View metadata, citation and similar papers_at core.ac.uk

NEL
; LINEAR ALGEBRA

g’i@ AND ITS

ﬁb APPLICATIONS

ELSEVIER Linear Algebra and its Applications 325 (2001) 177-189
www.elsevier.com/locate/laa

On the characterization of 2 2 p-contraction
matrices

Kazuyoshi Okubo®, llya Spitkovsky?-*2

8Mathematics Laboratory, Hokkaido University of Education, Sapporo 002-8502, Japan
bDepartment of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, USA

Received 1 October 1999; accepted 7 September 2000
Submitted by R.A. Brualdi

Abstract

We give an explicit description of ali-contractive (in Nagy—Fomsense) X 2 matrices.
This description leads to the formulas fornumerical radii when the eigenvalues of such
matrices either have equal absolute values or equal fmagdguments. We also discuss (nat-
ural) generalizations to the case of decomposable operators with at most two-dimensional
blocks covering, in particular, the quadratic operators. © 2001 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Let $ be a Hilbert space with a scalar prodyct), and leto be a positive param-
eter,p € (0, 00). A bounded linear operata acting on$ (notation:A € ¥[9]) is
called ap-contractionif it admits a unitaryp-dilation, that is, if there exists a Hilbert
spacelk containing$ as a subspace and a unitary oper&t@an & such that

Ak =pPUNS, k=12 ...,
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whereP is the orthoprojection of onto .
This concept was introduced by Nagy and 5Jiél, see also [7]. As was shown
in [6,7], the operatoA is ap-contraction if and only if
(o — 2 = zA)h|?> +2 Re((I — zA)h, h) >0 (1.1)
forall » € $ and for allzin the unit diskD = {z: |z] < 1}. According to Davis [2],
condition (1.1) is equivalent to
lzA(p = (p = DzA) Y <1, zeD, (1.2)

Directly from the definition it follows that the se#, of all p-contractions is
invariant under unitary similarities and multiplications by unimodular constants. Itis
also closed under taking orthogonal sums. More accuratelsy, et a direct integral
of Hilbert spaces, and Iét be adecomposableperator or:

® D
55=/X D du(x), A=/X Axdu(x), Ay € L[] 1.3)

(see [9, Chapter 1V] for the detailed definition and properties of direct integrals
of Hilbert spaces and decomposable operators associated with them). Then, due to
(1.1),Ae%,ifandonlyif A, € 4, for eachx € X.
Condition (1.1) also implies that the spectrum of amgontraction lies in the
closed unit diskD = {z: |z] < 1}:
Ae%, = o(A)cCD. (1.4)

According to Holbrook [4], thep-numerical radiusw, (A) is defined as
w,(A) = inf {r > 0: }A € (gp} . (1.5)
r

Hence A is ap-contraction if and only ifw, (A) < 1.
From the aforementioned properties®yf it follows that

w,(U*AU) = w,(A) forany unitaryU, (1.6)

wp(§A) = [§lwp(A), § €C, (1.7)
and

wy(A) = supw,(Ay):x € X} (1.8)

if Ais given by (1.3).
It was shown in [1] that

w, (A) is a non-increasing function @f on (0, co) (1.9)
and
pwp(A) = (2—p)wa_,(A), O0<p<2 (1.10)

It is well known [4] thatw1(A) = ||A||, w2(A) equals the so-calledumerical
radius of A (the maximum absolute value ¢Ah, h), whereh € $ and| k| = 1),
and
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Weo(A) = lim w,(A)
p—> 00

is the spectral radius(A) (= maxX|r|: L € o (A)}).

Recall that the operat@yis callednormaloidif || A|| = r(A). For such operators,
w,(A) is constant o1, co) due to (1.9)—the result originally established in [3].

