
Topology Vol. 26. No I. pp. 79-91. 198: 

Pnnted in Great Bnt.un. 

oou)-9383 a7 $3 m - no 

Pcrgamon Jounalr Lrd 

A NOTE ON THE ETA FUNCTION FOR QUOTIENTS OF 
PSL2 (R) BY CO-COMPACT FUCHSIAN GROUPS 

Jo& SEADE and BRIAN STEER 

(Receicrd 25 July 1985) 

IN THIS PAPER we compute the value at 0 of the eta function [4] associated to the Dirac 

operator on r\ PSL2(R), where I- is a co-compact Fuchsian group. This is done by 

considering a family of metrics parameterized by t E (0, rl;). We thus have q:(O) defined for 

each t and we calculate lim a: (0). (It turns out that if one makes the analogous constructions 
1-O 

for SU(2), obtaining q:(O), then lim q:(O) and lim q:(O) are related by the Hirzebruch 
t-0 t-0 

proportionality factor [7] provided F has no elliptic elements.) Our calculation uses little of 

the geometry of r\ PSLZ (R) but requires substantial information about the representations 

of SL2 (R). 
The group PSL2 (R) acts transitively and freely on r, .X, the space of unit tangent vectors 

to the upper half-plane .&‘, and may be identified with the orbit of (i, 1). If we give .X the 

standard Poincare’ metric (dx’ + dy2)/y2 and give T1 2 the induced metric; this metric is 

invariant under PSL,(R) and the basis vectors 

for SL2 (R) have length 2 and are mutually perpendicular. We give PSLZ (R) the spin structure 

corresponding to the left invariant trivialization of its tangent bundle and for which K, A, H are 

unit perpendicular vectors. We may now form the bundle of spinors S and the Dirac operator 

P: r(S) 4 r(S). If r is any co-compact discrete subgroup of PSL2 (R) we have similarly a 

space of spinors and a Dirac operator too. The Dirac operator is an elliptic operator and since 

r \ PSLZ (R) is compact its eigenspaces are finite dimensional and we can form its eta function. 

A basic theorem of [4,5,6] is that q(s) can be defined as a meromorphic function on the whole 

of C and is finite at 0. We prove the following results concerning P and q (0) on r \ PSLZ (R). 

THEOREM 1. r\ PSLZ (R) has no harmonic spinors for any co-compact Fuchsian group r: 

that is, ker P = 0. 

THEOREM 2. If r c PSL2 (R) is a co-compact Fuchsian group of signature {g; SLY, . . . , r,) 
then 

V(O)=& VOl Fr+i(i$, (a;-;)) 
=$ 2g-2+n+ i (4x,-5/q) , 

i=l 

where F, is a fundamental domain for the action of r on 3’. 
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THEOREM 3. Let C c PSL,(R) be a co-compact Fuchsian group without elliptic elements 
(so that Z operates freely on .3 and its signature is {g}, where g is the genus of Z \ .%). Then 

Z\ PSL2 (R) = 2 D T (C \ .Z), where D T (Z\ -9) = Xr denotes the unit tangent disc bundle of 

Z \z? and the spin structure on Z\ PSL,(R) extends uniquely to X,. Zf P, denotes the 

corresponding Dirac operator on X,, then index P, = 0. 

In as much as the scalar curvature of I-\ PSLl (R) is negative (proposition 3.9), neither 
Theorem 1 nor Theorem 3 is a consequence of Lichnerowicz’s theorem, though they are no 
doubt special cases of more general theorems. 

Theorem 1 is proved by direct computation in $1, and in $2 we obtain sufficient 
information on the eigenvalues of the Dirac operator to be able to prove Theorem 2 for a 
group Z without elliptic elements in 43. This section is probably the most interesting part of 
the paper, for it defines an eta function qr (s) for a varying family of metrics pt (where the metric 
we are interested in is pl) and computes lim ~(0). The result for t = 1 is then deduced by 

using a formula for the variation of qr(0) with t. (When the authors described this to Professor 
Atiyah he pointed out that it was very similar to the idea of E. Witten in [19].) In $4 we prove 
Theorem 3 by using the general index formula [4] and finally, in $5, we establish Theorem 2 in 
general using Theorem 3 and the special case of Theorem 2 for a group without elliptic 
elements. Naturally this paper is much indebted to [ 121, where the compact case is considered. 

