
Kidney International, Vol. 35 (1989), pp. 567—5 75

EDITORIAL REVIEW

Amyloid syndromes associated with hemodialysis

The introduction of regional hemodialysis centers has precip-
itated a tremendous increase in the number of patients with
end-stage renal disease undergoing treatment with regular he-
modialysis throughout the world. Although most of the clinical
manifestations of uremia are effectively managed by this tech-
nical advance, renal clinicians have encountered a number of
syndromes that are unique to the dialysis patient. Acquired
metabolic bone diseases, that is, osteitis fibrosa and aluminum-
related osteodystrophy, were among the complications to be
encountered in patients as early, but relatively short-term
experience was gained with the use of dialytic techniques to
support patients with kidney failure. Systematic clinical study
of these patients and intensive investigation at the biochemical
level have led to effective therapeutic regimens and improved
patient well being.

Long term survival of patients with chronic renal diseases
treated with regular hemodialysis therapy for as long as two
decades is not uncommon, but such long-term dialysis appears
to be associated with unique problems. The observations of
astute clinicians have uncovered an association between the
carpal tunnel syndrome, bone cysts, pathologic fractures, and
scapulohumeral periarthritis among long-term dialysis patients
[1—4]. These musculoskeletal syndromes are not caused by
hyperparathyroidism or by aluminum accumulation, two recog-
nized major causes of musculoskeletal disease; rather, there is
reason to believe that these syndromes have a similar etiology.
A unique variety of amyloid deposit has been recovered from
tissues in a substantial number of these cases [3—12], and the
term "hemodialysis-related amyloidosis" (HRA), has been
used to describe the constellation of signs and symptoms [13].

The rapidly expanding literature in this field, along with the
likelihood that the renal clinician will encounter patients with
these syndromes, make a review of this subject timely. This
discussion reviews the clinical and biochemical data, pathologic
findings and potential mechanisms to account for HRA. Prelim-
inary data are examined regarding methods which attempt to
prevent or minimize the accumulation of amyloid precursors.
Potential modifications of dialytic techniques that might be
employed to manage the affected patient are also considered.
This will hopefully allow the clinician to critically evaluate
dialysis manufacturers claims about dealing with this condition.

Background and historical perspective
Amyloid is the term used to describe a group of relatively-

insoluble proteinaceous materials with unique biochemical and
structural properties. A characteristic repetitive polymer of
fibrils and the property of insolubility in physiological solutions
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are common to all amyloid proteins. However, the formation of
a stable suspension in distilled water has allowed the elucida-
tion of the chemical structures of these proteins [14]. The
beta-pleated sheet and repetitive fibrillar pattern of amyloid
materials, as revealed by x-ray crystallagraphic and infrared
analysis of the tertiary structure [151, account for the term, beta
fibrilloses, to describe the diseases of amyloid accumulation.
Although histologically identical, biochemical analysis of these
proteins reveals heterogeneity. There is both a large and small
molecular weight fraction. The latter peak varies in molecular
weight, ranging 4,200 to 31,000 daltons, permitting the chemical
and immunological characterization of the amyloid proteins
[14].

When amyloid proteins become insoluble and deposit within
the physiological environments of the cell, thereby replacing
normal tissue constituents, the function of the affected organs
can be disturbed. Biopsy of the involved tissue may reveal
amyloid proteins when the specific histologic staining methods
and electron microscopic techniques, described below, are
employed.

The diseases characterized by the accumulation of amyloid
proteins were initially categorized as primary or secondary. The
former, which is also called idiopathic amyloidosis, occurs in
association with multiple myeloma and other plasma cell dys-
crasias that are characterized by the unregulated production of
light chain immunoglobulins. The amyloid protein of primary
amyloidosis is derived from light chain immunoglobulins and is
designated AL. Secondary amyloidosis is often associated with
chronic inflammatory or infectious conditions, and the amyloid
protein is designated AA. In the United States and Europe,
where chronic granulomatous infections have been largely
eradicated by the use of chemotherapeutic agents, secondary or
reactive amyloidosis most commonly occurs in association with
chronic rheumatic diseases. The protein fibrils of AA are
comprised of degradation products of the hepatically synthe-
sized acute phase reactant protein, SAA. Amyloidosis has also
been reported with the amyloid protein derived from precalci-
tonin arising from medullary carcinoma of the thyroid gland
[16], from prealbumin associated with the familial amyloid
cardiomyopathy [17], and from beta protein [18] in Alzheimers
disease. The protein in HRA is derived from beta2-microglob-
ulin (/32-M), a specific immunoglobulin that is described below.