In particular, whenA is normal, w,(A) = ||Al| =r(A) for 1< p < oco. The
latter can be represented in the form (1.3) with one-dimensional blbgkidence, it
seems natural to consider the class of operators next in order of complexity, namely,
operators (1.3) with at most two-dimensional bloeks This is the subject of our
paper.

In Section 2, we derive the-contraction criterion for Z 2 “building blocks” of
A. The particular cases of matrices with the spectrum lying on a line passing through
the origin or on a circle centered there are considered in Sections 3 and 4, respec-
tively. Section 5 deals with the general case covering, in particular, the so-called
quadratic operators.

2. p-Contractive 2 x 2 matrices

In this section, we consider2 2 matricesA. Due to (1.6), we may without loss
of generality suppose thatis upper triangular

a C
=[5 9] o
Theorem 2.1. Let A be of the forn2.1). ThenA € €, if and only if
1 forp > 1,
lal, 1b] < {,0/(2—,0) for p < 1. (2.2)

and
lcl? +la—b? < min [z2(0) + p +ab(p — 2)|?, (2.3)
—r <<

wherez(0) = (1 — p) (b€’ +ae1?).

Proof. Without loss of generality, we may suppose thab € D: for necessity,
these conditions follow from (1.4); for sufficiency, they are contained in (2.2). Then
the matrix functionf (z) = zA(p — (p — 1)zA) 1 is analytic inD). Combining cri-
terion (1.2) with the maximum modulus principle, we conclude that %, if and
only if
max [[@4(0)] <1,
—n<O<T

Vs

where®4 () = A(p — (p — 1)€?A)~L. From (2.1)

Pa(6) = [g ﬂ :
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where
u=alp—(p—-e%) v=bp— (o1,
w=cp(p—(p— D)o — (o — DD,
Condition||@4(0)] < 1 can be rewritten as
ul <l i<y ju—vP 4w <1-wP
or, equivalently,

lal < |p = (0 = DE’a.

b1 < |p = (p = DE"| (2.4)

and
i0 i0 2 2
la(p = (p = 1) — bip — (p = DE"a)|” +|en]
. . 2
< |0 == ve Do — (p — 1) ~Tb| . (2.5)

Inequalities (2.4) are satisfied for alle [—x, 7] if and only if
lal <lp—1lp =1l lall, [bl<|p—1p—1]-1b].

These conditions are satisfied automatically {fas € D) if p > 1, and are equiv-
alenttolal, |b] < p/(2— p) if p < 1. In other words, (2.4) is equivalent to (2.2). It
remains to observe that

a(p — (p —1€b) —b(p — (0 — DE%) = (a — b)p
and

(0~ (p— Ve @) (p — (p — DE’b) —ab
= p? = plp = D(ea+€b) + (p* — 2p)ab
= p(p +z2(0) + (o — 2)ab),

so that (2.5) is equivalent to (2.3)[]
Remark 1. Formula (1.2) was used in [8] to prove the following result.

Theorem 2.2. Let A be of the fornf2.1). ThenA € %, if and only if|a|, |b| < 1
and

el +la — b < inf [F(O)P, (2.6)
cebD
whereF (¢) = z(0) + px Y +ab(p — 2)x, ¢ = x€".
Theorem 2.1 shows that, for > 1, inf in the right-hand side of (2.6) can be

changed to the min along the bounddry= {z: |z| = 1} of D. This result does not
follow from the maximum modulus principle directly, because the expression under
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the inf sign in (2.6) is not analytic if). However, a straightforward elementary
(though somewhat cumbersome) derivation of Theorem 2.1 from Theorem 2.2 also
can be given®

Remark 2. Geometrically, the seE = {z(0): —7 < 8 < &} is an ellipse (degen-
erating into an interval ifa| = |b|) centered at the origin. Therefore, the $et=
{F(xeie): 0<x <1, 6 e[—mn, ]} can be thought of as the Unidlﬂxe(o,l] E, of
ellipsesE, obtained fromE by shifting and with their centers located along the
portion of the hyperbola (degenerating into a raytifis real)H = {px~1 + ab(p —
2)x:x € (0, 1]}. The right-hand side of (2.6) is then the distance from the closest
point of F to the origin. Theorem 2.1 claims that, fer> 1, this closest point actually
lies on the “last” ellipseEs.