Here we shall write I- for a general co-compact subgroup of PSL,(R) and Z for one 
without elliptic elements. 

Take as a basis for sl,(R) the vectors 

The commutation laws are: 

[H, KJ = 2A, [H, A] = 2K, [A, K] = -2H. 

If t E R and t > 0, set El = i K, E2 = A and E3 = H. Take these as unit perpendicular vectors 
and endow PSL2(R)---and SL,(R)-with the metric pt which is obtained from this by left 
translation. The corresponding Levi-Civita connexion is then determined by the formula 

ZX.V,Y= Z[X,Y]+Y.[X,Z]-X.I?:Z], 

where the dot denotes scalar product, and results in the following formulae: 

V,H=O V,A = K = tE, V,K = -t2A 

V,H = -K v, = 0 V,K = t2H (1.1) 

VE,K = 0. 

In as much as PSLl (R) is not simply connected we must specify a spin structure: we take 
that one determined by the left invariant trivialization. With any orthonormal basis of tangent 
vectors we have a corresponding basis of spinors and a lifted connexion. Calculating exactly as 
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in [12] we find that, if $ is a basic spinor, the lifted connexion is 

V,$ = $M-KA)i = +llr. 

v,4* =$-HK+KHJ* =+H*, (1.2) 

VE,ti = 2+r2\(-HA+AH)$ = - - 
4t I 

it (2+t2)AH$. 

Consequently. if P, is the Dirac operator for the given spin structure and for the metric pI, we 

see that for a basic spinor I(/ 

Pt$ =fE,AH{tHAE,+tAh,H+(~)E,AH}~ 

We take the spin representation to be given by 

(1.3) 

where i = fl and w = El AH = 4 KAH. We may write any spinor, 4, as rt,!~i + /?$2 where 

11/i and Ic/2 are the basic spinors and z, /3 are smooth functions. Let us denote this $J by the 

vector (;). Then 

P*(;) = (Y)(;)+( yfiiH r,:‘“)(i), 
It is convenient to write 

Z=iK,2X_=A_iH,2X+=A+iH 

so as to have a basis for s12(C) in standard form. In terms of this basis (and with the above 

notation) we find that 

(1.4) 

Comparison with [12] shows that the first order terms are the same, as indeed they must be 

since they are determined by the symbol. 

Now that we have an expression for P,, we may prove Theorem 1. In fact we prove the 

following theorem which is a little stronger. 

THEOREM 1.5. Let r c PSL2 (R) be co-compact, and endow r\ PSL2 (R) nith the metric pr. 

Then, for the incariant spin structure, there are no non-zero harmonic spinors on r\ PSL2 (R) if 

0 < t < fi: rhat is, ker P, = 0 if0 -C t < &. 
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Let S denote the space spinors. As we have tacitly noted, 

L’(r\PSL,(R); S) 2 L’(I-\PSL2(R))@L2(I-\PSL2(R)). 

Since I-\ PSL,(R) is compact this space decomposes into the (completed) sum of 

irreducible representations of PSLl (R) and the operator P, respects each isotypic component. 

We investigate the behaviour of P, on each. The representation theory of SLz(R), due to 

Bargmann [7], is well known and there are several accounts [l, 7, 1 I]; our notation will be 

closest to [l]. Let II be an irreducible unitary representation of SL2 (R). Then 7c is determined 

by a parameter s E C and by a sign. If V, is the Hilbert space for n then we may decompose V, 

cos e, sin e 
with respect to the action of the compact subgroup K = 

-sin e, COST 
= a@; 

o I e -C 27~ 2 s’ of z,(R). SO 
i 

v,= 00: 
nez 

where ae acts on 0: by multiplication by enis. Each 0:: has dimension at most 1 and, moreover, 

X, carries 0: into D,"+2 whilst X_ carries it into D,"- *. Consequently Xc X- is 

an endomorphism of D:, and it is entirely determined by the parameter SEC: on Di, 
x, x_ = : (s2 -(n - 1)2). 

Let us NIX an irreducible representation ~(71 # 0) corresponding to a parameter s E C and 

let US set 1 = (2 - t2)/t. If 4 is a spinor given by the vector (;), where z E Dz, and if P, = 0 then 

formula 1.4 gives us the following equations. 

0 = ++;+2x,B 

0 = ZB+Ip-2X_a 
t 2 

Consequently /? E D:_ 2 and 

(I-2Z/t)a = -4x+/? 

