Theoretical

Theoretical Computer Science 217 (1999) 279–289

Congruence lattices 101¹

G. Grätzer*

Department of Mathematics, University of Manitoba, Winnipeg, MN R3T 2N2, Canada

Abstract

This lecture – based on the author's book, *General Lattice Theory*, Birkhäuser Verlag, 1978 – briefly introduces the basic concepts of lattice theory, as needed for the lecture "Some combinatorial aspects of congruence lattice representations". © 1999—Elsevier Science B.V. All rights reserved

AMS classification: Primary 0601; Secondary 0602

Keywords: Lattice; Congruence lattice; Breadth; Order dimension; Planar; Finite; Distributive; Join-homomorphism; Automorphism group; Chopped lattice.

1. Lattices

1.1. Posets

A partially ordered set $\langle A; \leqslant \rangle$ consists of a nonvoid set A and a binary relation \leqslant on A such that the relation \leqslant satisfies properties (P1)–(P3) for all a, b, $c \in A$:

(P1) Reflexivity: $a \leq a$.(P2) Antisymmetry: $a \leq b$ and $b \leq a$ imply that a = b.(P3) Transitivity: $a \leq b$ and $b \leq c$ imply that $a \leq c$.

A poset $\langle \langle A; \leq \rangle$ that also satisfies:

(P4) Linearity: $a \leq b$ or $b \leq a$

is called a *chain* (also called *fully ordered set*, *linearly ordered set*, and so on). The *length*, l(C), of a finite chain C is C - 1. Let \mathfrak{C}_n denote the set $0, \ldots, n - 1$ ordered by $0 < 1 < 2 < \cdots < n - 1$; then \mathfrak{C}_n is an *n*-element chain and $l(\mathfrak{C}_n) = n - 1$.

^{*} Corresponding author. E-mail: gratzer@cc.umanitoba.ca.

¹ The writing of this article was supported by the NSERC of Canada.

^{0304-3975/99/\$-}see front matter © 1999—Elsevier Science B.V. All rights reserved PII: \$0304-3975(98)00275-8

Let $H \subseteq P$ and $a \in P$. The element *a* is an *upper bound* of *H* iff $h \leq a$ for all $h \in H$. An upper bound *a* of *H* is the *least upper bound* (*supremum*) of *H* iff, for any upper bound *b* of *H*, we have $a \leq b$. We shall write $a = \sup H$ or $a = \bigwedge H$. The concepts of *lower bound* and *greatest lower bound* (*infimum*) are similarly defined; the latter is denoted by inf *H* or $\bigwedge H$.

1.2. Lattices

A poset $\langle L; \leq \rangle$ is a *lattice* iff inf a, b and sup a, b exist for all a, $b \in L$. We will use the notation

 $a \wedge b = \inf\{a, b\},\$ $a \vee b = \sup\{a, b\},\$

and call \wedge the *meet* and \vee the *join*. In lattices, they are both *binary operations*, which means that they can be applied to a pair of elements *a*, *b* of *L* to yield again an element of *L*. \wedge and \vee satisfy the following:

(L1)Idempotency : $a \land a = a$, $a \lor a = a$.(L2)Commutativity : $a \land b = b \land a$, $a \lor b = b \lor a$.(L3)Associativity : $(a \land b) \land c = a \land (b \land c)$, $(a \lor b) \lor c = a \lor (b \lor c)$.

There is another pair of rules that connect \land and \lor :

(L4) Absorption identities : $a \land (a \lor b) = a$, $a \lor (a \land b) = a$.

An algebra $\langle L; \wedge, \vee \rangle$ is called a *lattice* iff L is a nonvoid set, \wedge and \vee are binary operations on L, both \wedge and \vee are idempotent, commutative, and associative, and they jointly satisfy the two absorption identities. The following theorem states that a lattice as an algebra and a lattice as a poset are "equivalent" concepts.