Remark 3. Conditionp > 1 in Remark 2 is essential. Consider, for example, an
arbitrary p € (0,1) and —b =a € (/p/(2— p), 1). ThenE, is the line segment
joining the pointsox 1 + a2(2 — p)x + 2ia(1 — p) andpx 1 + a%(2 — p)x — 2ia

(1 — p). The distance fronk, to the origin ispx 1 + a?(2 — p)x, and its minimal
value on the intervat € (0, 1] is assumed at = a—1/p/(2— p), not atx = 1.

3. Spectrum on the line

For an arbitrary matrix (2.1), an attempt to find the right-hand side of (2.3) ex-
plicitly leads to a fourth degree algebraic equation. Remark 2 shows, however, that
the particular cas€a| = |b| andab € R deserve a special attention. In this section,
we deal with the latter.

Theorem 3.1. Let A be unitarily similar to the matrix2.1)withab € R. ThenA €
%, if and only if(2.2) holds and

lcl? 4 1a — b < (o + (0 — 2ab — |p — 1| - la + b])?. (3.1)

Proof. From (1.10) and (1.7) it follows that for @ p < 1, A € %, if and only

if (2—p)/p)A € %2—,. Since conditions (2.2) and (3.1) are invariant under the
transformatiorp > 2 — p, A —~ ((2—p)/p)A (0 < p < 2), we may without loss

of generality suppose that> 1. Both the propertyl € %, and condition (3.1) are
also invariant under multiplication by any complex number with absolute value 1.
Hence, we may even suppose that

o=>1 abeR, a+b=>0. (3.2)

3 In fact, that was our original proof. The new, shorter and more self-contained version was suggested
to us by the referee.



182 K. Okubo, I. Spitkovsky / Linear Algebra and its Applications 325 (2001) 177-189
Due to Theorem 2.1, it remains to show that in situation (3.2)

min ‘(,0 — 1) bE° +ae )+ p+ab(p — 2)‘

—n<O<T

is assumed & = +7. To this end, observe that

(0~ D" +ae™) + p+ablp - 2)
—lp+ab(p—2)+ (p—1)(a+b)cosd +i(p — 1)(b — a) sind|
> 1p+ab(p—2)+ (o — H(a+b) cosd|
—(p—DA—a)L—b)+ (1 —ab)+ (p — 1)(a + b)(L+ cosd)
> (p—DA-a)(A-b)+ (1L —ab), (3.3)

and that fo® = £ all the inequalities in (3.3) turn into the equalitied]

Several particular cases of (3.4) ¢ > 0; a = —b, etc.) were earlier formulated
in [8].

Corollary 3.1. In the setting of Theore®.1,the p-numerical radius of the matrix
A is given by the formula

P+ /P2 —4p(p—2)ab
20 ’

whereP = |p — 1| - la 4+ b| + V|c]? + |a — b|°.

Proof. As in Theorem 3.1, it suffices to consider the case (3.2). Applying this the-
orem to matrices: 1A in place ofA, we see from (1.5) that > w,(A) if and only
if

w,(A) =

(3.4)

a > maxlal, b} (3.5)
and

lcl? + (a — b)* < (pa + (p — 2)aba ™ — (p — D)(a + b))>. (3.6)
Since

pa + (p — 2)aba™ — (p — 1)(a + b)
=(p—-1D(a—(a+b)+ abofl) +o —aba~t

NGECHICHREE))

due to (3.5), (3.6) can be rewritten as

Vicl?+ (@ = b2 < pa+ (p — 2)aba™ — (p — 1)(a +b). 3.7)

Solving the quadratic inequality (3.7), we conclude that w,(A) if and only if
(3.5) holds and

