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Membership Testing in
Threshold One Transformation Monoids

M. BEAUDRY*

Département de Mathématiques et d’Informatique,
Université de Sherbrooke, Sherbrooke, Québec J1K 2RI, Canada

The membership problem in transformation monoids is the natural extension to
the well-studied membership problem in permutation groups. We consider the
restriction of the problem to the varieties of threshold one monoids, those monoids
in which every element f satisfies /”*'= f, for some integer p. We find that each
of the complexity classes 4C°, NC, and P can be associated with a variety of
threshold one monoids which, within the hypothesis that NC s P and P # NP, is
the unique largest variety of monoids where the membership problem can be done
with this complexity. We extend our study to other cases of threshold one monoids,
for which we obtain NP-completeness results. We also consider the problem which
consists in deciding whether the transformation monoid of an automaton belongs
to a specific variety: we show that we can do in AC® the characterization of
monoids in three of the varieties most significant to our study of the membership
problem. € 1994 Academic Press, Inc.

1. INTRODUCTION

The membership problem in transformation monoids can be defined as
follows:

Given a finite set X and a set 4 of total mappings from X to X,
plus another mapping f, decide whether f can be expressed as
a composition of the elements of 4.

In its general form, this problem is PSPACE-complete, as shown by Kozen
(1977). Study of its restriction to permutation groups has been extensive,
motivated by applications to other problems on permutation groups and to
graph isomorphism; it was eventually shown to belong to the parallel com-
plexity class NC (Sims, 1970; Furst et al., 1980; McKenzie and Cook, 1987;
Luks and McKenzie, 1988; Luks, 1986; Babai et al,, 1987). Recent work
has examined the restriction of the membership problem to the case of the

* Work supported by NSERC Grant OGP0089786 and FCAR Grants 92-NC-0608 and
91-ER-0642.

0890-5401/94 $6.00

Copyright (¢ 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



2 M. BEAUDRY

aperiodic, or group-free, monoids (Beaudry, 1988; Beaudry et al.,, 1989);
this research showed that, depending on the monoid, complexity rises from
AC® to P-complete, to NP-complete, then to PSPACE-complete, with a
number of cases where the status of the problem is NP-hard, but otherwise
unresolved.

Beaudry eral. (1989) also introduced the use of the classification of
monoids into varieties, imported from the theory of abstract monoids, as a
natural and consistent way of defining restrictions to the membership
problem; they pointed out that all the cases mentioned above are actually
defined in this manner. Furthermore, they showed that restrictions defined
in terms of varieties are robust: natural manipulations such as solving two
instances simultaneously, or working on a submonoid of the original
instance, amount to working on a monoid which belongs to the same
variety as the original ones. Varieties can be defined in many different
ways; one of them consists in fixing one or both of two parameters called
the threshold and the period. The threshold and period of a monoid are ¢
and ¢, respectively, iff these values are the smallest integers 1 >0 and ¢ > 1
such that every element f of the monoid satisfies f'*¢= f*. For example,
the variety of all threshold zero monoids is the variety of all groups. Also,
a monoid is group-free if, and only if, it has period 1.

If we denote by (X, 4, /) an instance of the membership problem, we say
that such an instance belongs to the restriction of the problem to variety
V, denoted by MEMB(V), if it is known in advance that the monoid
generated by A belongs to V. Study of the aperiodic cases showed that, as
soon as V contains a monoid of threshold two or more, MEMB(V} is NP-
hard. This leaves the monoids of threshold zero or one as the only case
where the membership problem can possibly be in P, and sets the program
for the research reported on in this article: to look at the threshold one
monoids, and see how “combining” groups with aperiodic threshold one
(idempotent) monoids influences the complexity of the membership
problem.

