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Abstract

We give an explicit description of allρ-contractive (in Nagy–Foia¸s sense) 2× 2 matrices.
This description leads to the formulas forρ-numerical radii when the eigenvalues of such
matrices either have equal absolute values or equal (modπ) arguments. We also discuss (nat-
ural) generalizations to the case of decomposable operators with at most two-dimensional
blocks covering, in particular, the quadratic operators. © 2001 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Let H be a Hilbert space with a scalar product〈·,·〉, and letρ be a positive param-
eter,ρ ∈ (0,∞). A bounded linear operatorA acting onH (notation:A ∈ L[H]) is
called aρ-contractionif it admits a unitaryρ-dilation, that is, if there exists a Hilbert
spaceK containingH as a subspace and a unitary operatorU onK such that

Ak = ρPUk |H, k = 1, 2, . . . ,
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whereP is the orthoprojection ofK ontoH.
This concept was introduced by Nagy and Foia¸s [6], see also [7]. As was shown

in [6,7], the operatorA is aρ-contraction if and only if

(ρ − 2)‖(I − zA)h‖2 + 2 Re〈(I − zA)h, h〉 > 0 (1.1)

for all h ∈ H and for allz in the unit diskD = {z: |z| < 1}. According to Davis [2],
condition (1.1) is equivalent to

‖zA(ρ − (ρ − 1)zA)−1‖ 6 1, z ∈ D. (1.2)

Directly from the definition it follows that the setCρ of all ρ-contractions is
invariant under unitary similarities and multiplications by unimodular constants. It is
also closed under taking orthogonal sums. More accurately, letH be a direct integral
of Hilbert spaces, and letA be adecomposableoperator onH:

H =
∫ ⊕

X

Hx dµ(x), A =
∫ ⊕

X

Ax dµ(x), Ax ∈ L[Hx] (1.3)

(see [9, Chapter IV] for the detailed definition and properties of direct integrals
of Hilbert spaces and decomposable operators associated with them). Then, due to
(1.1),A ∈ Cρ if and only if Ax ∈ Cρ for eachx ∈ X.

Condition (1.1) also implies that the spectrum of anyρ-contraction lies in the
closed unit diskD = {z: |z| 6 1}:

A ∈ Cρ ⇒ σ(A) ⊂ D. (1.4)

According to Holbrook [4], theρ-numerical radiuswρ(A) is defined as

wρ(A) = inf

{
r > 0:

1

r
A ∈ Cρ

}
. (1.5)

Hence,A is aρ-contraction if and only ifwρ(A) 6 1.
From the aforementioned properties ofCρ it follows that

wρ(U∗AU) = wρ(A) for any unitaryU, (1.6)

wρ(ξA) = |ξ | wρ(A), ξ ∈ C, (1.7)

and

wρ(A) = sup{wρ(Ax): x ∈ X} (1.8)

if A is given by (1.3).
It was shown in [1] that

wρ(A) is a non-increasing function ofρ on (0,∞) (1.9)

and

ρwρ(A) = (2 − ρ)w2−ρ(A), 0 < ρ < 2. (1.10)

It is well known [4] thatw1(A) = ‖A‖, w2(A) equals the so-callednumerical
radius of A (the maximum absolute value of〈Ah, h〉, whereh ∈ H and‖h‖ = 1),
and
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w∞(A) = lim
ρ→∞ wρ(A)

is the spectral radiusr(A) (= max{|λ| : λ ∈ σ(A)}).
Recall that the operatorA is callednormaloidif ‖A‖ = r(A). For such operators,

wρ(A) is constant on[1,∞) due to (1.9)—the result originally established in [3].
In particular, whenA is normal,wρ(A) = ‖A‖ = r(A) for 1 6 ρ 6 ∞. The

latter can be represented in the form (1.3) with one-dimensional blocksAx . Hence, it
seems natural to consider the class of operators next in order of complexity, namely,
operators (1.3) with at most two-dimensional blocksAx . This is the subject of our
paper.

In Section 2, we derive theρ-contraction criterion for 2× 2 “building blocks” of
A. The particular cases of matrices with the spectrum lying on a line passing through
the origin or on a circle centered there are considered in Sections 3 and 4, respec-
tively. Section 5 deals with the general case covering, in particular, the so-called
quadratic operators.