= - 16X+(/+22/t)-‘X-a 

Remembering that Z acts on 0: by multiplication by n and that X + X _ acts by multiplication 

by 4 (s2 - (n - 1)2) we find the equation. 

We may have equality with a # 0 iff 

that is, iff n and s satisfy 

(1.6) 

or equivalently, 

(?+l)(n-1)2 = tv+$. (1.7) 
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Since we are working over I\ PSLz (R). the only permissible representations of SL2 (R) are 

those which descend to PSL2 (R), namely those for which - I acts as the identity. So n must 

always be even and hence the left-hand side of 1.6 is never zero. If we fix n we may solve for the 

possible parameters s:s = F f(4(1 +t-‘) (n- 1)2 -t2)l12. Now, the principal series rep- 

resentations are parametrized by SE i R. For an element in a principal series representation to 

be in ker P, we must then have t* 2 4 (t2 + I) (n - 1)‘: at the very least, t > 2. Considering next 

the cases of representations in the discrete series and in the complementary series we see 

that there can be no non-trivial solutions of P,(i) = 0 if I < J’?, as asserted in Theorem 1.5. 

(Notice that if t = J5 then the basic spinors are decidedly in ker P,.) 

The formula 1.4 for P, also gives information about the eigenvalues. We extract some of 

that information in this section. If a given representation rt associated to s E i R u ( - 1, l)-so 

a representation in the principal or complementary series--appears in L2 (r\ PSLl (R)) with 

multiplicity N, # 0 then from 1.4 we see that for each n E Z there are two eigenvalues 

i.= -~*((2n-1)2(l+$)-ii) 

each occurring with multiplicity N,. 

On the other hand. for SE N - 0 we have the rather different case of a discrete series 

representation. To the parameter s correspond two discrete series representations, often 

written rr:+ I and n_t 1 [ 11. When decomposed with respect to the action of the vector Z in the 

one case we only have components in which Z acts by multiplication by positive integers, in 

the other only ones where Z acts by multiplication by negative integers. Naturally, the sign 

tells us which. The subscript gives us the additional information that the first non-zero 

component (counting up or counting down as the case may be) is where Z acts by 

multiplication by s + 1 (positive case) or by s - 1 (negative case). We shall refer to a vector in 

this component as an extreme vector. If u is in a component where Z acts by multiplication by I 

we shall call t’ a vector of type 1. Recall that since all representations in question must descend 

to PSL2 (R) only even types may occur. Hence s + 1 is even and we shall write s + 1 = Zk, 

k E N \ 0. There are now two distinct cases. If we have an extreme vector u of type 2k for x2:, 

then (u, 0) is an eigenvector for P, with eigenvalue -3 +f - Lrk. Similarly if u is an extreme 

vector of type - 2k for x;~, then (0, U) is an eigenvector for P, with eigenvalue -3 +4 --$&. 

On the other hand, if we are not at the extreme point then, just as in the case of the principal 

and complementary series, we get two eigenvalues 

i= --$(2n-1)2(l+t2)-(2k-1)1)1~2 

for each n$ and for each n > k. Both appear with multiplicity that of the representation rc$ in 

L2 (r\ PSL2 (R)). These multiplicities are known [i 1, 13, 173. If N ;k denotes the multiplicity 

of rr& in L2(I\PSL2(R)), where I- is a co-compact Fuchsian group of signature 

{g; xi,. . . , r,), then 

k> 1; 

(2.1) 
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where F, denotes a fundamental domain for the action of I’ on .X and H has the standard 
Poincare metric. In the case of a discrete subgroup Z without elliptic points (so of signature 

{gr13 where gr denotes the genus of C \ .X) the formulae simplify: 

N&=(2k-l)(g,-1) if k>l 

Nf = gr. (2.2) 

We collect the information about the eigenvalues needed in the next section together in the 

following proposition. 

PROPOSITION 2.3 Let r c PSL,(R) be a co-compact Fuchsian group of signature 

(9; a I,..., a,} and let P, denote the Dirac operator on r \PSLz (R) corresponding to the 
metric pr and the trivial spin structure. Then the eigenvalues of P, are: 

for k 2 1 with multiplicity N& + N, where N$ are as in 2.1; 

. 
(ii) -i-((Zn-1)’ (1+t-‘)-(2k-1)2)“2 with multiplicity N ik + N&for each k 2 1 

and n > k; 
. 