Our results show that, whenever a monoid is a “simple” combination of
groups and idempotents, an instance of the membership problem in this
monoid can be split, with little computational effort, into an instance in a
permutation group and an instance in an idempotent monoid; the overall
complexity is determined by the harder of the two subproblems. We also
prove that any more intricate “combination” leads to NP-hardness. Putting
these results together, and assuming that NC # P and P # NP, we come up
with a complete description of the “borderline” between AC°, NC, P, and
NP. 1t takes the form of a striking pattern: all varieties in which the mem-
bership problem is in AC® are contained in a variety called J,, ie, a
unique “maximal” variety for this complexity class, and similarly for the
restrictions feasible in NC and in P. Hence, we identify the largest varieties
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of monoids where membership can be tested in AC®, in NC, and in P, respec-
tively. Our main results read therefore as follows; varieties mentioned in
this statement are defined in Section 3.

MAIN THEOREM. Let V be a variety of monoids.

If Vei,, then MEMB(V)e ACY

elseif Ve l, v G, then MEMB(V)e NC;

elseif VER, v L; v G, then MEMB(V) is P-complete;
elseVZ R, vL, v G, and MEMB(V) is NP-hard.

We also study restrictions of the membership problem to varieties
beyond R, v L, v G, namely A, v G, GR,, and GL,. We show that the
problem in these cases is NP-complete (Theorems 4.7 and 4.10); these
results suggest that the membership problem may be NP-complete in the
case of arbitrary threshold one monoids.

Since it assumes to be known in advance that the monoid generated by
A belongs to variety V, our definition of MEMB(V) effectively separates
membership testing from the characterization problem, which consists in
deciding whether a transformation monoid specified by generators belongs
to a given variety of monoids. This problem can be seen as a “data valida-
tion” step, where it is verified whether a particular algorithm for the mem-
bership problem is applicable to the instance at hand. The characterization
of transformation monoids has a complexity varying from easy (e.g., testing
whether a monoid is commutative, 4C°), up to very hard e.g., deciding
whether a monoid contains a nontrivial group, NP-hard, see Stern, 1986).
We address this problem in some specific varieties of threshold one
monoids.

In Section 2, we describe the background and notations used throughout
the article. Section 3 introduces the varieties discussed in this paper. The
main theorem and related results are demonstrated in Section 4. Our
discussion the characterization problem is the topic of Section 5. Finally,
Section 6 comments on the results and mentions some open questions.

2. NOTATION AND BACKGROUND

In this article, we use notions from the theory of computational com-
plexity and from the theory of monoids and finite automata. While the
reader is assumed to be familiar with the former, we provide some
background on the latter, taken from Lallement (1979) and Pin (1984).

We define an automaton as a pair (X, 4), where X is a set of states and
A a set of mappings from X to X (generators); both sets are finite. We
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denote by (4> the transformation monoid of (X, 4), ie., the set of all
mappings from X to X (transformations) which can be obtained by com-
position of elements of A ; if the set of generators is given by extension (e.g.,
A= {a, b}), we then use the notation (4) = <a, b)>. We denote the iden-
tity transformation by 1; whenever none of the nontrivial generators is a
permutation, the identity cannot be obtained from them and must be an
element of A4, in order for {4 ) to be a monoid. We denote by xg the image
of a state xeX by a transformation g and, if E<X, we define
Eg={xg:xe E}. Furthermore, in some cases we use the representation of
an automaton as a directed graph, with the states as nodes, and from
each node an outgoing edge for every generator. Of particular interest to
us is the notion of a strongly connected component, SCC for short (the
usual definition in a directed graph; formally, we regard them as subsets
of X).

We associate to a transformation fe {A) its maximal alphabet, the set
of all those generators which can appear is an expression for f; that is,

A(f)={aed: f=uav for some u,ve (A)}.

Green’s relations are relations of equivalence defined inside a monoid (here
/M denotes the set {fx:xeM}):

fFg <= MM=MgM,
f<Lg <= Mf=Mg
fRg <= [M=gM;
f#g <= [fRgnfZLg

Varieties are defined as those classes of finite monoids which are closed
under finite direct product, homomorphism, and taking of submonoids.
Monoids in a variety all satisfy some set of properties, which in many cases
can be expressed as equations (defining identities). Varieties form a lattice
under proper set inclusion.

