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A picture word is a word over the alphabet {r,r; u, U, rb,Fb, ub,tib}. With any picture word, we 

associate a picture as follows: the reading of each letter of the word induces a unit move; the letters 

r and rb (i and fb, u and uh, U and IQ stand for a right (left, up, down) move; for each letter from 

{r, ?, u, U). we move by drawing a unit line; for the other letters, we move with “pen-up”. We present 

a rewriting system S which generates exactly all the picture words describing a given picture. 

0. Introduction 

A picture is a finite set of horizontal or vertical unit lines whose extremities have 

integer coordinates in the Cartesian plane. Such a picture can be represented by 

a picture word defined over the alphabet {r, F, u, U, r b, 7 b, &,, tib}. The reading of each 

letter of the word induces a unit move: r and rb (f and vb, u and ub, U and ~7~) stand for 

a right (left, up, down) move. For each letter from \(r, f, u, ii}, we move by drawing 

a unit line; for the other letters, we move with “pen-up”. This approach can be 

compared with the encoding established by Freeman [Z] to facilitate the processing of 

geometric configurations. It can be used to conduct a plotter pen. The aim of this 

paper is to present a rewriting system which generates exactly all the picture words 

describing a given picture. 
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The description of pictures by words was initiated by [S]. It allows one 

to use results and techniques from the formal language theory [4, 91. This paper 

completes previous works about words which describe connected pictures (there is no 

letter to pen-up): different rewriting systems on picture words are studied [l, 51 and 

some of them generate all the words describing a given connected picture [3, lo]. We 

are interested in picture words with invisible lines to describe connected or noncon- 

netted pictures. To do this, we enlarge the alphabet to simulate the lifting and the 

sinking of the pen [6] and we define a new rewriting system. 

This paper is organized as follows. After the preliminaries (Section l), we present the 

rewriting system S (Section 2) and we show that, from any picture word, the system 

S generates exactly all the words describing the same picture (Section 3). 

1. Preliminaries 

1.1. Notations 

We assume the reader to be familiar with the basic formal language theory [4, 91, 

and we just remind him of several notations. 

Let A be a finite set called alphabet. The elements of A are letters and finite strings 

over A are words. A* denotes the free monoid generated by A and E the empty word. 

For any word WE A*, 1 w ( denotes its length (in particular, 1~1 =O). 

A rewriting system CJ over A is a subset of A* x A*. Each element (x,~)EG is a rule 

and is denoted by x-+y. A step of derivation a,, is defined by (w a0 w’)o(3wl, w2eA* 1 

w = wlxwz, w’= w 1 yw2 and (x, y)~g). We denote by +,* the transitive and reflexive 

closure of aO. If w +,* w’, we say that w’ is derivedfrom w. A system 0 is symmetric if we 

have VW, w’EA* (w -,* w’) =S (w’ -,* w). A system G is jinite if it contains a finite 

number of rules (for further details, see [7]). 

1.2. Basic notions 

In this paper, we use the following definitions. 

A vertex is an element of Z2 (Z denotes the set of integers). 

A segment is an unordered pair of vertices {(m, n), (m + 1, n)} or {(m, n), (m, n + 1)). It 

can be represented by a horizontal or vertical unit line joining these two vertices in the 

Cartesian plane Z2. 

A picture is a finite set of segments. 

A picture word is a word over the alphabet II= {r, F, u, ti, rb, yh, ub, I&}. With each 

letter from Z7, we associate a unit move as follows: r (f, u, U) induces a unit line and 

rb (Yb,ub,Ub) a unit move with pen-up to the right (left, up, down) (Fig. 1). 

So, with any picture word we construct a picture as follows: we start from a given 

vertex, read the word, letter by letter, from left to right, and generate the associated 

move. 
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Fig. I. 