(iii) -i-((2n-1)2 (1+t-2)-s2)1i2f or n E Z and s E A, where A is some countable subset 

of (-1, 1)uiR; 

1 
(iv) -i +; with multiplicity 2; 

(v) -~+((2n-1)2(l+t-2)-(2k-1)2)1’2 with multiplicity N & + N & for each k 2 1 

and n > k; 

(vi) -5 + ((2n - 1)2 (1 + te2) - s2)1/2 for n E Z and s E A and with the same multiplicity as 

the corresponding eigencalue in (iii). 

To calculate the value of the q-function q*(s) at 0 we do not, fortunately, need to know A 
explicitly. 

§3 

In this section we calculate q:(O), 0 < t < &, for a subgroup I c PSL,(R) without 

elliptic points. The value of lim q:(O) for a co-compact subgroup I of signature {g; ski, . . . , a,} 

t-0 

may be calculated directly from (2.1) and (2.3). Here we compute first for a subgroup without 

elliptic points and then deduce the general case using theorems from [S, 61 and [9]. Let X be a 
co-compact Fuchsian group without elliptic points and let us write simply qC (s) for qf: (s) and g 
for gr, the genus of the Riemann surface Z\ .X. For Re(s) large we may divide q,(s) into two 

pieces, 

Ilr (s) = Ir :’ (s) + II:(s), 

where q:(s) is the part of the u-function coming from the discrete series and q:(s) is the 

remainder. 
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PROPOSITION 3.1. Both q:(s) and q:(s) ma) be analytically continued to functions 

meromorphic in the whole complex plane and finite at 0. Moreover, 

(i) lim q:(O) = (1 -g)/6, 
t-0 

(ii) lim q:(O) = 0. 
t-0 

From this proposition and the smooth variation of q,(O) as t varies, 0 < t < 3, we can 

deduce Theorem 2 for a subgroup 1 without elliptic elements. 

We begin the proof of Proposition 3.1 by considering q:(s) and we shall suppose, although 

it is not necessary here, that 0 < t < a. Divide q:(s) into two pieces, as well: 

where q: (s) is the contribution to q:(s) by the eigenvalues of(i) and (iv) of Proposition 2.3 (so 

from the trivial representation and the extreme vectors of the discrete series representations) 

and q:(s) is the contribution by the eigenvectors of (ii) and (v) of Proposition 2.3. The 

functions are thus explicitly known and, in particular, 

q:(s) = t’(g-1) - 
1 

Comparison with the Riemann zeta function 

I) 
[(a,s) = 2 (n+a)-’ 

n=O 

tells us that q: (s) has a meromorphic extension to the whole of C, holomorphic if Re(s) > 1 

and with only simple poles. If we set 

3) 
io(a,s)= C (2n-l+a)-’ 

n=1 

then io(s, a) = ((a, s)-2-‘< i, s and 
( ) 

(3.2) 

It is known [18] that <(a, s) is holomorphic at 0 and - 1 with {(a, 0) = - f - a and [(a, - 1) 

= -& &;(a), where 4; is the derived polynomial of the third Bernoulli polynomial $3(z) 

= z3 - (3/2)z2 + (l/2)2. As a result, 

t7:(0)=(1--g) i+$ , I i 
so that lim q: (0) = (1 - g)/6. 

t-0 
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To handle qf (s), introduce as in [ 123 the auxiliary function 

_L(s) = b- 1) T? (2k- 1) qt(n, k)-“, 
!I> 21 

where qt(n, k) = { (2n - 1)’ (1 + t’) - t* (2k - l)‘} li2. A similar comparison with the Riemann 

zeta function shows thatf,(s) is holomorphic for Re(s) > 3 and may be analytically continued 

to the whole of C as a meromorphic function with simple poles, independent oft for t small 

and with the residues continuous functions of t. But 

d~s)=; n>TLI (g-l)W-1) ( r( J+r { q n “)-‘-(qt(n, k,+;)-‘} 

so that the same is true of qf (s). Not only this, but for small r we have an expansion of 11: (s) in 

terms of fi (s): 

s(s + 1) (s + 2) 

24 
f;(s+ 3) + t*-3e(t, s), 

where e(t, s) is holomorphic at 0 for small t. SinceI; has only simple poles and there the 

residues are continuous in t, we see that r~: (0) = t* 4 (t) where 4 (t) is continuous at 0. So lim 
t-0 

q: (0) = 0 and we have established (i). 