Despite the description of systemic amyloidosis in 1886 [19],
involvement of the skeleton with this proteinaceous substance
was not reported until 1922 [20] when diffuse deposition of
amyloid in the tendons, ligaments, and joint capsules was
observed in a patient with massive amyloid infiltration of the
heart. In 1939, Koletsky and Stetcher [21] reported the rheu-
matic complaints resulting from amyloidosis. These symptoms
included swelling and stiffness of the hand associated with
tingling and burning sensations (carpal tunnel syndrome). After
many years, the patient developed a pathologic fracture of the
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femur, and widespread amyloid involvement ofjoints and bones
was found at autopsy. The shoulders of the patient were so
distorted by amyloid infiltration that the authors described them
as "padded." More recently, the term, "shoulder pad sign" has
been applied to patients with amyloid deposition within the
shoulder joint because of the resemblance to a football player's
shoulder pads [22]. Although the biochemical type of amyloid
differs in patients affected by HRA, the similarity in the clinical
findings—especially the rheumatic complaints—with these ear-
lier historical descriptions will become apparent.

Amyloid-related syndromes in dialysis patients
In HRA, amyloid fibrils are predominantly deposited in the

perineural and periarticular structures, joints, bone, skin and
subcutaneous tissue [1—4, 5, 6,9—12, 23—31]. Far less commonly
amyloid tissue has been found in the rectal mucosa, liver,
spleen, kidney, prostate [30] and blood vessels [30, 32, 33].
There is a single report of a dialysis patient with kidney stones
in which HRA was the predominant proteinaceous material
[34]. Since the organs systems from which HRA has been
recovered is diverse, it would not be a surprise if more systemic
involvement with this type of amyloid is observed and reported
from long—term dialysis patients.

A variety of arthritic and neuromuscular syndromes, unre-
lated to crystalline-induced arthritis, were described with the
wide use of dialysis to treat end-stage renal failure [2, 4, 35]. A
recent survey indicated that the tissues from long-term hemo-
dialysis patients most consistently found to contain amyloid
material included bone, joint and the synovium [31]; thus, it is
no surprise that the carpal tunnel syndrome, arthritic com-
plaints and bone disease are commonly observed clinical man-
ifestations. For ease of discussion, HRA is divided into these
different clinical presentations. It should be understood, how-
ever, that there is considerable overlap in symptoms referable
to the musculoskeletal system and that individual patients will
differ in their clinical presentation. The degree to which f32-M
can be attributed as the only factor in the pathogenesis of these
syndromes is not yet apparent, and thus, reference to specific
reports will be noted in which /32-M has been recovered from
anatomical sites.

Carpal tunnel syndrome (CTS)
The carpal tunnel syndrome (CTS) results from entrapment

of the median nerve at the wrist, It is accompanied by discom-
fort and occasionally sensory loss of palmar surfaces of the
thumb, index, and middle fingers and the radial aspect of the
fourth finger. Measures to elicit the symptoms include light
tapping over the median nerve (Tinel's sign) and either forced
fiexion (Phalan's sign) or forced extension of the wrist. Pain is
often most severe at night, and it may waken the patient from
sleep. As the CTS progresses, there may be weakened opposi-
tion and abduction of the thumb with atrophy of the thenar
eminence.

The conditions associated with the CTS in non-dialyzed
patients include pregnancy, diabetes mellitus, hypothyroidism,
rheumatoid arthritis, old fractures and amyloidosis. Also,
trauma to the wrist, such as occurs with scrubbing, with
repeated and prolonged extension and pressure on the wrist, is
associated with the CTS.

Even though the diagnosis is most often made by a history

Table 1. Reports of hemodialysis patients with carpal tunnel
syndrome and hemodialysis-related amyloidosis

Duration

Reference
No.

Dialysis
patient

No.

Patient
with CTS

No.

of
dialysis

Yrs

Amyloidosis
Bx-positive

No.

Total
Bx
No.

2 312 7 8.6 7 7
4 1000 31 10.3 17 24
5 230 9 10 9 —
6 236 17 8—13 13 15
7 110 — 0.9—12 38 52

23 100 12 0.3—12 7 12

and physical examination, objective studies can be helpful in
confirming the diagnosis. Nerve conduction studies often dem-
onstrate a decrease in sensory conduction, manifested by
decreased amplitude and distal latency. Motor nerve conduc-
tion is less frequently abnormal.

Since the first description of CTS in hemodialysis patients in
1975 [36], its incidence in large groups of dialysis patients has
ranged from 2 to 31%. The symptomatology experienced by
dialysis patients with CTS does not differ from the non-uremic
patient afflicted with this disorder. In a questionnaire survey of
hemodialysis patients [341, two-thirds of the patients reported
symptoms of the CTS; confirmatory nerve conduction studies
were not performed. Among afflicted patients, 31% described
pain, 25% swelling, and 61% had parasthesias localized to the
first four digits. Symptoms occurred both during the dialysis
procedure and on non-dialysis days. A minority of patients had
a decrease in light touch sensation on physical examination;
Tinel's sign was present in one-half of their patients, but this
has rarely been reported by others [5, 24]. Symptoms are the
most sensitive early feature of the CTS, and nerve conduction
tests may be abnormal only when the degree of compression is
severe.

