2.2(5) and (H2)(i) one hasSα(t2)T


1
m


H(um) − Sα(t1)T


1
m


H(um)


α

=

(AαSα(t2) − AαSα(t1))T


1
m


H(um)


→ 0, as t2 → t1,

uniformly form ≥ 1. Hence, an application of Arzela–Ascoli’s theorem justifies that

the set {Γ
β

1 um;m ≥ 1}|[ξ,T ] is precompact in C([ξ, T ]; Xα).
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Consequently, it is proved that

the set {um;m ≥ 1}|[ξ,T ] is precompact in C([ξ, T ]; Xα).

Without loss of generality, we let

um → u0 in C([ξ, T ]; Xα)

asm → ∞, which implies that

uη
m →u0 in C([0, T ]; Xα)

asm → ∞, where

uη
m(t) =


um(t) if t ∈ [η, T ],
um(η) if t ∈ [0, η].

, u0 =


u0(t) if t ∈ [η, T ],
u0(η) if t ∈ [0, η].

This together with the strong continuity of T (t) on X and (H2)(i) yields thatT 
1
m


H(um) − H(u0)


α

=

AαT


1
m


H(uη

m) − AαH(u0)


≤

T 
1
m


AαH(u0) − AαH(u0)

 +

T 
1
m


(AαH(u0) − AαH(uη

m))


≤


T


1
m


− I


AαH(u0)

 + M‖H(u0) − H(uη
m)‖α

→ 0 asm → ∞,

from which we see that

the set

T


1
m


H(um);m ≥ 1


is relatively compact in Xα,

and so is the set {Sα(t)T ( 1
m )H(um)} for all t ∈ [0, ξ ]. Noticing this and Lemma 2.2(3), we have that for t1, t2 ∈ [0, ξ ] with

t1 ≤ t2,Sα(t2)T


1
m


H(um) − Sα(t1)T


1
m


H(um)


α

=

(Sα(t2) − Sα(t1))AαT


1
m


H(um)


→ 0, as t2 → t1,

uniformly form ≥ 1. That is to say,

the set {Γ
β

1 um(·);m ≥ 1}|[0,ξ ] on [0, ξ ] is equicontinuous.

Therefore, again by Arzela–Ascoli’s theorem one can conclude that {Γ
β

1 um;m ≥ 1}|[0,ξ ] is precompact in C([0, ξ ]; Xα).
Summarizing the above, we have that the set {um}

∞

m=1 is precompact in C([0, T ]; Xα).
Step 3. From Step 2, it follows that the set {um}

∞

m=1 is precompact in C([0, T ]; Xα). Without loss of generality, we let

um → u in C([0, T ]; Xα)

asm → ∞. Note that for eachm ≥ 1, um is a solution of the following integral equation

um(t) = Sβ(t)T


1
m


H(um) +

∫ t

0
(t − s)β−1Pβ(t − s)


f (s, um(s)) +

∫ s

0
K(s − τ)g(τ , um(τ ))dτ


ds, t ∈ [0, T ].

Then lettingm → ∞ on both sides one has

u(t) = Sβ(t)H(u) +

∫ t

0
(t − s)β−1Pβ(t − s)


f (s, u(s)) +

∫ s

0
K(s − τ)g(τ , u(τ ))dτ


ds, t ∈ [0, T ].

This yields that u ∈ C([0, T ]; Xα) is a mild solution of Cauchy problem (1.1) and the proof is then complete. �

Corollary 2.1. Let (H2) (ii) and the following hypotheses hold.

(H′

1) f , g : I × Xα → X are continuous, for some r > 0 there exist positive functions ϕr satisfying
ϕr (·)

(t−·)1−β(1−α) ∈ L1(0, t; R+)

and φr ∈ L∞(0, T ; R+) such that for all t ∈ [0, T ] and x ∈ Xα satisfying ‖x‖α ≤ r,

‖f (t, x)‖ ≤ ϕr(t), ‖g(t, x)‖ ≤ φr(t),
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and

lim inf
r→+∞

1
r

∫ t

0

ϕr(s)
(t − s)1−β(1−α)

ds = σ ′

1 < ∞, lim inf
r→+∞

‖φr‖L∞(0,T )

r
= σ2 < ∞.