A similar argument establishes that lim q;(O) = 0. The good behaviour of q;(s) 
r-o 

= q,(s) - qp (s) is clear because we have established it for qP (s) and that for vr (s) is proved as a 

general fact in [6; 4.51. 

Let us write ~~(0) for lim q,(O). We shall complete the proof of Theorem 2 for a group 
r-o 

without elliptic elements by calculating the difference q,(O)- ~~(0) when 0 < t < ,,h. 

Since ker P, = 0 when 0 < t < fi, we see from [4; 3.101 and [6; 2.101 and a comparison of 

their conventions and ours (see 94) that 

171(O)-r70(0) = -2 r WA, (3.3) 

where M, = C\ PSL2 (R) and We is the a polynomial in the Pontrjagin forms associated to 

the connexion which on M, + (u} is the Levi-Civita connexion given by the metric gU and 

which is standard along (0, t]. Comparing definitions we realize that 

(3.4) 

where TP, (p) denotes the Chern-Simons form [S] associated to the first Pontrjagin form. (It 

is a horizontal form because M, is parallelized.) 

An orthonormal base for the tangent space to M, x { t } consists of the left translates of the 

vectors 

E,=fK,E,=A,E,=H. 

With respect to these fields the Levi-Civita connexion has connexion matrix Bij (determined 

according to the rule Vx (Ei) = i Bji (X) Ej), where 
j=l 

e12 = tE; = tH*, e13 = -tE; = -CA*, 

e23 = _(2+r2) ----ET = -(2+t*)K*; 
t 

(3.5) 
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and the star denotes the dual vectors. So the curvature matrix Rij 

- kil 0ik A Ojk) is as fOllOWS: 

R,z = t3 K* A A*, 

R,, = t3K* A H*, 

s223 = (4 + 3r’)H* A A*. 

Consequently [S], 

87 

(3.6) 

=-${2+t2(2+t2))K*A /i*A H*. 

Now under the identification PSL2 (R) 2 T, .X (defined by mapping PSL2 (R) to the orbit of 

(i, 1)) the vectors K, A, H each map into vectors of length 2. Hence K* A A* A H* 

corresponds to w/8 where w is the volume form on r, 2. This implies that 

s 
TP,(p,) = ~(2+?(2+t2))vol(~\.~) 

.WYX{l) 

=2(g-l)+t~(2+t2)(g-l). (3.7) 

This (3.3,3.4 and 3.7) proves the following theorem which is an extension ofTheorem 2 in the 

case of a subgroup without elliptic elements. 

THEOREM 3.8. If E c PSL2 (R) is a co-compact subgroup wirhout elliptic elements and g is 

the genus of Z \ .&’ then 

v,(O) = -q4242(2+Pj) 

From (3.6) we can compute immediately the scalar curvature of M,. 

PROPOSITION 3.9. The scalar curvature of M, = C\ PSL2 (R) endowed with rhe metric p, is 
-8-2r’. 

84 

Here we verify Theorem 3. We know [16] (it is easily shown) that X, = Z\,O (T.X) has a 

unique spin structure extending the one on its boundary given by the left invariant 

trivialization Y. Let P denote the Dirac operator on X,. Our orientation convention, that of 

the boundary followed by the outward-pointing normal [16], unfortunately is not that of [4] 

where the inward-pointing normal is used (see theorem 10, p. 57). So the appropriate boundary 

value problem is the adjoint of the one discussed in [4] and the index theorem for manifolds 

with boundary thus tells us that 

index P = - 
s x,? 

A -; (h + ill, 
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where ii = - I$ Pi and PI is the first Pontrjagin form in the curvature of X,. From Theorem 

1 and Theorem 3.8 above we know that 

t (h + q(O)) = $g* where g = gx denotes the genus of El,.%‘. 

The integral of PI over X, may be calculated directly, but it is easier here to use the work of 93 

and the relative Pontrjagin class Pi defined with respect to 9. In [4] it is noted that 

P; [X,] = 
s s 

PI + PI(C), 
~?x .MI:X[O.I] 

where c is a connexion joining the Riemannian connexion pi (at 0) to the flat connexion 

defined by 44 (at 1). In this case the second integral is just 

- TP, = -;vol(E\.Z) 

= -5(g- 1); 

by (3.7). The class P’, E H’ (X,, M,: Z) is easily calculated. 