The CTS associated with BRA usually develops after an
average of eight to nine years but rarely before four to five years
of initiation of hemodialysis therapy (Table 1). In the careful
epidemiological studies of Kachel and associates [6], severe
symptoms of CTS that were confirmed by electrophysiological
tests and treated by decompression of the median nerve oc-
curred only if the total duration of dialysis was four years or
more. Four percent of those undergoing dialysis for five to nine
years had the syndrome, but the prevalence was 30% among
patients on regular hemodialysis for longer than nine years. The
frequency was more closely related to the duration of treatment
with hemodialysis than the duration of renal disease.

Management of the CTS has not been altogether satisfactory.
The application of an extension splint to the wrist, particularly
at night is often useful for mild symptoms. The response to
injection with local anesthetic agents and corticosteroids is only
transient, while surgical decompression of the median nerve has
been of the greatest benefit to patients with marked disability
and pain from the CTS.

Arthropathy
The rheumatic disorders that have been described in dialysis

patients included infectious and crystal-induced arthritis and
peri-articular calcifications [37]. An increasing number of pa-
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tients with arthritic complaints, many of which are idiopathic in
nature, have been reported among long-term hemodialysis
patients [2, 4, 9, 27, 35, 38—40]. In some reports, there was the
histologic identification of amyloid material, and in many of
these, further characterization revealed /32-M [30, 41].

Although not mutually exclusive, three relatively distinct
arthropathic syndromes have been described in hemodialysis
patients with HRA. These include: generalized arthritis (fre-
quently with erosions of the joints), scapulohumeral periar-
thritis, and an arthropathy with joint effusions [2, 4, 6, 7, 27, 35,
38—40]. The association between HRA and the latter two
syndromes has been more convincing than that between HRA
and generalized arthritis.

Generalized arthritis. Generalized arthritic complaints are
probably most commonly encountered by the physician caring
for long-term hemodialysis patients. The arthritis may be gen-
eralized or local in distribution and is often but not always
destructive in nature. The most commonly affected joints
include the shoulders, knees, wrists, hip and occasionally the
intervertebral discs of the spine; however, any joint may be
affected. In addition to symptoms of pain and stiffness, objec-
tive findings on examination include decreased joint motion,
effusion, crepitance or even deformity [9, 27, 35].

In one study, eight of 11 patients hemodialyzed for greater
than 10 years complained of pain and stiffness in the joints,
unrelated to prior septic or traumatic events. More than one-
half had multiple joints affected, and one-half complained of
knee pain. Limitation in the range of motion was mostly noted
in the shoulder, whereas effusions and crepitance more fre-
quently affected the knee. Camptodactyly, the irreducible flex-
ion of fingers, Swan neck deformities and early Heberden's
nodes affected the hands of these patients [35].

Where a prolonged duration of hemodialysis therapy is the
primary risk factor for the development of arthritis, other risk
factors include previous parathyroidectomy and, surprisingly, a
younger age [27]. There is no predilection towards one sex. The
serum levels of immunoreactive parathyroid hormone and the
plasma aluminum level have not been helpful in distinguishing
afflicted patients from those without joint complaints [27, 42],
but these determinations have not been consistently reported.

Radiographic evidence of joint erosions, not typical of renal
osteodystrophy, increases in frequency with the duration of
peritoneal or hemodialysis [40]. The erosive changes on X-rays
most commonly involve the metacarpalphalyngeal joint, pre-
dominantly on the ulnar side, followed in frequency by the
proximal and distal interphalyngeal joints, shoulder, wrist and
knee [40]. Occasionally erosions are noted in the intervertebral
areas [9, 43]. Many patients have clinical manifestations in the
absence of radiographic erosions, and other patients who are
asymptomatic have radiographic lesions. Symptoms were most
commonly absent with abnormalities of the symphysis pubis
and sacroiliac joints [401. The longer cumulative duration of
dialysis and higher serum alkaline phosphatase level were the
only differentiating features observed patients whose radio-
graphic changes included both erosive arthritis and renal osteo-
dystrophy in comparison to those dialysis patients in whom
only the latter were seen. Notably, one-third of the patients
received peritoneal dialysis as the primary modality of treat-
ment for renal failure. The significance of this in relation to
these arthritic changes is not yet apparent [401.

Since the cumulative length of dialysis is the most consistent
finding in these patients, it is tempting to attribute the signs,
symptoms and radiographic features of this generalized and
sometimes erosive arthritis to f32-M. p2-M has been recovered
from many of the tissues [9, 43], but it also has been found
incidentally in the sternoclavicular joint of asymptomatic pa-
tients undergoing parathyroidectomy. Because of this and the
finding of hemosiderin deposits in affected joints, it has been
suggested that deposits of iron, occurring either from hemar-
throsis or iron overload, rather than amyloid may be the cause
of arthropathy in long-term dialysis patients [42]. There is
precedent for amyloidosis causing erosive arthritis, albeit less
severe, from observations of articular AL amyloidosis in pa-
tients with multiple myeloma [44, 45].

Scapulohumeral periarthritis. The shoulder is the most com-
monly affected joint in long—term hemodialysis patients with
arthritic complaints. Amyloid deposits are often recovered from
the carpal tunnel tissue in patients with shoulder pain [6, 7].
One group of investigators reported positive amyloid staining in
CTS deposits in 11 of 13 patients with concomitant shoulder
pain [6].