WV

0
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P+ /P2 —4p(p — 2)ab
a =
2p

(3.8)

or

P —/P2—4p(p—2)ab
a < .
2p
Observe now that, for fixed, b (¢ R) the right-hand sides of (3.8) and (3.9) are
monotonic functions ofc| (increasing and decreasing, respectively}. # 0, then
P =(p—21)(a+b)+ |a — b|, and these right-hand sides are respectively equal to
the maximum and the minimum of

{a, p_—2 }ifa>b, and{p_za, b} if a <b.
o o

(3.9)

Therefore, condition (3.5) follows from (3.8) automatically but contradicts (3.9).
In other words{(3.5) A ((3.8) v (3.9))} = (3.8). O

For p = 2, formula (3.4) implies that

la + bl +Vlcl? + la — b|?
wa(A) =

the result stated in [5].

4. Spectrum on the circle

Another particular case in which the right-hand side of (2.3) can be computed

explicitly is that of|a| = |b| (dzefR). If R = 0, then Theorem 3.1 implies thate %,

if and only if [c| < p. Equivalentlyw,(A) = |c| /p for

o

andp > 1. It remains therefore to considgr> 0.

Theorem 4.1. Let A be unitarily similar to the matrig2.1)with |a| = |b| (= R) >
0. ThenA € %, if and only if(2.2) holds and

1
e +la = b2 <Z(pR™ = (p = DR)?|a — bJ?
1 2
+ (max{o, é(pR_l-i-(p —2)R) la+b|-2|p—1] - R}) .
(4.1)
Proof. Similarly to the proof of Theorem 3.1, we may suppose that 1 and mul-

tiply A by any unimodular complex number. Therefore, it suffices to consider the
case
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p>1b=a=Re?with¢ e [-n/2, 7/2]. (4.2)
The right-hand side of (4.1) can be then rewritten as

(p—(p—2R?)sirt ¢
+(maxo, (p + (p — 2)R?) cosp — 2(p — DR}). (4.3)

According to Theorem 2.1, it remains to show that the right-hand side of (2.3)
coincides with (4.3) for, b given by (4.2). To this end, observe that

1—p) b€’ +ae ) + p+ab(p — 2)
=2(1— p)Re'? cost + p + R%e 2% (p — 2)
— el (pe‘¢ +R%%(p—2)—2(p— DR cos@)

—e <(p +(p — 2R?) cosp — 2(p — 1)R cosh
+i(p = (p ~ DR sing)

So, the right-hand side of (2.3) coincides with the square of the disthfroen
the origin to the horizontal segmef® with the length 4p — 1)R and centered at
(p+ (p —2R?) cosp +i(p — (p — 2)R?) sing.

Due to (1.4), we may without loss of generality suppose that 1. Then, ob-
viously, the center of2 is located in the right half planH . If 2(p — 1)R < (p +
(p — 2)R?) cosg, the whole segmen is located inf1... Then the distance fro
to the origin is assumed at the leftmost poinfhthatis, atp + (p — 2) R?) cosp —
2(p = DR +i(p — (p — 2 R?) sing.

If 2(0 — DR > (p + (p — 2)R?) cose, the segmengf? intersects the imaginary
axis. The distance from? to the origin is then assumed at this intersection, that is, at
i(p — (p — 2)R?) sing. Either wayd? coincides with (4.3). O

Remark 4. The cases = b anda = —b are covered both by Theorems 3.1 and
4.1. Of course, inequalities (3.1) and (4.1) are in these cases equivalent. They can be
simplified as follows:

lel<p+(p—2)R?—=2|p—1|-R
if a =5b,and

lcl? +4R? < (p — (p — 2)R?)?
if a=—b.

Theorem 4.1 allows us to compute thewumerical radius for matrices (2.1) with
lal = [b.