We work in this article on the variety DS, of all finite threshold one
monoids, those in which, for every element f, there exists a p > 0 such that
fP+'= f With M eDS,, there is an integer p > 0 such that f?*' = f for all
f € M; we then speak of M as being a “threshold one monoid of period p.”
Note that, in our terminology, p does not have to be minimal. The
following properties are used throughout the article.

ProrosITION 2.1 (Green and Rees, 1952). For all elements f, g in a
threshold one monoid of period p, the following hold.
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(1) (f*) = 1%

(2) A(g)=sA(f) = fefH [,

(3) Yk>0, f*H7f;

(4) SH g = ff=g"

(5) fFg = Af)=H(g)

Green and Rees also demonstrated that for every element f in a
threshold one monoid, the equivalence class of f under # (H-class of f)
is a group, so that the monoid actually is a disjoint union of groups.
Observe also that a transformation f of X is of threshold one if, and only
if, it is a permutation of X7; that is, iff X2 = Xf.

The dual of the transformation monoid of (X, A) is isomorphic to the
transformation monoid of (2%, 4~'), where 2% is the power set of X, and
where we define A '={a"':aeAd}, with Ea '={xeX:xaecE} for
every EC X. We have fedA4) iff f e (4 '). The notion of dual also
exists for varieties; the defining identities for the dual of a variety are
obtained by rewriting the original equations in reverse order.

A monoid M belongs to variety V v W if there exist monoids Se V and
TeW, and a homomorphism ¢, such that Vfe M, re S, JueTl : f=
&(r, u). This relation between M, S, and 7 is denoted by M <S5 x T. Also,
given a monoid G, the variety generated by G, denoted by (G ), is the set
of all monoids M such that M <GxGx --- xG.

Computational complexities are evaluated in the classical models for
sequential and parallel computation (Hopcroft and Ullman, 1979; Garey
and Johnson, 1979; Cook, 1985). We use the chain of complexity classes

AC’°cNC'cLc ---c NCc P NPc PSPACE

as a reference. The article contains two reductions for hardness results, one
deterministic log-time, and one deterministic log-space; the former type was
defined by Buss (1987). We assume for the automata any reasonable
encoding which allows basic operations, such as comparison or composi-
tion of two transformations of X, or computation of the image of a state
x e X, to be feasible in AC°.

3. VARIETIES OF THRESHOLD ONE MONOIDS

In this section, we describe those varieties of threshold one monoids rele-
vant to our study of the membership problem. We work within the variety
DS,, which consists of all finite threshold one monoids. Included in DS, are
the variety G of all groups and the variety A, of all aperiodic threshold one
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monoids (idempotent; defining identity f>= f). We also consider varieties
which do not fall in either of these classes. With very few exceptions, these
varieties contain the whole of G. In order to define them, we start from
varieties of idempotent monoids, and we “combine” them with the variety
of all groups. To do so, we use the lattice of the varieties of idempotent
monoids; its description, to be found in Wismath (1986), is a translation in
terms of monoids of the works of Fennemore (1971) and Gerhard (1970)
on the varieties of idempotent semigroups.

To a variety V of idempotent monoids, we “add” the whole variety G in
order to build what we call an “extension” of V. “Adding” can take various
meanings, depending on how intricately groups and idempotent monoids
are combined together. For instance, the join V v G can be regarded as the
“minimal extension” of V, in the sense that this is the smallest variety con-
taining both V and G. We also define what we call a “maximal extension™
of V, denoted by GV, which is the largest variety of threshold one monoids
in which all idempotent monoids belong to V. Formally: GV is a variety,
and GV=DS,, and GVnA, €V, and YWEDS,, WnA, cV=>Wo
GYV. Proving that every variety V of idempotent monoids has a maximal
extension lies outside the scope of this article. However, we show that in
those cases useful to our purposes, such a maximal extension indeed exists
(Proposition 3.2).