Theorem. (i) Let the poset $\mathfrak{L} = \langle L; \leqslant \rangle$ be a lattice. Set

 $a \wedge b = \inf\{a, b\},\$ $a \vee b = \sup\{a, b\}.$

Then the algebra $\mathfrak{L}^a = \langle L; \wedge, \vee \rangle$ is a lattice.

(ii) Let the algebra $\mathfrak{L} = \langle L; \wedge, \vee \rangle$ be a lattice. Set

 $a \leq b$ iff $a \wedge b = a$.

Then $\mathfrak{L}^p = \langle L; \leqslant \rangle$ is a poset, and the poset \mathfrak{L}^p is a lattice. (iii) Let the poset $\mathfrak{L} = \langle L; \leqslant \rangle$ be a lattice. Then $(\mathfrak{L}^a)^p = \mathfrak{L}$. (iv) Let the algebra $\mathfrak{L} = \langle L; \wedge, \vee \rangle$ be a lattice. Then $(\mathfrak{L}^p)^a = \mathfrak{L}$.

2. Diagrams

In the poset $\langle P; \leq \rangle$, a covers b, in notation, $a \succ b$ (or b is covered by a, in notation, $b \prec a$) iff b < a and b < x < a holds for no x. The covering relation determines the partial ordering in a finite poset.

The *diagram* of a poset $\langle P; \leqslant \rangle$ represents the elements with small circles; the circles representing two elements x, y are connected by a straight line iff one covers the other; if $x \succ y$, then the circle representing x is higher than the circle representing y. Three small examples are shown in Figs. 1 and 2.

Note that in a diagram the intersection of two lines does not indicate an element. A diagram is *planar* if no two lines intersect. Figs. 1 and 2 show planar diagrams; Fig. 3 is not a planar diagram.

The order dimension of a finite poset $\langle P, \leqslant \rangle$ is the smallest integer $n \ge 1$ such that \leqslant can be represented as the intersection of the partial ordering relations of *n* chains defined on the set *P*. The order dimension of a finite lattice *L* is 1 iff *L* is a chain. The order dimension of *L* is 2 iff *L* has a planar diagram. The order dimension of the lattice of Fig. 3 is 3.

A finite lattice L is of *breadth* n, if n is the smallest natural number with the following property: for every $X \subseteq L$, there is a subset $X' \subseteq X$ such that $\bigwedge X = \bigwedge X'$

1

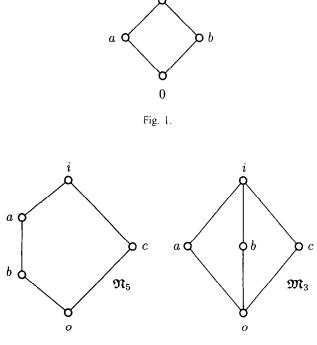
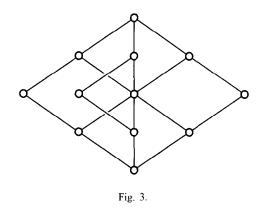


Fig. 2.



and $|X'| \leq n$. Interestingly, this concept is self-dual (that is, defining it for joins yields the same number).

The breadth of a planar lattice is 2. The lattice of Fig. 3 is also of breadth 2. The breadth is always less than or equal to the order dimension. David Kelly proved that for every $n \ge 3$, there is a (modular) lattice of breadth 3 and order dimension n.

3. Some algebraic concepts

Let L be a lattice. $K \subseteq L$ is a *sublattice* of L (or L is an *extension* of K) if K is closed under the operations of L and the operations of K are the restrictions of the operations of L to K. If $a, b \in L$, then

$$[a,b] = \{x \mid a \leq x \leq b\}$$

is a sublattice of L, called an *interval*. If a covered by b, then [a,b] is a *prime interval*; it has only two elements.

A related concept is an ideal. A sublattice I of a lattice L is an *ideal*, if $a \wedge i \in I$ for all $i \in I$ and $a \in L$. The ideals of a lattice form a lattice under set inclusion; Id L is the notation for this lattice.