(H′

2) H : C([0, T ]; Xα) → Xα is continuous and there exist L1, L2 > 0 such that

‖H(u)‖α ≤ L1|u|α + L2.

(H3) ML1 + Cασ ′

1 +
Cαkσ2T (1−α)β

(1−α)β
< 1.

Then Cauchy problem (1.1) has at least one mild solution.

3. An example

Consider the fractional partial integro-differential equation with nonlocal initial condition

c∂
1
2
t u(t, x) −

∂2u(t, x)
∂x2

=
sin u(t, x)

t
1
3

+

∫ t

0
K(t − s)


θ1(s)u(s, x) + θ2(s)

∂u(s, x)
∂x


ds,

0 ≤ t ≤ T , 0 ≤ x ≤ π,
u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ T ,

u(0, x) =

p−
i=1

∫ π

0
K0(x, y) cos u(ti, y)dy, 0 ≤ x ≤ π,

(3.1)

where 0 < t1 < · · · < tp−1 < tp < T .
Let X = L2[0, π] and the operators A = −

∂2

∂x2
: D(A) ⊂ X → X be defined by

D(A) = {u ∈ X; u, u′ are absolutely continuous, u′′
∈ X, and u(0) = u(π) = 0}.

Then, A has a discrete spectrum and the eigenvalues are n2, n ∈ N, with the corresponding normalized eigenvectors

yn(x) =


2
π
sin(nx). Moreover, −A generates a compact, analytic semigroup {T (t)}t≥0 on X and

T (t)u =

∞−
n=1

e−n2t(u, yn)yn, ‖T (t)‖L(X) ≤ e−t for all t ≥ 0.

The following results are well known also:

(1) If u ∈ D(A), then Au =
∑

∞

n=1 n
2(u, yn)yn.

(2) The operator A
1
2 is given by

A
1
2 u =

∞−
n=1

n(u, yn)yn

for each u ∈ D(A
1
2 ) = {v ∈ X;

∑
∞

n=1 n(v, yn)yn ∈ X} and ‖A−
1
2 ‖L(X) = 1.

Denote by Eρ,β the generalized Mittag-Leffler special function (cf., e.g., [9]) defined by

Eρ,β(t) =

∞−
k=0

tk

Γ (ρk + β)
ρ, β > 0, t ∈ R.

Therefore, we have

Sβ(t)u =

∞−
n=1

Eβ(−n2tβ)(u, yn)yn, u ∈ X; ‖Sβ(t)‖L(X) ≤ 1 for all t ≥ 0,

Pβ(t)u =

∞−
n=1

eβ(−n2tβ)(u, yn)yn, u ∈ X; ‖Pβ(t)‖L(X) ≤
β

Γ (1 + β)
for all t ≥ 0,

where Eβ(t) := Eβ,1(t) and eβ(t) := Eβ,β(t).
Assume that

(i) K , θ1, θ2 ∈ C([0, T ]; R+).
(ii) The function K0 is measurable and∫ π

0

∫ π

0
K 2
0 (x, y)dxdy < ∞, c0 =

∫ π

0

∫ π

0


∂K0(x, y)

∂x

2

dxdy < ∞.
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Define

f (t, u(t))(x) =
sin u(t, x)

t
1
3

,

g(t, u(t))(x) = θ1(t)u(t, x) + θ2(t)
∂u(t, x)

∂x
,

H(u)(x) =

p−
i=1

∫ π

0
K0(x, y) cos u(ti, y)dy.

Then it is easy to verify that f , g : [0, T ] × X 1
2

→ X and H(u) ∈ X 1
2
whenever u ∈ C([0, T ]; X 1

2
). Moreover, we see that

(H1) and (H2) hold with

1
3

< γ <
1
2
, ϕr(t) = π

1
2 t−

1
3 , φr(t) = r max

t∈[0,T ]

θ1(t) + r max
t∈[0,T ]

θ2(t), Φ(r) =
√
c0pπ

1
2 ,

µ = σ1 = 0, σ2 = max
t∈[0,T ]

θ1(t) + max
t∈[0,T ]

θ2(t).

Thus, when C 1
2
T

1
4
 T
0 K(t)dt(maxt∈[0,T ] θ1(t) + maxt∈[0,T ] θ2(t)) < 1

4 such that condition (2.1) is satisfied, (3.1) has at least
one mild solution due to Theorem 2.2.
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