Minimal extensions have been studied by Petrich (1975), who showed in
particular that the lattice of subvarieties of A, v G is isomorphic to
F(A)x Z(G), where #(A,) and Z(G) are the lattices of subvarieties of
A, and of G, respectively. Petrich also proved the following.

ProposITION 3.1.  The following conditions on M, a threshold one monoid
of period p, are equivalent:

(1) M e A vG;

(2) Vf,geM:  fg=fgffg"=f"g"fg;
3) Yf,a,..a,eM: f=a,---a,<f"=al---a’.

The third condition implies that the set of the idempotent elements of M
is itself a monoid, generated by 4”7 = {a”:ac 4}. We denote this set by
(AP,

The varieties of threshold one monoids we shall concentrate on are
derived from variety R,, defined by identities f?= f and fgf = fg, from its
dual L,, from their join R, v L,, and from their intersection J,, which is
the variety of the commutative idempotent monoids. These varieties played
a central role in the study of the membership problem in aperiodic
monoids. In this article, we are particularly interested in the minimal exten-
sions J, v G, R, vL, v G, and A, v G. We also introduce three varieties,
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namely GR,, GL,, and GJ,, defined with identities which generalize those
of R,,L,, and J,, respectively.

DerFiNITION.  If M is a threshold one monoid of period p, then it belongs
to GR, iff Vf, geM: fgf? = fg. It belongs to GL, iff Vf, ge M : frgf=
gf; it belongs to GJ, iff Vf, ge M : gf? = fPg.

Variety GJ, is actually the meet of varieties GR, and GL,, since the
conjunction of conditions fgf”=fg and fPgf=gf is equivalent to
g/? = f"g. Our notation for these varieties suggests that they are maximal
extensions; we show that this is indeed the case.

PrROPOSITION 3.2. Varieties GR,,GL,, and GJ, are the maximal
extensions of Ry, L, and J,, respectively.

Proof. We prove the statement for GR,; the argument for the other
two varieties is similar. The first three conditions for GR, to be a maximal
extension are immediate. We prove the fourth by contraposition. Let
M ¢ GR, be a monoid of period p: there are elements / and g in M such
that fgf?+# fg. We first show that f and g must also satisfy
(fPg?17)? # (f?g?)?. To see this, we assume that (f7g”f?)"=(f"g”)*
holds for all f, g€ M. Combining this with the observation that, for every
u,veM,

ufo=>u’ fof=9W)=A0")=>uv’u’ ¥ u’ = (uv’u’)’ =u’,
which comes from the definition of Green’s relations and Proposition 2.1,
we obtain u # v= (u”v”)” =u”. For arbitrary elements x, y e M, let then
u=xyx? and v=xy, and consider the expression xpx’. Since xyx? ¢ xy,
and (xyx?)? = (xy)?x?, we obtain
xyxf = xyxP(xyxF)? = xyx"((xyx?)"(xy)?)?

= xyx?((xy)"x"(xy)?)”

=xy((xy)* (xy)")*

= xy(xy)” = xy,

hence M e GR,. We now claim that (f?g”f”)” and (f”g”)?, together with
the identity, generate an idempotent monoid not belonging to R,. To make
notations lighter, let a=f?, b=g? u=(f"g”f")", and v={(f"g")?; all
four elements are idempotent. We prove that uv = v and vu = u, which leads
to {1,u,v)={1,u v} Indeed,
vu = (ab)?(aba)? = (ab)” aba(aba)” '
= (ab)? *'a(aba)” !

= (ab) a(aba)” ' = (aba)” = u,
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—O
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FiG. 1. An automaton with transformation monoid GR,,,.

and

uv = (aba)? (ab)? = (aba)?~ ' abaab(ab)” '
= (aba)” " '(ab)**'= ... =(ab)? = (ab)" =v.