A homomorphism φ of the lattice L into the lattice K is a map of L into K satisfying both

$$(a \wedge b)\varphi = a\varphi \wedge b\varphi,$$
$$(a \vee b)\varphi = a\varphi \vee b\varphi.$$

If only the first (resp., second) holds, then φ is a *meet-homomorphism* (resp., *join-homomorphism*).

Figs. 4-6 show three maps of the four-element lattice L of Fig. 1 into the threeelement chain \mathfrak{C}_3 . The map of Fig. 4 is *isotone* (that is, if $x \leq y$ in L, then $x\phi \leq y\phi$ in K) but is neither a meet-nor a join-homomorphism. The map of Fig. 5 is a

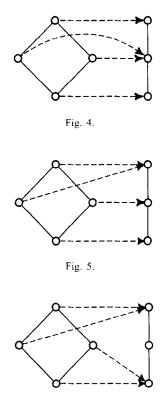


Fig. 6.

join-homomorphism but is not a meet-homomorphism, thus not a homomorphism. The map of Fig. 6 is a homomorphism.

A one-to-one and onto homomorphism is an *isomorphism*. An isomorphism of a lattice with itself is called an *automorphism*. The automorphisms of a lattice L form a group under composition, called the *automorphism group* of L; it is denoted by Aut L.

An equivalence relation Θ (that is, a reflexive, symmetric, and transitive binary relation) on a lattice L is called a *congruence relation* of L iff

$$a_0 \equiv b_0 \pmod{\Theta}$$

$$a_1 \equiv b_1 \pmod{\Theta}$$

imply that

 $a_0 \wedge a_1 \equiv b_0 \wedge b_1 \pmod{\Theta},$ $a_0 \vee a_1 \equiv b_0 \vee b_1 \pmod{\Theta}$

Substitution Property: Trivial examples are ω , i, defined by $x \cong y$ (ω) iff x = y; $x \cong y$ (i) for all x and y. (ω is the Greek o and stands for 0; i is the Greek i

and stands for identity and 1.) For $a \in L$, we write $[a]\Theta$ for the *congruence class* containing a, that is

 $[a]\Theta = \{x \mid x \equiv a \ (\Theta)\}.$

Homomorphisms and congruence relations express two sides of the same phenomenon. Let L be a lattice and let Θ be a congruence relation on L. Let L/Θ denote the set of blocks of the partition of L induced by Θ , that is,

$$L/\Theta = \{ [a]\Theta \mid a \in L \}.$$

Set

 $[a]\Theta \wedge [b]\Theta = [a \wedge b]\Theta,$ $[a]\Theta \vee [b]\Theta = [a \vee b]\Theta.$

This defines \wedge and \vee on L/Θ . The lattice axioms are easily verified. The lattice L/Θ is the *quotient lattice* of L modulo Θ , and the map

 $\varphi_{\Theta}: x \to [x] \Theta \quad (x \in L)$

is a homomorphism of L onto L/Θ .

Next, we introduce direct products. Let L and K be lattices and form the set $L \times K$ of all ordered pairs $\langle a, b \rangle$ with $a \in L$, $b \in K$. Define \wedge and \vee in $L \times K$ "componentwise":

$$\langle a_0, b_0 \rangle \wedge \langle a_1, b_1 \rangle = \langle a_0 \wedge a_1, b_0 \wedge b_1 \rangle,$$

 $\langle a_0, b_0 \rangle \vee \langle a_1, b_1 \rangle = \langle a_0 \vee a_1, b_0 \vee b_1 \rangle.$

This makes $L \times K$ into a lattice, called the *direct product* of L and K (for an example, see Fig. 7).

Finally, we define identities and inequalities.

From variables $x_0, x_1, ..., x_n, ...$, we can form *polynomials* (terms) in the usual manner using \land, \lor , and, of course, parentheses. Examples of polynomials are

$$x_0, x_3, x_0 \lor x_0, (x_0 \land x_2) \lor (x_3 \land x_0), (x_0 \land x_1) \lor (x_0 \land x_2) \lor (x_1 \land x_2).$$

A polynomial is just a sequence of symbols. It is defined because in terms of such a sequence of symbols we can define a function on any lattice. For instance, if $p = (x_0 \wedge x_1) \lor (x_2 \lor x_1)$, then $p(a,b,c) = (a \wedge b) \lor (c \lor b) = b \lor c = i$ in \mathfrak{N}_5 .