Corollary 4.1. In the setting of Theoredh.1,the p-numerical radius of the matrix
A is given by the formula
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R 2 lel?
Ay=—1,1 —1)?2 4.4
wp (A) p(\/ +|a_b|2+\/(p ) +|a_b|2) (4.4)

lel - la+bl < 1p—1]-la —b?, (4.5)

and
2_4p(p —2)R?
wAm:Q+JQ plp— DR? 4.6)
2p

where

O=lcl+1p—1l-la+b| 4.7
otherwise

Proof. Itsuffices to consider the case (4.2). Applying Theorem 4t thA in place
of A, we see that > w,(A) if and only ifo > R and

_ o p2\?
I+ |a — b2 < (pa - M) Sir? ¢
o

(p—2)R?
)

-|-( max{0, (,oa + CoSs¢p

2
—2(p — 1)R}) ) (4.8)

Let us introduce a new variable,

(p — 2)R?

7= pa+ (4.9)

There is a monotonic (and therefore one-to-one) correspondence betveedh co)
andz € [2(p — DR, 00). Since

_2)R?\? —2)R?\?
(P(x—%) = (,OOH—%) —4p(p — 2R?

and|a — b|? = 4R? sir? ¢, inequality (4.8) can be rewritten as

Ic)? < (ZZ —4R%(p — 1)2) Sir? ¢ + (max0, zcos — 2(p — 1)R})2.
(4.10)

We now consider two cases separately, according to whether or not (4.5) holds.
Due to (4.2), the latter condition can be rewritten as follows:
Sin? ¢
coSs¢
(with the understanding that for cgs= 0 the right-hand side of (4.11) equalex).

le] <2(p — DR

(4.11)
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If (4.11) holds, then, in particular, sifn£ 0, and
lel?
5 +4(p — 1)2R?
\/sm2 ¢

< \/(2(,0 — 1)Rtan¢)? + 4(p — 1)2R? = \/4(,0 — 1)2R2(1 + tar? ¢)
_2(p—DR
~ cosp

Inequality (4.10) for0 <)z < (2(p — 1)R)/cos¢ can be simplified to

Py 4o 1282 <
sin? ¢ o

Hence, the smallest solution of (4.10) in case (4.11) is given by

cm | 4 1eR2 = 2R o124 L
Sir? ¢ la — b|?
The corresponding smallest value @fe [R, co) satisfying (4.8) is then equal to

(4.4).
If (4.11) fails, then

3

|e? 2(p — DR
A(p —12R2 >
\/sinch +alp = D% > cos¢p

and the inequality (4.10) has no solutions to the left2ifp — 1) R)/cos¢. Forz >
(2(p — 1) R)cosy the right-hand side of (4.10) can be rewritten as
(22— 4(p — D?R?)sir? ¢ + (zCosp — 2(p — 1R)?
=72 — 4(p — 1)2R?si ¢ + 4(p — 1)2R% — 4(p — 1)Rz coss
= (z—2(p — R cosp)”.
Therefore, the set of all solutions of (4.10) is in this case
[lel +2(p — )R cosg, +00)

(notethatc| + 2(p — 1)R cosp > 2(p — 1)R((Sir? ¢/cosp) + cosp) = (2(p — 1)
R)/cosg). The smallest solution of (4.10) is therefore equalpas defined by
formula (4.7). The corresponding smallest valuer @ then given by (4.6). O

As in Section 3, the particular case of formulas (4.4) and (4.6)fer 2 was
stated in [5]. In our notation, it reads

_ 2 112 B . Y
wz(A)z{ue/m bOVIel® +1a —bI® i le|-la+ bl < |a— bl

(Ic| + |la + b])/2 otherwise.
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5. Variations and generalizations

The results of Sections 2—4 can be reformulated in a unitarily invariant form. To
this end, observe that

2 2 2 _ |ab|?
lal? + 1617 + [c? = || Al + e (5.1)
for any non-zero matriA of the form (2.1). Hence, (2.3) can be rewritten as
2, labP _ 2
Al + AR 2 Reab < m|n [z(0) + p +ab(p — 2)|. (5.2)
—m<O<T

If b € R, the left-hand side of (5.2) can be further rewritten(f&| — (ab/
I A[))2, so that after taking the square roots, (3.1) becomes

ab
A II—W\H(p 2)ab —|p — 1| - la + b|

(note that both sides are non-negative). Respectii?dly(3.4) can be substituted by
lo—1] - la + bl + [IAll — (ab/IAlD.