2. ρ-Contractive 2 × 2 matrices

In this section, we consider 2× 2 matricesA. Due to (1.6), we may without loss
of generality suppose thatA is upper triangular

A =
[
a c

0 b

]
. (2.1)

Theorem 2.1. Let A be of the form(2.1). ThenA ∈ Cρ if and only if

|a| , |b| 6
{

1 for ρ > 1,

ρ/(2 − ρ) for ρ 6 1,
(2.2)

and

|c|2 + |a − b|2 6 min−π6θ6π
|z(θ) + ρ + ab(ρ − 2)|2 , (2.3)

wherez(θ) = (1 − ρ)(beiθ + ae−iθ ).

Proof. Without loss of generality, we may suppose thata, b ∈ D: for necessity,
these conditions follow from (1.4); for sufficiency, they are contained in (2.2). Then
the matrix functionf (z) = zA(ρ − (ρ − 1)zA)−1 is analytic inD. Combining cri-
terion (1.2) with the maximum modulus principle, we conclude thatA ∈ Cρ if and
only if

max−π6θ6π
‖UA(θ)‖ 6 1,

whereUA(θ) = A(ρ − (ρ − 1)eiθA)−1. From (2.1)

UA(θ) =
[
u w

0 v

]
,
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where

u = a(ρ − (ρ − 1)eiθa)−1, v = b(ρ − (ρ − 1)eiθb)−1,

w = cρ(ρ − (ρ − 1)eiθa)−1(ρ − (ρ − 1)eiθb)−1.

Condition‖UA(θ)‖ 6 1 can be rewritten as

|u| 6 1, |v| 6 1, |u − v|2 + |w|2 6 |1 − uv|2
or, equivalently,

|a| 6
∣∣∣ρ − (ρ − 1)eiθa

∣∣∣ , |b| 6
∣∣∣ρ − (ρ − 1)eiθb

∣∣∣ (2.4)

and ∣∣∣a(ρ − (ρ − 1)eiθb) − b(ρ − (ρ − 1)eiθa)

∣∣∣2 + |cρ|2

6
∣∣∣(ρ − (ρ − 1)e−iθa)(ρ − (ρ − 1)eiθb) − ab

∣∣∣2 . (2.5)

Inequalities (2.4) are satisfied for allθ ∈ [−π, π] if and only if

|a| 6 |ρ − |ρ − 1| · |a‖, |b| 6 |ρ − |ρ − 1| · |b‖.
These conditions are satisfied automatically (fora, b ∈ D) if ρ > 1, and are equiv-

alent to|a|, |b| 6 ρ/(2 − ρ) if ρ 6 1. In other words, (2.4) is equivalent to (2.2). It
remains to observe that

a(ρ − (ρ − 1)eiθb) − b(ρ − (ρ − 1)eiθa) = (a − b)ρ

and

(ρ − (ρ − 1)e−iθa)(ρ − (ρ − 1)eiθb) − ab

= ρ2 − ρ(ρ − 1)(e−iθa + eiθb) + (ρ2 − 2ρ)ab

= ρ(ρ + z(θ) + (ρ − 2)ab),

so that (2.5) is equivalent to (2.3).�

Remark 1. Formula (1.2) was used in [8] to prove the following result.

Theorem 2.2. Let A be of the form(2.1). ThenA ∈ Cρ if and only if |a| , |b| 6 1
and

|c|2 + |a − b|2 6 inf
ζ∈D

|F(ζ )|2 , (2.6)

whereF(ζ ) = z(θ) + ρx−1 + ab(ρ − 2)x, ζ = xeiθ .

Theorem 2.1 shows that, forρ > 1, inf in the right-hand side of (2.6) can be
changed to the min along the boundaryT = {z: |z| = 1} of D. This result does not
follow from the maximum modulus principle directly, because the expression under
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the inf sign in (2.6) is not analytic inD. However, a straightforward elementary
(though somewhat cumbersome) derivation of Theorem 2.1 from Theorem 2.2 also
can be given.3

Remark 2. Geometrically, the setE = {z(θ): −π 6 θ 6 π} is an ellipse (degen-
erating into an interval if|a| = |b|) centered at the origin. Therefore, the setF =
{F(xeiθ ): 0 < x 6 1, θ ∈ [−π, π]} can be thought of as the union

⋃
x∈(0,1] Ex of

ellipsesEx obtained fromE by shifting and with their centers located along the
portion of the hyperbola (degenerating into a ray ifab is real)H = {ρx−1 + ab(ρ −
2)x: x ∈ (0, 1]}. The right-hand side of (2.6) is then the distance from the closest
point ofF to the origin. Theorem 2.1 claims that, forρ > 1, this closest point actually
lies on the “last” ellipseE1.