We define a morphism sh which associates with any letter from II the motion vector 

in 2’: sh(r)=sh(r,)=(l,O), sh(r)=sh(r,)=(- l,O), sh(u)=sh(u,)=(O, l), sh(ti)= 

sh(&)=(O, - 1); and a morphism b from n to ZIb= {rb,yb,ub,&} which “blanks” the 

letters: if UEI&IZ~ then b(a)=a,; otherwise, b(a)=a (VWE~*, b(w) is denoted by wb). 

Let w1 and w2 be picture words. The trace ofwl after wl, denoted by tr(w,, wz), is 

defined inductively by tr(wi,c)=@; for WEIZ* and a~17, tr(wl,wa)=tr(wl, w)u 

{{sh(w,w),sh(w,wa))}. The picture ofw2 after wl, denoted by pic(w1,w2), is defined 

inductively by pic(w,,&)=@; for wail* and a~I7, pic(w,, wa)=pic(wi, w) u ({sh(w,, w), 

sh(w,wa))} if asU-n7, and pic(w,,wa)=pic(wl,w) if a~fl~. 

Let w be a picture word. The drawn picture of w, denoted by dpic(w), is the pair 

(pic(s, w), sh(w)). Note that pic(c, w) is the set of segments drawn during the construc- 

tion of w starting at the origin of the Cartesian plane and sh(w) represents the 

coordinates of the ending point. For example, w = urz+,rrururr&,ri& see Fig. 2. 

Drawing convention 

- The starting (ending) point is represented by 0 (*). 

~ On the construction, a segment described several times is represented by parallel 

traces and a move with pen-up by a dashed line. 

Given a picture word, the associated drawn picture is unique. Conversely, given 

a drawn picture, there exists an infinite number of picture words describing this drawn 

picture. For example, p=dpic(w)=dpic(w,) for n > 1 (Fig. 3). 

The inverse of w, denoted by inv(w), is the word having the same construction of 

w but in the opposite way. It is defined inductively by inv(s) = E, inv(r) = f, inv(r) = r, 
inv(u)=z?, inv(u)=u, inv(r,)=r,, inv(r,)=r,, inv(ub)=&, inv(&)=u, and inv(wa)= 

inv(a)inv(w), where will* and a~L7. In the example shown in Fig. 4, and thereafter, 

we use the notation W instead of inv(w). 

--I 
the construction 

Fig. 2. 

the drawn picture 
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Fig. 3. 

J--l 
w=rurii 

wn=iirrbub( uriibr)“, n=l 

-..m 0 

W=urur 

Fig. 4. 

A loop is a picture word such that the starting and ending points of the associated 

construction are the same. [L= {IEI~* 1 sh(l)=(O,O)) is the set ofloops. Note that Vl~11, 

dpic(l) = dpic(l). 

Let s be a segment and w a picture word. The segment s is described (drawn) by w if 

there exists a decomposition of w=~~uM’~, where a~I7, such that {s> = tr(w,, n) 

({s} = pic(w,, a)). A picture word w is optimal if each segment is drawn at most once 

during the associated construction (but it can be described several times with pen-up): 

1 {wl 1 w=wluwz and {s)=pic(\v,,a)} /< 1. 

2. The rewriting system S 

We introduce a rewriting system S which generates, from any picture words, exactly 

all the words describing the same drawn picture. This system is composed of 6 sets of 

rewriting rules: 

S=Sl uS~US~‘US~VS~‘US~, 

with 

Sl= (1-11 /EL}, 

S2={aa+ua,~aEIz-I7,~, 

S2’={ua,-tua~uE17-I7,}, 

s3 = (u&-G I U,EH,}, 

S3’= (E+U& 1 U,Efl,}, 

S4={u~u~-tu~u~~u~,u~~~~). 
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Fig. 5. 

Remarks (cf. Fig. 5). 

- The system S preserves the drawn picture. 

- The system S is not finite: the set of rules Sl contain an infinite number of rules. 

- The system S is symmetric. 

In the sequel, we use the term “rule” instead of “set of rules”. Thus, we write “the 

rule Sl” instead of “one rule from the set of rules Sl”. The system S will be implicit for 

any derivations. 