If la| = |b| = R, then (5.1) implies thake| = ||A|| — (R%/||A]), and formulas
(4.4) and (4.6) can be modified accordingly.

Let nowA be an operator defined by (1.3), with difp < 2 for all x € X. Ap-
plying the above-mentioned results and then using (1.8), it is easy to formulate a
criterion forA € %, as well as to compute, (A).

We will not formulate these statements in such a generality. Observe, instead, that
A has form (1.3) with at most two-dimensiong} if and only if A belongs to a
W*-subalgebra of’[$] generated by two orthoprojections. This class includes, in
particular, allquadraticoperators, that is, operatokssatisfying the equation

A2 4 pA+ql=0 (5.3)

for somep, g € C.

Theorem 5.1. Let A (+ 0) be a quadratic operatgrand let a, b be the roots of its
minimal polynomiat? + pz + ¢. Then A is go-contraction if and only if:, b satisfy
(2.2)and

lq?

1AIZ +
114112

. . 2
<2Reab+ min ‘,0 Fab(p—2) — (p — D(be? +ae )

—T<OLT

Proof. There exists an orthogonal decompositipa- H1 H H2 relative to whichA
has the form

al C
AZ[O bl]



188 K. Okubo, I. Spitkovsky / Linear Algebra and its Applications 325 (2001) 177-189

Using the polar decomposition of the blo€k $, — $H1 and the spectral represen-
tation of (C*C)Y?, we can further decomposkinto a direct integral with two-
dimensional blocks (2.1) € o ((C*C)¥?), and possibly one-dimensional blocks
{a} and{b}. We now apply (5.2) to each of the blocks and then use the fact that

SUplAcll: x € o ((C*O)Y2)y = Al O

If the coefficientsp, ¢ in (5.3) are real, the roots, b are either real or complex
conjugate. Applying the results of Section 3 (fab € R) or Section 4 (fob = a)
to the blocksA, in the direct integral representation (1.3) &f we come to the
following formula for its p-numerical radius.

Theorem 5.2. Let A  0) be a quadratic operator such that the coefficieptg in
(5.3)are real. Then

Sp+/52 —4p(p — 2)q
(5.4)

wp(A) =

2p ’
where
q
S, =1lp—1-1pl + |A| — —
b =1p—1]-Ipl+ A] AT
if
2 2
p?>>4q or p2<<||A||+i> —(p—1>2<ﬁ—p> : (5.5)
Al p
and
wp(A)z*/TE< 1+Tp+,/(p—1)2+rp> (5.6)
with
2
(1an- %)
P 4q — p?
otherwise.

Observe thatvp(A) = 15, andS, = 20 |p| + Sz, where

_ =272 ifp=>1,
7= —p if p <1

Hence, formula (5.4) fop, ¢ satisfying
2 2
q 4q
pP=4q or p*< (uAn + m) —max(1, (p — ? (7 - p)
can be rewritten as
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w2(A) + 0 |pl +  w2(A) + o [ph? = p(p — 2

w,(A) =

8 P
In particular,

A A)2 -2
() = 2 ) H Vw2 AP Hp(p =25 2 o
0
and
2w2(A) + 2 A —1]-
w,(A) = w2(A) + 20 [p| _ lAl+1p—1-1pl A2=pA. peR.

P P
The last two formulas (with = 1 andp = 1, respectively) were obtained in [1].
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