Remark 3. Conditionρ > 1 in Remark 2 is essential. Consider, for example, an
arbitraryρ ∈ (0, 1) and−b = a ∈ (

√
ρ/(2 − ρ), 1). ThenEx is the line segment

joining the pointsρx−1 + a2(2 − ρ)x + 2ia(1− ρ) andρx−1 + a2(2 − ρ)x − 2ia
(1 − ρ). The distance fromEx to the origin isρx−1 + a2(2 − ρ)x, and its minimal
value on the intervalx ∈ (0, 1] is assumed atx = a−1√ρ/(2 − ρ), not atx = 1.

3. Spectrum on the line

For an arbitrary matrix (2.1), an attempt to find the right-hand side of (2.3) ex-
plicitly leads to a fourth degree algebraic equation. Remark 2 shows, however, that
the particular cases|a| = |b| andab ∈ R deserve a special attention. In this section,
we deal with the latter.

Theorem 3.1. Let A be unitarily similar to the matrix(2.1)with ab ∈ R. ThenA ∈
Cρ if and only if(2.2)holds and

|c|2 + |a − b|2 6 (ρ + (ρ − 2)ab − |ρ − 1| · |a + b|)2 . (3.1)

Proof. From (1.10) and (1.7) it follows that for 0< ρ < 1, A ∈ Cρ if and only
if ((2 − ρ)/ρ)A ∈ C2−ρ . Since conditions (2.2) and (3.1) are invariant under the
transformationρ 7→ 2 − ρ, A 7→ ((2 − ρ)/ρ)A (0 < ρ < 2), we may without loss
of generality suppose thatρ > 1. Both the propertyA ∈ Cρ and condition (3.1) are
also invariant under multiplication by any complex number with absolute value 1.
Hence, we may even suppose that

ρ > 1, a, b ∈ R, a + b > 0. (3.2)

3 In fact, that was our original proof. The new, shorter and more self-contained version was suggested
to us by the referee.
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Due to Theorem 2.1, it remains to show that in situation (3.2)

min−π6θ6π

∣∣∣(ρ − 1)(beiθ + ae−iθ ) + ρ + ab(ρ − 2)

∣∣∣
is assumed atθ = ±π . To this end, observe that∣∣∣(ρ − 1)(beiθ + ae−iθ ) + ρ + ab(ρ − 2)

∣∣∣
= |ρ + ab(ρ − 2) + (ρ − 1)(a + b) cosθ + i(ρ − 1)(b − a) sinθ |
> |ρ + ab(ρ − 2) + (ρ − 1)(a + b) cosθ |
= (ρ − 1)(1 − a)(1 − b) + (1 − ab) + (ρ − 1)(a + b)(1 + cosθ)

> (ρ − 1)(1 − a)(1 − b) + (1 − ab), (3.3)

and that forθ = ±π all the inequalities in (3.3) turn into the equalities.�

Several particular cases of (3.1) (a, b > 0; a = −b, etc.) were earlier formulated
in [8].

Corollary 3.1. In the setting of Theorem3.1, theρ-numerical radius of the matrix
A is given by the formula

wρ(A) = P + √
P 2 − 4ρ(ρ − 2)ab

2ρ
, (3.4)

whereP = |ρ − 1| · |a + b| +
√

|c|2 + |a − b|2.

Proof. As in Theorem 3.1, it suffices to consider the case (3.2). Applying this the-
orem to matricesα−1A in place ofA, we see from (1.5) thatα > wρ(A) if and only
if

α > max{|a| , |b|} (3.5)

and

|c|2 + (a − b)2 6 (ρα + (ρ − 2)abα−1 − (ρ − 1)(a + b))2. (3.6)

Since

ρα + (ρ − 2)abα−1 − (ρ − 1)(a + b)

= (ρ − 1)(α − (a + b) + abα−1) + α − abα−1

= α

(
(ρ − 1)

(
1 − a

α

)(
1 − b

α

)
+

(
1 − a

α
· b

α

))
> 0

due to (3.5), (3.6) can be rewritten as√
|c|2 + (a − b)2 6 ρα + (ρ − 2)abα−1 − (ρ − 1)(a + b). (3.7)

Solving the quadratic inequality (3.7), we conclude thatα > wρ(A) if and only if
(3.5) holds and
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α > P + √
P 2 − 4ρ(ρ − 2)ab

2ρ
(3.8)

or

α 6 P − √
P 2 − 4ρ(ρ − 2)ab

2ρ
. (3.9)

Observe now that, for fixeda, b (∈ R) the right-hand sides of (3.8) and (3.9) are
monotonic functions of|c| (increasing and decreasing, respectively). Ifc = 0, then
P = (ρ − 1)(a + b) + |a − b|, and these right-hand sides are respectively equal to
the maximum and the minimum of{

a,
ρ − 2

ρ
b

}
if a > b, and

{
ρ − 2

ρ
a, b

}
if a 6 b.