And, since u=uvu#uv=v, we have {1,u,v>¢R,. |

Further, GJ,=J, v G. Indeed, defining identity gf”= fPg can be
used to show that fPgPfeg=fPfgPg=fg=ff"gg”=/fgfPg? which is

F1G. 2. Varieties of threshold one monoids. A solid line joining two varieties indicates the
absence of intermediate varieties.
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condition (2) of Proposition 3.1. The minimal and maximal extensions of
R,, however, do not coincide.

ProposiTION 33. R, v G GR,.

Proof. Consider the transformation monoid (@, ) of the automaton
depicted in Fig. 1. Denoted GR,(;,, this is a threshold one monoid of
period 2, such that ab # a®b%ab = bab = b. Using Propositions 5.1 or 5.2, it
can be verified that this monoid belongs to GR,. |

A dual statement holds for variety GL,. The lattice of the varieties of
threshold one monoids is sketched on Fig. 2.

4. MEMBERSHIP TESTING

We now study the computational complexity of the membership problem
in the varieties of threshold one monoids defined in the previous section.
We prove the main theorem, obtaining our statement on the variety
A, v G as a collateral result (Theorem 4.7). We complete the section with
an investigation of the varieties GR, and GL, (Theorem 4.10). Our proofs
build on established knowledge on the membership problem in permuta-
tion groups and in aperiodic transformation monoids. For the convenience
of the reader, we state those results by Babai et al. (1987) (statement 1) and
by Beaudry er al. (1989) (statements 2 to 5), as follows.

ProposiTION 4.1. Let V be a variety of monoids.
(1) If v G, then MEMB(YV) is feasible in NC;
(2) MEMB(J,) is feasible in AC®;
(3) ifd,cV<R, v L, then MEMB(V) is P-complete,
4) fRy,vL cVcA,, then MEMB(V) is NP-complete;
(5) if 'V contains a monoid of threshold two or more, then MEMB(V)
is NP-hard.

We proceed with the main theorem, which we state anew, as a set of six
assertions.

THEOREM 4.2. Let MEMB(V) denote the restriction of the membership
problem to transformation monoids belonging to the variety V.
(i) MEMB(J,) is feasible in AC®;
(ii) MEMB(V) fies outside of AC® for every variety V & J;
(iii) MEMB(J, v G) is feasible in NC,
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(iv) MEMB(V) is P-hard for every variety V & J, v G;
(v} MEMB(R, v L, v G) is feasible in P;
(vi) MEMB(Y) is NP-hard for every variety VZ R, v L, v G.

Proof. Assertion (i) repeats statement (2) of Proposition 4.1. Assertion
(iv) is proved by observing that every monoid outside of variety J, v G is
either of threshold 2 or more, and then 4.1(5) applies, or it belongs to a
variety of threshold one monoids which strictly contains J; v G; by
Proposition 3.2, this variety contains at least one of R, and L,, where
membership testing is P-hard (statement (3) of Proposition 4.1). To show
assertion (ii), we adapt this argument to J,: a monoid outside of J, either
falls into one of the above cases, or it contains a nontrivial group, in which
case membership testing is shown not to be feasible in AC° (this is Proposi-
tion 4.3). An analogous study of cases is used to demonstrate assertion (vi):
if a variety of monoids is not included in R, v L, v G, then we distinguish
between three cases, depending on whether it is not a variety of threshold
one monoids, or it is included in DS, but not in A, v G, or it is included
in A, v G but not in R, v L, v G. The first and third cases mean NP-
hardness by statement (5) of Proposition 4.1 and by Theorem 4.7, respec-
tively. To deal with the second case, we show that from every threshold one
monoid M outside of A, v G we can obtain a simpler monoid
(Lemma 4.8) which generates a variety where membership testing is NP-
hard (Lemma 4.9). This implies that MEMB({M}) is itself NP-hard, a
result which extends to all threshold one varieties not included in A, v G.
Finally, assertions (iti) and (v) are proved by presenting algorithms which
fall into the appropriate complexity classes (Lemmas 4.4 and 4.6). ||

ProrosiTioN 4.3. If V=G is a non-trivial variety of groups, then
MEMB(V) is rot feasible in AC°.