The histologic diagnosis of HRA can be made by an excision-
al biopsy of tissue from the shoulder joint. Surgical exploration
reveals swelling and thickening of the subacromial bursa.
Predominant areas of amyloid infiltration included the syno-
vium in the interstitial region and the tendon sheath. Yellowish
brown granular deposits and rupture of the biceps tendon may
be noted. The bursal lumen can contain massive amounts of
bloody fluid. These findings are similar to those found in
patients with idiopathic or secondary amyloidosis involving the
shoulder space, except that in HRA, immunofluorescent stain-
ing with antiserum to 132-M is strongly positive [41, 46].

Effusive arthropathy. A third clinical presentation for rheu-
matic involvement with HRA is joint effusions. The frequency
of joint effusions ranges from 2% to 8% in reported series [2,
40], but the incidence reaches nearly 50% in patients receiving
dialysis for more than 10 years [35]. The usual clinical presen-
tation is the persistent swelling and effusion of a joint in a
patient who has undergone hemodialysis for longer than eight
years. The swelling may persist for up to two years [2].
Involvement is frequently bilateral and accompanied by mild
discomfort. Occasionally, symptoms of acute pain are severe
and frank arthritis is noted upon physical examination.

Aspiration of the joint space yields a serous, sterile fluid that
is characteristically non-inflammatory. The cell count has
ranged from 50 to 5,000 cells/mm3 [2, 40]. The glucose level is
normal and the protein content low. Crystals are not present
when polarized light or electron-microscopic methods are uti-
lized to visualize the fluid [40]. In two of seven patients with
effusions, an acute arthritis was superimposed upon a chronic
effusion and the synovial fluid leukocyte count increased from
low baseline levels to 8,000 and 100,000 cells/mm3. Sediments
of centrifuged joint fluid that are fixed in paraffin and stained
with Congo red sometimes reveal the typical green birefrigence
of amyloid material, and this may serve as a relatively easy
means of diagnosis when amyloid is present in the synovial
fluid; the amyloid can more often be found on the synovial
surface of the involved joint or in the tendon sheath during an
arthroscopic procedure. Synovial biopsies reveal mesothelial
hyperplasia or nonspecific chronic synovitis. Four of the seven
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patients with joint effusions and HRA also had the CTS [2].
When the latter was present, amyloid deposits were uniformly
found in the tissue fragments removed from carpal tunnel
release procedures. One patient with positive staining for
amyloid in the CTS also had amyloid in a fat pad biopsy,
although the experience of others in diagnosing amyloid by
abdominal fat pad aspiration in long-term dialysis patients has
been disappointing [47]. All the patients of this series [21 with
effusions had radiographic evidence of severe renal osteodys-
trophy, defined as changes of severe hyperparathyroidism;
serum PTH and aluminum values, however, were not reported.
The relevance of excess PTH or aluminum toxicity to the
development of effusion and synovitis is unknown, although
high aluminum levels have been found in the joint tissues of
patients receiving regular treatment with hemodialysis [48].

Skeletal manfes:aiions
Bone can also be affected by amyloidosis with f32-M deposits

in patients on hemodialysis; usually it manifests clinically as a
cystic change or pathologic fracture within the bone most often
at the site of a tendinous insertion. Radiographic evidence of
cystic changes within juxta-articular bone, often resembling
brown tumors, has been noted in the femoral heads [47],
acetabula [3], humerus, radius [26], carpal bones [1], tibial
plateaus [4], pubic symphysis, patella [2], and tarsal bones [47,
personal observations]. These cystic and destructive lesions
reveal typical amyloid material when aspirated or when patho-
logic fractures were repaired surgically [28, 47].

The natural history of these bony abnormalities is one of
progressive enlargement of the cystic area (revealed by serial
radiographs), and subsequent replacement by the amyloid ma-
terial [49]. This can cause pathologic fractures within bone,
especially when in proximity to a weight bearing joint [28, 47,
49]. Thus, HRA can cause fractures that are unrelated to the
presence of renal osteodystrophy, and this condition becomes
part of the differential diagnosis of such lesions in patients
receiving regular hemodialysis.

The bony involvement with HRA should not be completely
surprising since lytic lesions of the skeleton have been reported
as the clinical presentation of both primary and secondary
amyloidosis [46, 50]. As with other syndromes of HRA, the
cumulative duration of dialytic therapy is long and appears to be
the greatest risk factor for the development of cystic roentgen-
ographic features and pathologic fractures of long bones.