Therefore, condition (3.5) follows from (3.8) automatically but contradicts (3.9).
In other words,{(3.5) ∧ ((3.8) ∨ (3.9))} ⇐⇒ (3.8). �

Forρ = 2, formula (3.4) implies that

w2(A) = |a + b| +
√

|c|2 + |a − b|2
2

,

the result stated in [5].

4. Spectrum on the circle

Another particular case in which the right-hand side of (2.3) can be computed

explicitly is that of|a| = |b| (
def= R). If R = 0, then Theorem 3.1 implies thatA ∈ Cρ

if and only if |c| 6 ρ. Equivalently,wρ(A) = |c| /ρ for

A =
[
0 c

0 0

]
andρ > 1. It remains therefore to considerR > 0.

Theorem 4.1. Let A be unitarily similar to the matrix(2.1)with |a| = |b| (= R) >

0. ThenA ∈ Cρ if and only if(2.2)holds and

|c|2 + |a − b|2 6 1

4
(ρR−1 − (ρ − 2)R)2 |a − b|2

+
(

max

{
0,

1

2
(ρR−1+(ρ − 2)R) |a+b|−2 |ρ−1| · R

})2

.

(4.1)

Proof. Similarly to the proof of Theorem 3.1, we may suppose thatρ > 1 and mul-
tiply A by any unimodular complex number. Therefore, it suffices to consider the
case
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ρ > 1, b = a = Reiφ with φ ∈ [−π/2, π/2]. (4.2)

The right-hand side of (4.1) can be then rewritten as

(ρ − (ρ − 2)R2) sin2 φ

+(max{0, (ρ + (ρ − 2)R2) cosφ − 2(ρ − 1)R})2. (4.3)

According to Theorem 2.1, it remains to show that the right-hand side of (2.3)
coincides with (4.3) fora, b given by (4.2). To this end, observe that

(1 − ρ)(beiθ + ae−iθ ) + ρ + ab(ρ − 2)

= 2(1 − ρ)Re−iφ cosθ + ρ + R2e−2iφ(ρ − 2)

= e−iφ
(
ρeiφ + R2e−iφ(ρ − 2) − 2(ρ − 1)R cosθ

)
= e−iφ

(
(ρ + (ρ − 2)R2) cosφ − 2(ρ − 1)R cosθ

+i(ρ − (ρ − 2)R2) sinφ
)

.

So, the right-hand side of (2.3) coincides with the square of the distanced from
the origin to the horizontal segmentX with the length 4(ρ − 1)R and centered at
(ρ + (ρ − 2)R2) cosφ + i(ρ − (ρ − 2)R2) sinφ.

Due to (1.4), we may without loss of generality suppose thatR 6 1. Then, ob-
viously, the center ofX is located in the right half planeP+. If 2(ρ − 1)R 6 (ρ +
(ρ − 2)R2) cosφ, the whole segmentX is located inP+. Then the distance fromX
to the origin is assumed at the leftmost point ofX, that is, at(ρ + (ρ − 2)R2) cosφ −
2(ρ − 1)R + i(ρ − (ρ − 2)R2) sinφ.

If 2(ρ − 1)R > (ρ + (ρ − 2)R2) cosφ, the segmentX intersects the imaginary
axis. The distance fromX to the origin is then assumed at this intersection, that is, at
i(ρ − (ρ − 2)R2) sinφ. Either way,d2 coincides with (4.3). �

Remark 4. The casesa = b anda = −b are covered both by Theorems 3.1 and
4.1. Of course, inequalities (3.1) and (4.1) are in these cases equivalent. They can be
simplified as follows:

|c| 6 ρ + (ρ − 2)R2 − 2 |ρ − 1| · R

if a = b, and

|c|2 + 4R2 6 (ρ − (ρ − 2)R2)2

if a = −b.

Theorem 4.1 allows us to compute theρ-numerical radius for matrices (2.1) with
|a| = |b|.