3. Results 

The following transformations can be simulated by rules from S. 

From Sl, S2 and S2’, we deduce 

T1=(aca~aca,~abca~a~n-17,, cag[L}, 
and from Sl, S2, S2’, S3 and S3’ 
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From these two results, we claim the following lemma. 

Lemma 3.1. From any picture word, we can derive an optimal word by S. 

From S3, S3’ and S4, we deduce 

From S’, we deduce T4 = {aaa H a 1 aEI7) and T5 = (11 tf 111~ L}. Note that all the 

rules of the system defined in [lo] can be simulated by rules from S. 

A rewriting system cr over IT is exhaustive if, from any picture word, we can derive 

all the words describing the same drawn picture. 

Theorem 3.2. The system S is exhaustive. 

Proof. Let wi and w2 be two picture words such that dpic(w,)=dpic(wz). We can 

suppose that wi and w2 are optimal (Lemma 3.1). Let QEZZ,Y such that sh(vb)= 

sh(w,)=sh(w,): the words W,,v, and W2,,vb are loops from Z7,*. So, we can derive wi 

and w2 as follows: 

wi Jr3 w; = wi W2t,Vb and wz *r3 w,W,,v,=,, w; =w,,W2ui,. 

For each segment s from pic(c, wi)=pic(s, w2), there exists a unique letter aI in 

wi and a unique letter a2 in w2 drawing s. We set wi =v,a,v’, and w2=v2a2v;, with 

a,, a2 EL’ - 177b and vi, v’, , v2, vi EI~‘*. Clearly, in wi W,,, the letters a, and Zzb describe 

the same segment. Using the transformation T2, we obtain 

and repeating this operation for all the segments from pic(c, wi)=pic(c, w,), we 

deduce w1@2b+* wibW2. Since the system S is symmetric, we have wi a* w; =z-* 

w;** w2. 0 

We do not know if the system S is minimal (exhaustive with a minimal number of 

rules) but, clearly, no rule from the system S can be simulated by the other sets of rules. 

Moreover, we show that to be exhaustive, a rewriting system needs an infinite number 

of rules. 

Proposition 3.3. There is no exhaustive rewriting system which is jinite. 

Proof. If a rewriting system r~ is finite, there exists p>O such that G is bounded by p: 

V(x+y)~a, Ix (dp and ) y 1 Gp. Let WETI* and (s, s’)Epic’(c, w); the segment s is before 

the segment s’ in w. denoted by s cw s’, if there exists a decomposition of w = vi au2 a’v3 
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such that {s}=pic(ol,a) and {s’}=pic(ulauz, a’), where a, a’El7; the distance between 

the segments s and s’ denoted by dist(s, s’), is defined by dist(s, s’)=min { ) u2 1 1 (s} = 

pic(ul,a), {s’}=pic(ulauz,a’), u,,u,E~* and a, a’EII}. 

Let c be a rewriting system preserving the picture, bounded by p, and let w be 

a picture word. Clearly, if (s, s’)~pic’ (E, w) such that dist(s, s’) 2 p then for any derived 

word w’ from w by a, we have (s < ,,,s’) =+- (s cw. s’). We choose w = FT”r”, with 

n > p + 1. The drawn picture is 

Sl Sn ^_ . . . . . . . . . . . . . l 

It is obvious that the minimal word (with respect to the length) describing this drawn 

picture is m=r”. Studying the following decompositions of w: w =rrn-lrF1r”= 

Pi?“-‘rr”-‘, we deduce that s1 <,,,s, and s, cwsl. Since dist(s,,s,)>p, for any 

derived word w’ from w by a, we have s1 cws s, and s, <,,,, sl. This implies that 

m cannot be derived from w by a. The system a is not exhaustive. 0 

In this paper, we present a rewriting system which generates exactly all the picture 

words describing a given drawn picture. Could we find an algorithm to derive by 

S a minimal word from any picture word? 
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