A lattice identity is an expression of the form p = q, where p and q are polynomials. An identity p = q holds in the lattice L iff $p(a_0, ..., a_{n-1}) = q(a_0, ..., a_{n-1})$ holds for any $a_0, ..., a_{n-1} \in L$. Similarly, we define a lattice inequality $p \leq q$.

The two identities

$$x \wedge (y \lor z) = (x \wedge y) \lor (x \wedge z),$$

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

are equivalent; a lattice satisfying one (or both) is called distributive.

284

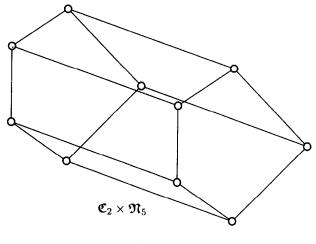


Fig. 7.

A distributive lattice B is called *Boolean* if it has a smallest element 0 and a largest element 1, and every element x has a complement x', that is

 $x \wedge x' = 0.$ $x \lor x' = 1.$

Every finite Boolean lattice is isomorphic to some $\mathfrak{B}_n = (\mathfrak{C}_2)^n \ (= \underbrace{\mathfrak{C}_2 \times \cdots \times \mathfrak{C}_2}_{n-\text{times}}).$

The identity

 $(x \land y) \lor (x \land z) = x \land (y \lor (x \land z))$

is equivalent to the condition

 $x \ge z$ implies that $(x \land y) \lor z = x \land (y \lor z)$.

A lattice satisfying either condition is called modular.

A more complicated identity is the *arguesian* identity:

 $p \leq ((c \lor x_2) \land x_0) \lor ((c \lor x_5) \land x_3),$

where

$$p = (x_0 \lor x_3) \land (x_1 \lor x_4) \land (x_2 \lor x_5),$$

$$c_{ij} = (x_i \lor x_j) \land (x_{3+i} \lor x_{3+j}), \qquad 0 \le i < j \le 2,$$

$$c = c_{01} \land (c_{02} \lor c_{12}).$$

An arguesian lattice is modular. The subspace lattice of a projective space is arguesian iff Desargues' Theorem holds for the projective space. The lattice of all subspaces of a vector space is arguesian.

4. Distributive lattices

The two typical examples of nondistributive lattices are \mathfrak{M}_3 and \mathfrak{N}_5 , whose diagrams are given in Fig. 2.

Theorem. A lattice L is distributive iff L does not contain \mathfrak{M}_3 or \mathfrak{N}_5 as a sublattice.

For a distributive lattice D, let J(D) denote the set of all nonzero join-irreducible elements, that is, all elements $a \in D$ for which $a = x \lor y$ implies that a = x or a = y. We regard J(D) as a poset under the partial ordering of D. For $a \in D$, set

$$r(a) = \{x \mid x \leq a, x \in J(D)\} = (a] \cap J(D).$$

For a poset P, call $A \subseteq P$ hereditary iff $x \in A$ and $y \leq x$ imply that $y \in A$. Let H(P) denote the set of all hereditary subsets partially ordered by set inclusion. Note that H(P) is a lattice in which meet and join are intersection and union, respectively, and thus H(P) is distributive.

The structure of finite distributive lattices is revealed by the following result:

Theorem. Let D be a finite distributive lattice. Then the map

 $\varphi: a \to r(a)$

is an isomorphism between D and H(J(D)).

Corollary. The correspondence $D \rightarrow J(D)$ makes the class of all finite distributive lattices with more than one element corresponding to the class of all finite posets. Isomorphic lattices correspond to isomorphic posets, and vice versa.

5. Congruence lattices

Let Con L denote the set of all congruence relations on L partially ordered by set inclusion.