LEMMA 4.1. P; [X,] = 4(1 -9). 

Proof: Let c: denote the relative Chern classes of X, with respect to 9’. Then 

P; = (c; -2cL). 

But (c;)’ [X,] = 4(2 - 2g), since the canonical class K = - 2[C\.&‘], and c; [X,] = 2 - 2g 

by obstruction theory and the Poincare-Hopf theorem. 

From this we see that 
s 

Pi = (g- 1) 
x 1 

so that s &l-g - = -2q(O). 

xx 
24 

Consequently index P = 0. (Of course, it is perfectly feasible to compute the index of P 

directly and so verify the index theorem in this case.) 

(At this point it may be convenient to compare the compact and non-compact cases. If we 

identify PSL,(R) with T1.%, the unit sphere bundle to the upper half plane, and decide that 

T SF shall receive its canonical orientation coming from the complex structure then (K, A, H, 

N), where N denotes the outward pointing normal, is a compatible frame. On the other hand, if 

we identify SO(3) T: CP’, the unit cotangent vectors to the Riemann sphere, then (K, A, H, 

-N) is a compatible frame of unit vectors, where K, A, H satisfy 

[K, A] = 2H, [A, H] = 2K, [H, K] = 2A 

and so are the vectors ei, e2, e3 of [12].) 

Finally, we complete in this section the calculation of qt(0), 0 < t < $, for a general 

cocompact Fuchsian group I of signature {g; Q~, . . . , r,}. Let Z c I be a normal subgroup of 

finite index and with no elliptic elements. Such exists by the theorem of Fox [lo]. Let gz 
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denote the genus of Z\ .Y. The finite group G = T/Z acts on X, = Z\ D (T 8). where D(T Y?) 

denotes the unit disc bundle of the bundle of tangents to xx. The action is free on the 

boundary ,M, 2 Z\PSL: (R) and there we have a finite Galois covering 

with group G. As noted in [16] the action of G on X, lifts to an action on the principal spin- 

bundle and so is an action on the spin-manifold X,. The spinor fixed point index f(g) 

= spin(g, X,) is thus defined for each g E G\ 1, and may be used (since the index of the Dirac 

operator on X, is zero) to express q: (0) in terms of q: (0). 

PROPOSITION 5.1. For 0 < t < ,,h, 

m=&:(o)-& x f(g); 
s3EG.I 

where f(g) is the spinor index of g E G\ 1 acting on X, and G = I-/E. 

The last term on the right hand side may be computed using [I!] and [3]. We find that 

So once Proposition 5.1 is proved we have established Theorem 2 and, in fact, found q,(O) for 

0 < t < ,,I?!. We see in particular that 

q6(0)=!Lm0rl:(O)= -&volF,+$,$ 
I 1 

(5.2) 

something we could have established otherwise. 

Proposition 5.1 itself is a consequence of the theory of [4, 5, 63. We shall now fix t = 1 

(although this is not necessary) so that under the identification of PSL2 (R) with the orbit of 

(i, 1) E T .Y? the unit vectors map into vectors of length 2. For each r E G, where G denotes the 

set of equivalence classes of irreducible representations of G, we have a flat bundle V, defined 

over M, and hence a Dirac operator P, with coefficients in V,. Set 

1 
<f=-(dimkerP,+~~(O)), 

2 

as in [5], where ~JE (0) denotes the value at 0 of the q-function for P,. (Since the metric is fixed 

we do not reduce fi mod Z.) On M, we have an action of G on the eigenspaces of P and so we 

may define 

q’ (g, s) = 1 sign (j.) y, where V, denotes i.-eigenspace; 
i 

<’ (g) = f( trb I ker P) + v’ (9, 0)); g E G. (5.3) 
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Considering P as the lift of the Dirac operator on JM, we see that 

(5.4) 

2 dimrzE+IGI <‘, ifg = 1. 
!teC 

Since the index of P on X, is zero by Theorem 3, the G-index theorem for manifolds with 

boundary [S] tells us that 

tZ (9) = -spin (g, X,) = -f(g) if g Z 1 

<T(l)= - 2, c XZ 
wheref(g) = spin(g, X,) is the spinor fixed point index [2]. From (5.4) and (5.5) we see that 

?- (a) = - 1 xz Mf bX 
gEG\ 1 

so that, in particular, 

P(O) = - c f(g). 
gec\1 

Proposition 5.1 now follows immediately from this and 5.4. 
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