Corollary 4.1. In the setting of Theorem4.1, theρ-numerical radius of the matrix
A is given by the formula
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wρ(A) = R

ρ




√
1 + |c|2

|a − b|2 +
√

(ρ − 1)2 + |c|2
|a − b|2


 (4.4)

if

|c| · |a + b| < |ρ − 1| · |a − b|2 , (4.5)

and

wρ(A) = Q + √
Q2 − 4ρ(ρ − 2)R2

2ρ
, (4.6)

where

Q = |c| + |ρ − 1| · |a + b| (4.7)

otherwise.

Proof. It suffices to consider the case (4.2). Applying Theorem 4.1 toα−1A in place
of A, we see thatα > wρ(A) if and only if α > R and

|c|2 + |a − b|2 6
(

ρα − (ρ − 2)R2

α

)2

sin2 φ

+
(

max{0,

(
ρα + (ρ − 2)R2

α

)
cosφ

−2(ρ − 1)R}
)2

. (4.8)

Let us introduce a new variable,

z = ρα + (ρ − 2)R2

α
. (4.9)

There is a monotonic (and therefore one-to-one) correspondencebetweenα ∈ [R,∞)

andz ∈ [2(ρ − 1)R,∞). Since(
ρα − (ρ − 2)R2

α

)2

=
(

ρα + (ρ − 2)R2

α

)2

− 4ρ(ρ − 2)R2

and|a − b|2 = 4R2 sin2 φ, inequality (4.8) can be rewritten as

|c|2 6
(
z2 − 4R2(ρ − 1)2

)
sin2 φ + (max{0, z cosφ − 2(ρ − 1)R})2 .

(4.10)

We now consider two cases separately, according to whether or not (4.5) holds.
Due to (4.2), the latter condition can be rewritten as follows:

|c| < 2(ρ − 1)R
sin2 φ

cosφ
(4.11)

(with the understanding that for cosφ = 0 the right-hand side of (4.11) equals+∞).
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If (4.11) holds, then, in particular, sinφ /= 0, and√
|c|2

sin2 φ
+ 4(ρ − 1)2R2

<

√
(2(ρ − 1)R tanφ)2 + 4(ρ − 1)2R2 =

√
4(ρ − 1)2R2(1 + tan2 φ)

= 2(ρ − 1)R

cosφ
.

Inequality (4.10) for(0 <)z 6 (2(ρ − 1)R)/cosφ can be simplified to√
|c|2

sin2 φ
+ 4(ρ − 1)2R2 6 z.

Hence, the smallest solution of (4.10) in case (4.11) is given by

z =
√

|c|2
sin2 φ

+ 4(ρ − 1)2R2 = 2R

√
(ρ − 1)2 + |c|2

|a − b|2 .

The corresponding smallest value ofα ∈ [R,∞) satisfying (4.8) is then equal to
(4.4).

If (4.11) fails, then√
|c|2

sin2 φ
+ 4(ρ − 1)2R2 > 2(ρ − 1)R

cosφ
,

and the inequality (4.10) has no solutions to the left of(2(ρ − 1)R)/cosφ. Forz >
(2(ρ − 1)R)cosφ the right-hand side of (4.10) can be rewritten as

(z2 − 4(ρ − 1)2R2) sin2 φ + (z cosφ − 2(ρ − 1)R)2

= z2 − 4(ρ − 1)2R2 sin2 φ + 4(ρ − 1)2R2 − 4(ρ − 1)Rz cosφ

= (z − 2(ρ − 1)R cosφ)2 .

Therefore, the set of all solutions of (4.10) is in this case

[|c| + 2(ρ − 1)R cosφ,+∞)

(note that|c| + 2(ρ − 1)R cosφ > 2(ρ − 1)R((sin2 φ/cosφ) + cosφ) = (2(ρ − 1)

R)/cosφ). The smallest solution of (4.10) is therefore equal toQ, as defined by
formula (4.7). The corresponding smallest value ofα is then given by (4.6). �

As in Section 3, the particular case of formulas (4.4) and (4.6) forρ = 2 was
stated in [5]. In our notation, it reads

w2(A) =
{
(R/|a − b|)

√
|c|2 + |a − b|2 if |c| · |a + b| < |a − b|2 ,

(|c| + |a + b|)/2 otherwise.
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5. Variations and generalizations

The results of Sections 2–4 can be reformulated in a unitarily invariant form. To
this end, observe that

|a|2 + |b|2 + |c|2 = ‖A‖2 + |ab|2
‖A‖2

(5.1)

for any non-zero matrixA of the form (2.1). Hence, (2.3) can be rewritten as

‖A‖2 + |ab|2
‖A‖2

− 2 Reab 6 min−π6θ6π
|z(θ) + ρ + ab(ρ − 2)|2 . (5.2)

If ab ∈ R, the left-hand side of (5.2) can be further rewritten as(‖A‖ − (ab/

‖A‖))2, so that after taking the square roots, (3.1) becomes

‖A‖ − ab

‖A‖ 6 ρ + (ρ − 2)ab − |ρ − 1| · |a + b|
(note that both sides are non-negative). Respectively,P in (3.4) can be substituted by
|ρ − 1| · |a + b| + ‖A‖ − (ab/‖A‖).