Theorem (R.P. Dilworth). Con *L* is a lattice. For Θ , $\Phi \in \text{Con } L$, $\Theta \wedge \Phi = \Theta \cap \Phi$. The join, $\Theta \vee \Phi$, can be described as follows:

 $x \equiv y \ (\Theta \lor \Phi)$ iff there is a sequence $z_0 = x \land y, z_1, ..., z_{n-1} = x \lor y$ of elements of *L* such that $z_0 \leqslant z_1 \leqslant ... \leqslant z_{n-1}$ and for each *i*, $0 \leqslant i < n-1$, $z_i \equiv z_{i+1} \ (\Theta)$ or $z_i \equiv z_{i+1} \ (\Phi)$.

Theorem (N. Funayama, T. Nakayama). Let L be an arbitrary lattice. Then Con L, the lattice of all congruence relations of L, is distributive.



Fig. 8.

Let L be a lattice and let $H \subseteq L^2$. We denote by $\Theta(H)$ the smallest congruence relation such that $a \equiv b$ for all $\langle a, b \rangle \in H$, and call it the *congruence relation generated* by H. For any $H \subseteq L^2$, $\Theta(H)$ exists.

We shall use the notation $\Theta(a,b)$ for $\Theta(H)$ if $H = \{\langle a,b \rangle\}$. Note that $\Theta(a,b)$ is the smallest congruence relation under which $a \equiv b$. The congruence relation $\Theta(a,b)$ is called *principal*.

If L is finite, knowing J(Con L), one knows Con L. In a finite lattice L, Θ is a join-irreducible congruence relation iff it is of the form $\Theta(a, b)$, where a is covered by b. Such $\Theta(a, b)$ are usually easy to compute: for c covered by d, the congruence $c \equiv d$ ($\Theta(a, b)$) holds iff we can get from a, b to c, d with a finite number of up- and down-steps, as illustrated by Fig. 8. (In general, $c \equiv d$ ($\Theta(a, b)$) iff $x \equiv y$ ($\Theta(a, b)$) for any $c \leq x \prec y \leq d$.) An up-step joins the pair of elements with an element; a down-step meets the pair of elements with an element. Note that we start with — and end up with — a covering pair of elements, but the intermediate steps are not necessarily covering pairs. However, if L is also modular, then all the immediate steps are covering pairs, which implies the following result: Con L is Boolean for a finite modular lattice L.

Another property of congruence lattices is given in the following definition.

Definition. (i) Let *L* be a complete lattice and let *a* be an element of *L*. Then *a* is called *compact* iff $a \leq \bigvee X$ for some $X \subseteq L$ implies that $a \leq \bigvee X_1$, for some finite $X_1 \subseteq X$.

(ii) A complete lattice is called *algebraic* iff every element is the join of compact elements.

It is easy to see that every principal congruence relation is compact, which implies that for an arbitrary lattice L, Con L is an algebraic lattice.

Lemma. Let L be an arbitrary lattice. Then Con L is a distributive algebraic lattice.

The converse is a long-standing conjecture of lattice theory. We shall outline the proof for the finite case (R.P. Dilworth, G. Grätzer, E.T. Schmidt).

Theorem. Let D be a finite distributive lattice. Then there exists a finite lattice L such that D is isomorphic to Con L.

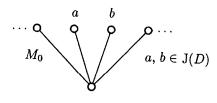


Fig. 9

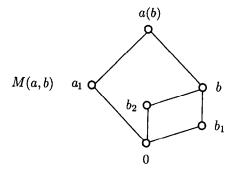


Fig. 10.