In addition to conventional radiographic techniques, amyloid
involvement of the skeleton has been evaluated by various
scintigraphic techniques. The uptake of gallium 67 citrate [51],
Indium Ill bleomycin [52], technectium-99 sulfur colloid, tech-
nectium 99 pertechnetate [53], technectium-99 pyrophosphate
[50, 54—56] and technectium-99-methylene diphosphonate [54,
56] have been utilized to detect amyloid involvement of the
heart, liver, bone, muscle and kidney. Of these compounds,
technectium 99 diphosphonate and methylene diphosphonate
were the most sensitive and specific for the detection of amyloid
deposits in skeletal and soft tissues [50, 54—57], although Tc 99
pyrophosphate was better than methylene diphosphonate in a
prospective study to detect AA and AL amyloid in soft tissue
[56].

Although these studies were performed on patients without
HRA, the preliminary application of nuclear bone scanning

techniques with technectium-99-methylene diphosphonate to
hemodialysis patients afflicted with HRA syndromes has re-
cently been reported [581. Four of five patients undergoing
hemodialysis for greater than 12 years with proven osteoarticu-
lar /32-M had abnormal articular and periarticular uptake of
Tc-99 methylene diphosphanate, several in multiple areas. The
increased tracer uptake was generally focal in distribution.
Three of the five patients had hyperparathyroidism (as demon-
strated by elevated plasma PTH levels and radiographic find-
ings of subperiosteal erosions) and all were noted to have
evidence of aluminum overload, as revealed by positive defer-
oxamine challenge. Diffuse tracer uptake is seen with hyper-
parathyroidism and osteitis fibrosa [59], while a generalized
decrease in Tc-99 methylene diphosphonate uptake is often
observed in patients with aluminum related osteomalacia [601.
Thus, proper interpretation of these nuclear scans in a dialysis
patient with rheumatic symptoms would require a consideration
of the effect of these metabolic bone diseases [59—63]. How-
ever, if a long-term hemodialysis patient was noted to have an
increased focal uptake of Tc-99 methylene diphosphanate in the
presence of an otherwise normal bone scan, and had neither
septic, crystalline induced nor aluminum or hyperparathyroid
related osteomalacia, the possibility of HRA should be enter-
tained. Further studies in larger numbers of patients will help to
establish the role of these non-invasive nuclear scanning tech-
niques in the diagnosis of the patient afflicted with HRA and the
usefulness of screening asymptomatic long-term hemodialysis
patients for evidence of HRA.

The mechanism(s) of how these isotopes are taken up by
amyloid tissue is presently unknown. Since the lytic lesions in
bone are devoid of osteoblasts, isotope uptake by this cell
seems unlikely [50]. Amyloid tissue has been noted by some
investigators to have an increased calcium content, possibly
explaining the increased isotope binding [54, 64-66]. Further
studies are needed to elucidate the mechanisms by which
amyloid binds these isotopes and specifically whether isotopes
are also bound to /32-M.

Biochemistry of hemodialysis-related amyloid
The amyloid isolated from the synovium and bone of hemo-

dialysis patients includes features common to other types of
amyloid. On histologic examination, the deposits stain positive
for Congo red and exhibit an apple-green birefringence under
polarized light. Characteristic curvilinear fibrils are seen on
electron microscopy. The twisted beta-pleated sheet configura-
tion by x-ray crystallography, essential for Congo red affinity, is
present and explains the resistence to normal degradative
processes in vivo.

Permanganate treatment of tissue sections will dissipate the
birefringence of amyloid AA and HRA [II]. This finding ini-
tially led investigators to believe that the amyloid of dialysis
patients was the AA type. However, neither anti-human AA
nor anti-human prealbumin reacted significantly with histo-
chemical tissue sections from tissue obtained during surgical
decompression of dialysis patients with the CTS [11, 12, 41].
Immunoblot analysis of tissue sections with antisera to 132-M
was strongly positive, providing the first clue that HRA was
biochemically distinct from previously described types of amy-
bid.

Chemical analysis confirmed the HRA to be comprised of
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/32-M [13, 671. After solubilization of these amyloid fibrils,
amino acid sequencing of the major protein fraction obtained by
the various gel filtration techniques showed a protein with a
structure identical to that of J32-M. Two-dimensional gel filtra-
tion revealed 12 and 24 kilodalton (kD) proteins that correspond
to human /32-M. This heterogeneity of the f32-M proteins iso-
lated by gel electrophoresis occurs because of the presence of
dimers, tetramers and polymers of the basic 12 kD f32-M
protein. More than 95% of the f32-M in the plasma of dialysis
patients is monomeric and consists of the 12 kD protein. These
elegant biochemical studies have given persuasive evidence
that a unique amyloid protein is deposited in the synovium and
bone of many long-term dialysis patients. Different biochemical
methodologies used to isolate HRA demonstrated that globin
chains may also be a major constituent of HRA [68].

Physiology and metabolism of beta2-microglobulin

f32-M is a globular protein with a molecular weight of 11,800
daltons, first isolated from the urine of patients with Wilson's
disease and cadmium poisoning [69]. It is composed of a single
polypeptide chain of 100 amino acid residues with an intrachain
disulfide bridge between positions 25 and 81. The protein is
normally present on all cell membranes other than erythrocytes
and trophoblastic cells [70]. Although not identical, there is
striking homology between the amino acid sequence of /32-M
and the constant domains of the heavy and light chain immu-
noglobulins [71]. f32-M comprises the beta chain of the HLA
class I molecule [72] that is necessary for cell-cell recognition.
The gene coding for the structure of f32-M has been isolated on
chromosome 15 [73].