If |a| = |b| = R, then (5.1) implies that|c| = ‖A‖ − (R2/‖A‖), and formulas
(4.4) and (4.6) can be modified accordingly.

Let nowA be an operator defined by (1.3), with dimHx 6 2 for all x ∈ X. Ap-
plying the above-mentioned results and then using (1.8), it is easy to formulate a
criterion forA ∈ Cρ , as well as to computewρ(A).

We will not formulate these statements in such a generality. Observe, instead, that
A has form (1.3) with at most two-dimensionalHx if and only if A belongs to a
W∗-subalgebra ofL[H] generated by two orthoprojections. This class includes, in
particular, allquadraticoperators, that is, operatorsA satisfying the equation

A2 + pA + qI = 0 (5.3)

for somep, q ∈ C.

Theorem 5.1. Let A ( /= 0) be a quadratic operator, and let a, b be the roots of its
minimal polynomialz2 + pz + q. Then A is aρ-contraction if and only ifa, b satisfy
(2.2)and

‖A‖2 + |q|2
‖A‖2

6 2 Reab + min−π6θ6π

∣∣∣ρ + ab(ρ − 2) − (ρ − 1)(beiθ + ae−iθ )

∣∣∣2 .

Proof. There exists an orthogonal decompositionH = H1 ⊕ H2 relative to whichA
has the form

A =
[
aI C

0 bI

]
.
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Using the polar decomposition of the blockC: H2 → H1 and the spectral represen-
tation of (C∗C)1/2, we can further decomposeA into a direct integral with two-
dimensional blocks (2.1),x ∈ σ((C∗C)1/2), and possibly one-dimensional blocks
{a} and{b}. We now apply (5.2) to each of the blocksAx and then use the fact that

sup{‖Ax‖: x ∈ σ((C∗C)1/2)} = ‖A‖. �

If the coefficientsp, q in (5.3) are real, the rootsa, b are either real or complex
conjugate. Applying the results of Section 3 (fora, b ∈ R) or Section 4 (forb = a)
to the blocksAx in the direct integral representation (1.3) ofA, we come to the
following formula for itsρ-numerical radius.

Theorem 5.2. Let A (/= 0) be a quadratic operator such that the coefficientsp, q in
(5.3)are real. Then

wρ(A) =
Sρ +

√
S2

ρ − 4ρ(ρ − 2)q

2ρ
, (5.4)

where

Sρ = |ρ − 1| · |p| + ‖A‖ − q

‖A‖
if

p2 > 4q or p2 6
(

‖A‖ + q

‖A‖
)2

− (ρ − 1)2
(

4q

p
− p

)2

, (5.5)

and

wρ(A) =
√

q

ρ

(√
1 + Tρ +

√
(ρ − 1)2 + Tρ

)
(5.6)

with

Tρ =
(
‖A‖ − q

‖A‖
)2

4q − p2

otherwise.

Observe thatw2(A) = 1
2S2 andSρ = 2σ |p| + S2, where

σ =
{
(ρ − 2)/2 if ρ > 1,

−ρ if ρ 6 1.

Hence, formula (5.4) forp, q satisfying

p2 > 4q or p2 6
(

‖A‖ + q

‖A‖
)2

− max{1, (ρ − 1)2}
(

4q

p
− p

)2

can be rewritten as
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wρ(A) = w2(A) + σ |p| +
√

(w2(A) + σ |p|)2 − ρ(ρ − 2)q

ρ
.

In particular,

wρ(A) = w2(A) + √
w2(A)2 + ρ(ρ − 2)s

ρ
if A2 = sI, s > 0,

and

wρ(A) = 2w2(A) + 2σ |p|
ρ

= ‖A‖ + |ρ − 1| · |p|
ρ

if A2 = pA, p ∈ R.

The last two formulas (withs = 1 andp = 1, respectively) were obtained in [1].
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