Let *M* be a finite poset such that $\inf\{a, b\}$ exists in *M* for any $a, b \in M$. We define in $M: a \wedge b = \inf\{a, b\}$ for all $a, b \in M$; and $a \wedge b = \sup\{a, b\}$ whenever $\sup\{a, b\}$ exists. This makes *M* into a *chopped lattice*. (From a finite lattice *L* with unit element 1, we can obtain a chopped lattice. $M - L - \{1\}$, and conversely). An equivalence relation Θ on *M* is a *congruence relation* iff $a_0 \equiv b_0$ (Θ) and $a_1 \equiv b_1$ (Θ) imply that $a_0 \wedge a_1 \equiv b_0 \wedge b_1$ (Θ) and that $a_0 \vee a_1 \equiv b_0 \vee b_1$ (Θ) whenever $a_0 \vee a_1$ and $b_0 \vee b_1$ both exist. Then the set Con *M* of all congruence relations is again a lattice.

Lemma 1. Let D be a finite distributive lattice. Then there exists a chopped lattice M such that Con M is isomorphic to D.

We outline the construction of M. Take the set $M_0 = J(D) \cup \{0\}$, and make it a chopped lattice by defining $\inf\{a, b\} = 0$ if $a \neq b$, as illustrated in Fig. 9. Note that $a \equiv b$ (Θ) and $a \neq b$ imply in M_0 that $a \equiv 0$ (Θ) and $b \equiv 0$ (Θ); therefore, the congruence relations of M_0 are in one-to-one correspondence with subsets of J(D). Thus Con M_0 is a Boolean lattice whose atoms are associated with elements of J(D); the congruence Φ_a associated with $a \in J(D)$ can be described as follows: $a \equiv 0$ (Φ_a) and if $\{x, y\} \neq \{a, 0\}$, then $x \equiv y$ (Φ_a) implies that x = y.

If J(D) is unordered, then we are ready. However, if, say, $a, b \in J(D)$ and a > b in D, then we must have $\Phi_a > \Phi_b$. we make this happen by using the lattice M(a,b) of Fig. 10. Note that M(a,b) has three congruence relations, namely, ω , ι , and Θ , where Θ is the congruence relation with congruence classes $\{0, b_1, b_2, b\}$ and $\{a_1, a(b)\}$. Thus

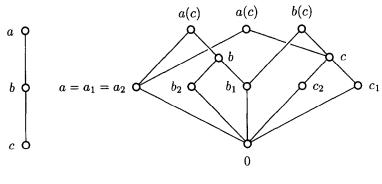


Fig. 11.

 $\Theta(a_1,0) = i$. In other words, $a_1 \equiv 0$ "implies" that $b_1 \equiv 0$, but $b_1 \equiv 0$ "does not imply" that $a_1 \equiv 0$.

We construct M by "inserting" M(a,b) in M_0 whenever a > b in J(D). Fig. 11 gives M if J(D) is the three-element chain.

For $x, y \in M$, let us define $x \leq y$ to mean that for some $a, b \in J(D)$ with a > b, we have $x, y \in M(a, b)$ and $x \leq y$ in the lattice M(a, b) as illustrated in Fig. 11. It is easily seen that $x \leq y$ does not depend on the choice of a and b, and that \leq is a partial ordering relation under which M is a chopped lattice.

It is routine to check that $\operatorname{Con} M \cong D$.

The next lemma "completes" M to a lattice, while preserving the congruence lattice. An *ideal* I of a chopped lattice M is a subset $I \subseteq M$ with the property that for $i \in I$ and $a \in M$, $i \land a \in I$ and for $x, y \in I$, $x \lor y \in I$ provided that $x \lor y$ exists in M. The ideals of M form a lattice Id M.

Lemma 2 (G. Grätzer, H. Lakser). Let M be a chopped lattice. Then for every congruence relation Θ of M, there exists exactly one congruence relation $\overline{\Theta}$ of Id M such that for $a, b \in M$,

$$(a] \equiv (b] (\Theta) \quad iff \quad a \equiv b (\Theta).$$

The proof of the theorem is immediate from these two lemmas. For the finite distributive lattice D, take the chopped lattice M of Lemma 1; then M satisfies $\operatorname{Con} M \cong D$. Define the lattice L as Id M. By Lemma 2, $\operatorname{Con} L \cong \operatorname{Con} M$. Hence $\operatorname{Con} L \cong D$. Since M is finite, so is L.