The appearance of /32-M in tissue fluids most likely arises
from the high turnover of cell membranes. The lymphoid
system is quantitatively a large producer of f32-M in both the
unperturbed state and after stimulation with mitogens and
paracrine factors in vitro [74, 75]. Although it is likely that the
lymphoid system predominates in the production of f3,-M in
vivo, direct proof of this is lacking [70].

The normal levels of /32-M in serum and synovium are less
than 3 g/ml [761. At least 95% of the /32-M recovered from
urine and serum is the free monomer [77]. Like many low
molecular weight proteins, /32-M is freely filtered at the glomer-
ulus and reabsorbed in the proximal tubule. Significant renal
catabolism of this protein has been demonstrated by turnover
studies using 1-125 p2-M in both subjects with normal renal
function and patients with varying degrees of renal insufficiency
[70, 78, 79]. The disappearance of the molecule after intrave-
nous injection of the radiolabel is bimodal; the first half-life (9 to
20 mm) is independent of GFR and corresponds to diffusion of
the protein into the extracellular space; the major subsequent
fall in serum level is dependent on GFR and renal catabolism.
Non-renal catabolism contributes to less than 3.5% of the total
breakdown of /32-M. The normal catabolic rate of the /32-M is
approximately 150 mg/day [80].

With chronic inflammatory diseases and malignancies, an
increase of its production can elevate the /3,-M serum levels
when renal function is normal [81]; otherwise the most impor-
tant cause of high serum levels is renal failure. In humans, the
serum p2-M levels correlate positively with serum creatinine
and inversely with renal function until end-stage renal failure
ensues [70, 78].

Pathogenesis of HRA

Despite a formidable number of clinical reports attributing
HRA to f32-M, the potential mechanisms responsible for the
formation and deposition of this amyloid in long-term hemodi-
alysis patients are presently unknown. Several hypotheses have
been forwarded to explain why HRA might develop. The
factors that may contribute to the amyloidogenic potential of
p2-M include: the persistently elevated plasma concentrations
of f3,-M, iron overload, aluminum intoxication, local effects of
the arterio-venous fistula, and long-term and repeated stimula-
tion of the immune system with the intermittent production of
interleukin I by the contact between the patients blood and the
hemodialysis membranes.

Early reports suggested that CTS arose from local pressure
caused by the arteriovenous fistula. Edema, engorgement and
ischemia in the region of the angioaccess were thought to
contribute to the CTS in dialysis patients [82—84]. However,
Charra and others found no relationship between the location of
the arteriovenous fistula and the limb affected by the CTS [7].
The recovery of amyloid from the synovium of joints that are
not in anatomic proximity to the angioaccess, bilateral involve-
ment of CTS, and its presence in an extremity without a fistula,
provided further evidence against this theory [4].

The CTS has been reported in patients both with and without
previous parathyroidectomy, suggesting that parathyroid hor-
mone levels or parathyroidectomy do not affect its occurrence;
however, the levels of parathyroid hormone have not been
reported systematically. Ectopic calcification occurs no more
frequently in dialysis patients with CTS than in those without it;
therefore, it has been implied that alterations of calcium and
phosphorous metabolism play little or no role in the pathogen-
esis of the CTS [27].

Increased deposition of aluminum in the joint spaces has been
reported in hemodialysis patients receiving aluminum-con-
taining phosphate-binding agents [48]. Aluminum can cross the
synovial barriers, and the aluminum concentrations in synovial
fluid are two- to tenfold higher in dialysis patients ingesting
aluminum containing gels than in patients not taking aluminum
gels. Although plasma aluminum levels have not been reported
in patients with HRA, the suggestion of potential synergism
between aluminum and j32-M fragments causing amyloid depos-
its to form joint and bony abnormalities [85] merits further
investigation.

Iron may be deleterious to joints or joint spaces as it
accumulates in dialysis patients. In one report, dialysis patients
with the most severe arthropathy had the highest serum ferritin
levels, an observation leading to the speculation that iron
overload may have a pathogenetic role in the arthritis of dialysis
patients [27, 42]; also, hemosiderin has been recovered from
affected joints [42]. Iron in a low valency state can promote the
production of free radicals which can lead to peroxidation and
inflammation of the synovium in patients with rheumatoid
arthritis [86]. Once again, the potential interaction between iron
and the J32-M protein is unknown.