Proof. This statement is obtained by a reduction from problem MOD,,
which consists in deciding whether an input of n bits adds up to a multiple
of p, p>2; this has been shown not to be feasible in 4C° (Ajtai, 1983;
Furst e al, 1984; Smolensky, 1987). Let b, .., b, be the input bits. We
build an automaton (X, 4), where 4 = {qa,, .., a,}, and where X is a set of
p(n + 1) states, partitioned into n+ 1 connected components C;, 0 < j<n,
with p states each, denoted x;, 0<k<p—1. Whenever j>1 and j#i,
generator g, acts on component C; as the identity. In component C;, we
have x,a,=x,, , ,, for each 0 <k < p; the sum is taken modulo p. In com-
ponent C,, generator a; acts as the identity if b, =0, otherwise it maps state
Xox t0 Xou 1), 0< k< p. The test-transformation acts as the identity on
component Cy and maps X to X;, , ), forall 1 <j<nand 0<k < p. Each
component C;, j>1, is used to ensure that the corresponding input bit is
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read once. The actual count modulo p takes place in component C,. With
an appropriate encoding for the instance of group membership, the reduc-
tion can be made DLOGTIME uniform. For example, if the encoding is a
sequence of tuples (i, j, k, /, m), specifying that generator @, maps x to x,,,
a log-time deterministic Turing machine first tests whether j=/ If this
holds, then it tests whether j=0; if so, it then reads the / th input bit, and,
depending on its value, verifies whether m=k, if b,=0, or m=k+1
(mod p), if b,=1. Similar tests are done when j+#0; they do not involve
any access to the inputs. |

LemMMa 4.4, Membership testing in R, v L, v G can be done in polyno-
mial time.

Proof. From an instance of MEMB(R, v L, v G), we build an
instance of MEMB(R, v L,) and an instance of MEMB(G). The former
involves automaton (X, 47), where by Proposition3.l, {(47>=
{f*:felA)} is an idempotent monoid generated by A7 = {a” :aec 4},
and fe (4)>= fPe (A”). The membership test in (X, A7) begins with the
computation of the set

H(fry={a"€ A" : f? =ua’v for some u, ve {A4")},

from which we define #(f)={acA4:a”eL(f")}. We compute instead
</ (f), using for this the equivalence ae o/ (f) <> Xaf = Xf. Proved for the
idempotent monoids in Beaudry ez al. (1989), this fact is demonstrated in
the non-aperiodic case as follows. From Pin (1984, Chap. 3), we use the
equivalence Xuv = Xv<>uv ¥ v to deduce that

Xof = Xf=af § f=l(af )= S (f)=>ae L (f)
Conversely, Xaf < Xf is obvious, and
ae d(f)= faf # f=> Xfaf = Xf = Xaf 2 X[.
Therefore,
ae B(f)<>a’e o (f") < Xa’f" = Xf" < Xaf = Xf <> ae A(f).

The test in {A4”) verifies whether the action of f on X is compatible with
membership of f in one of the H-classes of {4 ). We must complete this
with a second test, aimed at deciding whether f coincides with an element
of this H-class, which is a group; this amounts therefore to solving an
instance of MEMB(G). However, we must first compute generators for the
group of the H-class of f. The following property of A, v G gives us an
efficient method to do so.



12 M. BEAUDRY

PROPOSITION 4.5. Let transformation [ belong to {A>eA, v G, a
monoid of period p. The H-class of f is a group generated by the set

C(f)={f"af? aeA(f)}.

Proof. First, ae A (f)= fPaf? # f, by statement (2) of Proposition
2.1; further, since u # f A v H f<>u”=v"=f?, Proposition 3.1 leads to
(uv)? =uPv? = fPfP = f? and therefore to uv 5# f. This means that (€(f)>
is a subset of the H-class of f. Conversely, consider an arbitrary element g
of this H-class. We have &/(f)=.9/(g) and g”= f?, by Proposition 2.1(4).
We can thus write g=a, ---a,, where a,e Z(f), 1 <i<r, and

g=g"eg’=¢g"a,---a,8"=/%a,--a,f".

Assume that, in a monoid M of period p belonging to A, v G, we have
xyzx =xyx®*zx, for all x, y,ze M such that /(xy)=./(zx). Setting
xy=f*fa,---a;and zx=a,,,---a,f*, and observing that

f=fr+i=fra ...a;-a,. , - -af°
= (f)=oA(fPa,---a;)=oa,,,-a,f?)

we can use the assumption to insert in the expression of g a factor f7f7
between «; and a;,,, for every 1<i<r, in order to obtain g=
Sfra, f?--- fFa, f?, and therefore ge (6(f)). We now proceed with the
proof of the assumption.

Having MeA, v G implies Mc¢(SxT), with SeA, and TeG, a
group such that ¥’ =1, Yue 7, and ¢ a monoid homomorphism. Then

xyzx = @(r, u) d(s, v) d(t, w) d(r, u) = d(rstr, uwwu) = d(rsrer, uowu),

where the last step uses a property of the idempotent monoids, namely that
A (c) S o (d)= o (e)=dce =de (Green and Rees, 1952). Next,

d(rsrer, uvwu) = g(rsr’tu, uvu’wu)
=¢(r, u) ¢(s, vU(r, u))” (1, w) §(r, u) = xyx’zx,
where we use idempotency of r and the fact that u”=1. |

Proof of Lemma 4.4 (Continued). From the original instance (X, 4, f),
we built a test for f? in the transformation monoid of (X, 47) and a test
for f in the permutation group of the automaton (X7, ¢(f)). A positive
answer to both tests is necessary in order to have fe {A4). This also
suffices: consider g”hg”, where g”e {A?) is such that Yxe X, xg” = xf",
and where he (¥(f)) satisfies Vx e Xf, xh=xf. For every state x € Xf, we
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have xg?=xf?=x=xghg? = xh=xf. Meanwhile, (g*hg?)? = gPh?g? =
SPh? fP = f7 implies that for every x ¢ Xf,

xghg? = x(g*hg’) g"hg’ (8 hg” )’ = xf*hf” = xf*h = x{.
This proves the correctness of the following algorithm.

inpur:  automaton (X, A), test-transformation f; with |X|=m, let p=m!
step 1: Verify that Xf*= Xf;
compute the set o/ (f)={ae A : Xaf =Xf};
step 2: build the automaton (X, A”) and test for membership of /7 in
(AP);
step 3. build the automaton (X7, €(f));
test for membership of f (restricted to Xf) in its permutation
group;
step 4: fe (A iff steps 2 and 3 are both successful.

Note that parameter p need not be computed explicitly, as we shall see
below; further, the period of the monoid can always be taken as m!. We
proceed with the analysis of the algorithm. Steps 1 and 4 are feasible in
AC® Step 2 contains a membership test in a monoid of R, v L,, and
before this the construction of /7 and of the a@?, a € A. The construction can
be done in AC®, as follows. For each x e X, verify first whether it belongs
to Xf; if so, then xf” = x. Else, since xf”*! = xf, the image of x by f” is
the unique state ye Xf such that yf = xf. Notice that in the case of f, this
method is valid only if we know in advance that f is a transformation of
threshold one, hence the test at the beginning of step 1. Step 3 consists in
first computing €(f) in AC° then performing a membership test in the
permutation group {(%(f)). Observe that, from the complexity viewpoint,
everything in this algorithm is doable in 4AC°, except the two membership
tests. In variety R, v L, v G, both tests are feasible in polynomial time, by
statements (1) and (3) of Proposition 4.1. |}

The above proof of correctness works for every subvariety of A; v G.
The algorithm can therefore be adapted to other minimal extensions. For
instance, if we substitute in step 2 an algorithm which solves MEMB(J,)
in AC® (see statement (2) of Proposition 4.1), we obtain a test for mem-
bership in GJ, =J, v G, whose complexity is dominated by the instance of
group membership, at step 3.