An engaging theory of relevance to the pathogenesis of HRA
is related to the immunologic changes that occur when a
patient's blood contacts the membrane of the artificial kidney,
leading to the release of cytokines and lymphokines. In vivo
and in vitro studies have both demonstrated that the comple-
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ment cascade is activated following contact between human
plasma and a dialysis membrane composed of cupraamonium
sulfate (CuprophanR) [87]. Both C5a and the adherence of
macrophages to this membrane cause the release of interleukin
I from mononuclear cells. Interleukin 1 (IL-I), previously
termed endogenous pyrogen, is a family of polypeptide hor-
mones with molecular weights ranging from 15,000 to 17,000
daltons. The systemic effects of interleukin 1 include increased
hepatic synthesis of several acute phase proteins, including
SAA protein, C reactive protein, fibrinogen and ferritin. More-
over, the plasma levels of zinc and iron fall, and serum copper
and ceruloplasmin increase. The interleukin I produced by
macrophages causes leukocytosis and activates lymphocytes,
which in turn lead to the febrile response to acute injury,
infection, or other inflammation [88, 89].

The measurement of IL-l in the serum of hemodialysis
patients is hindered by a circulating protein inhibitor. More
refined techniques that facilitate its measurement have demon-
strated a twofold increase in IL-i in patients on hemodialysis
for more than 10 years when compared to normal controls [90,
91].

In vitro experiments that studied the interaction between
monocytes and various dialyzer membranes, including poly-
aminonitrile, regenerated cellulose acetate and Cuprophan'
have demonstrated that IL-i production is increased signifi-
cantly even in the absence of complement or endotoxin. There
are no data on the effect of IL- 1 on levels of /32-M of normals or
patients receiving regular hemodialysis. Whether these changes
could account for higher f32-M levels immediately after dialysis
is uncertain but requires further study.

A likely mechanism to account for the development of HRA
is the markedly increased plasma levels of /32-M, per Se. As
noted above, f32-M is largely cleared and metabolized by the
kidney, and the plasma concentrations of 32-M are markedly
elevated in dialysis patients compared to normal subjects. In
addition, the plasma levels of f32-M continue to rise slightly with
the cumulative duration of dialysis treatment. Dialyzed patients
with some residual renal function have lower serum levels of
f32-M than anuric or anephric patients. How serum levels of
f32-M are affected by the type of dialysis membrane is discussed
below.

A unique physiochemical property of the /32-M which char-
acterizes HRA, is the ability of /32-M to form polymers and
adopt a fibrillar structure in vitro, either by increasing the f32-M
concentration or by altering the ionic strength of the solution
[921. Also, more than 50% of the bovine homologue of /32-M,
added in vitro, can form the beta-pleated sheet pattern that is
common to amyloid protein [93, 94]. Thus, J32-M is the only
known protein precursor that can form amyloid librils in vitro.

The development of HRA is not simply related to or deter-
mined by the serum level of f32-M in a dialysis patient. Gejyo et
al [95] attempted to distinguish hemodialysis patients with
amyloid deposits from the serum level of j32-M. Ten of the 210
patients had amyloid deposits found with surgery for the CTS,
yet the serum f32-M level did not distinguish these patients from
other dialysis patients without clinical evidence of HRA. The
fact that HRA is generally not clinically apparent until eight or
more years of dialysis therapy is instituted implies that the
pathogenesis is complex. The predilection of HRA to involve
the synovium and bone has led some to suggest the importance

and presence of local tissue factors [67] or an amyloid enhanc-
ing factor [95]. 32-M levels within synovium of hemodialysis
patients have not been measured, although one would assume
that the tissue levels would parallel the serum levels, as occurs
in those without renal failure.

Role of hemodialysis membranes in HRA

The relationship between the chemical composition and
porosity of the artificial kidney membrane, and the generation
and retention of /32-M is currently undergoing intensive inves-
tigation. However, the importance of these factors in the
development of HRA is uncertain. Few data are available on
the types of artificial kidneys used by long-term hemodialysis
patients who developed these syndromes. The data reported are
promising but still preliminary in terms of prevention and
especially in the treatment of HRA. The institution of wide-
spread changes in dialysis membranes for stable, long-term
hemodialysis patients should be done only with caution at this
time. The individual practitioner should read studies pertaining
to this rapidly expanding area of research with caution and view
some of the recommendations as speculative. Nonetheless,
investigators are systematically examining different dialysis
membranes for both their propensity to generate IL-i and their
ability to reduce the serum levels of /32-M in dialysis patients.

Patients using the polyacrylonitrile and polysulfone mem-
branes for both standard blood flow and high-flux dialysis have
slightly lower serum levels of f32-M than those using Cupro-
phanR membranes for dialytic treatments [96, 97]. The higher
permeability dialysis membranes, such as polyacrylonitrile
(PAN) and polysulfone (PS), reduced the plasma /32-M level by
approximately 30% during a single dialysis session [981; this
difference may be related to the higher sieving coefficient of
these membranes [96, 99, 100].

In a systematic evaluation of different membranes employed
for high-flux dialysis, it was found that the removal of j32-M was
not equal: CuprophanR membranes did not remove f32-M
whereas PAN, polymethylmethacrylate (PMMA) and PS all
removed this low molecular weight protein. Moreover, the PS
membrane had the highest sieving coefficient and net removal of
/32-M. The PS dialysis membranes lowered the 132-M levels in
plasma by 12 to 24% during a single dialysis treatment, while
the reductions were only 8 and 5% by PAN and PMMA
membranes, respectively [101].

One study of 10 patients receiving hemodialysis with Cupro-
phan' membranes found that the serum /32-M level rose after a
four hour hemodialysis, with the maximal level in the third and
fourth hours of the procedure. In contrast, the serum level of
/32-M fell with PAN membranes [102]. Another group found the
average serum 132-M levels to rise 21% after one hemodialysis
treatment with a cuprophane membranes and 16% with a
cellulose acetate dialyzer [103],

Most studies that evaluate the changes in f32-M after dialysis
do not take into account the ultrafiltration and hemoconcentra-
tion that occurs during the dialysis procedure. A formula has
been devised to take this into account and to "correct" the
/32-M levels before and after hemodialysis [104]. When these
parameters were taken into account, the corrected values for
j32-M with the "low permeability" membranes (CuprophanR,
cellulose acetate, polymethylmethacrylate and polycarbonate)
was not markedly different from baseline, whereas significant
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decreases in corrected j32-M occur with PS (—47%), PAN
(—33%), and cellulose acetate (— 15%). Since bioincompatibility
is potentially a reason for the evaluation in serum /3,-M levels
that occurs after hemodialysis with various dialyzers, further
and more detailed studies will be needed to differentiate the
relative importance of bioincompatibility versus the impaired
clearance of f32-M by various artificial kidney membrane sur-
faces [105, 106].

Case control studies have not found the serum /32-M level as
a predictor of risk for developing the HRA syndromes [95];
however, it seems logical to believe that the lower the serum
levels of /32-M, the less the chance that HRA will develop. In a
retrospective study of patients treated with either CuprophanR
or PAN membranes, none of 11 patients treated with PAN for
7 to 10 years developed HRA; while approximately 15% of
those treated with CuprophanR developed clinical syndromes
associated with HRA. More dramatically, none of the three
utilizing PAN for II to 14 years developed HRA compared to 6
of 10 who used Cuprophan' dialysis membranes for a similar
period [49].

HRA and peritoneal dialysis

There has been considerable growth in the use of peritoneal
dialysis for the long term treatment of patients with end-stage
renal diseases [107], and it has been questioned whether pa-
tients undergoing CAPD have equal predisposition to HRA
[108]. The relative short-term experience with chronic ambula-
tory peritoneal dialysis (CAPD) compared to that for hemodi-
alysis probably explains the small number of cases reported
with HRA during CAPD, and it is likely that a critical time
period has not lapsed for the clinical manifestations to appear.
Careful and appropriate histochemical stains may not have been
reported from tissue fragments obtained during surgical proce-
dures for CTS or other joint abnormalities that developed in
these patients. Only one study describes peritoneal dialysis
patients developing HRA, but, the number of years of therapy
with CAPD was not reported [40].

Data have appeared regarding 137-M levels in patients on
CAPD [100, 105]. In short term studies with CAPD for less than
one and one-half years, f3,-M levels are markedly elevated,
similar to those in patients treated with hemodialysis [100].
However, when the cumulative duration of peritoneal dialysis is
longer, there was a significantly lower serum level of /37-M in
the CAPD patients [105, 109]. This may be explained by the
relatively greater clearance of the high molecular weight pro-
teins, such as $2-M, with peritoneal dialysis techniques; more-
over, peritoneal dialysis has been used therapeutically to re-
duce the elevated levels of immunoglobulins in patients with
paraproteinemias [110]. The peritoneal membrane is permeable
to /3.,-M; however, peritoneal fluid concentration of /3,-M reach
only 10 to 15% of serum levels. The 24 hour clearance using
four standard exchanges per day has been estimated to be 30 to
40 mg, which is still far short of the ISO mg excreted and
metabolized by the functioning kidney. Whether patients utiliz-
ing CAPD as the primary dialysis modality will be less likely to
develop the syndromes associated with HRA must require
further time and study.

Summary
A historical review and current clinical findings relating a new

type of amyloid material to long term hemodialysis are pre-
sented, followed by a review of the biochemistry, metabolism
and involvement of /32-M and theories for the pathogenesis of
HRA. The syndromes develop several years after replacement
of renal function by dialysis, and seem to be progressive over
time. Preliminary clinical studies utilizing more permeable
artificial kidney membranes suggest their potential usefulness in
the prevention of HRA syndromes, specifically those attribut-
able to persistent elevation of serum /32-M; however, caution in
their employment is advised. The development of effective
treatment for long-term hemodialysis patients afflicted with
CTS, arthritic symptoms and skeletal manifestations of HRA is
unfortunately constrained by deficiencies in our knowledge.
Renal transplantation has been demonstrated to reduce the
elevated serum /32-M levels in hemodialysis patients to normal
[Ill]; however, the effectiveness of this modality to treat
clinical manifestations of HRA has not been reported. Thus,
efficacious treatment strategies have lagged considerable be-
hind diagnostic techniques. Intensive research is needed as the
story of this new form of renal osteodystrophy unfolds.
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