LEMMA 4.6. Membership testing in GJ, can be done in NC.

For the case of arbitrary monoids belonging to variety A, v G, it suffices
to substitute in step 2 an algorithm which solves MEMB(A,) in nondeter-
ministic polynomial time.
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THEOREM 4.7. If V is a variety of threshold one monoids such that
VR vL, vGand VEA, v G, then MEMB(V) is NP-complete.

Proof. The argument for NP-easiness is given above. NP-hardness is a
consequence of the structure of the lattice of subvarieties of A| v G: any V
such that VZ R, vL, v G and VS A, v G must contain a variety of
idempotent monoids to which Proposition 4.1(4) applies. §

Also, the algorithm can be applied to monoids belonging to variety
J; v H, where H< G is a variety of groups. In this case, step 2 in the algo-
rithm can now be done in AC® while step 3 cannot (see Proposition 4.3).
An analysis of the computational complexity of MEMB(H) is then
necessary in order to determine how the complexity of steps 2 and 3
combine to determine the overall complexity of MEMB(J, v H).

We now prove the two lemmas used to demonstrate assertion (vi). We
show that from every threshold one monoid M outside of A; v G, we can
obtain a simpler monoid, which generates a variety where membership
testing is NP-hard. This implies that MEMB({AM )} is itself NP-hard, and
so is MEMB(V) for any variety of threshold one monoids containing such
an M, ie., any subvariety of DS, not included in A, v G.

For every p=>2, define a monoid GR,,,={a':0<i<p}u{a'b:
0<i< p} with 2p elements, such that a’#a’" ', a'b#a'"'b Vi, a?=1,
b*=ba=>h, and ab # ba. This monoid lies in GR,, outside of A, v G,
while its dual GL,.,, belongs to GL,— (A, v G). An automaton with
transformation monoid GR,,, is shown in Fig. 1.

LEMMA 4.8. Let M be a threshold one monoid of period p. If
M¢A, v G, then there exist a monoid N in variety {GR,,> and a monoid
Pin {GL,,y>, with gq,r 2 | integers dividing p, such that N<M and P< M,
and at least one of N and P lies outside of A, v G.

Proof. By Proposition 3.1, a monoid M not in A, v G contains two
elements ¢ and d such that ¢d+# cdc?d” or cd# c?d”?cd. Assume that the
second inequality holds; the other case can be treated dually. It can be
verified that the hypothesis is equivalent to having cd? # ¢?d*cd”, so that
from now on we assume that d is idempotent.

We build a monoid ¥, isomorphic to GR,,, for an integer ¢ > 2, in two
steps. For the first step, let W= {cx:xe{l,¢,d)}, and define operation
* as follows: cx * cy = cxy. With this operation, W is a monoid such that
W < M. Furthermore, with notations @ =cc and b = cd, observe that b is
idempotent under *, that the pth power of @ acts as the identity ¢, and that
a and b together generate the monoid. The hypothesis c¢d # c?ded translates
in Winto b#a”~ '+ b*axb, which implies that axb#bxax b (here,
a” ' denotes the (p — 1)th power of a, taken relative to the operation *).
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Using Proposition 2.1(5), we partition this monoid in two J-classes: one
consists of the powers of a, the other gathers the rest of W. The latter class
is divided into R-classes; each can be described as a subset of the form
{a'*b*x:xeW}, 0<i<p. We claim that some of these R-classes are
distinct. Otherwise, we would have (a* b) # (b * a x b). Since (ax b)?*' =
ax*b implies (axb) X (bxax+b), we obtain (axb)’=(b*axb)”, by
statement (4) of Proposition 2.1. Composing both sides to the right with
b x a* b then leads to a* b=b * a » b; this contradicts the hypothesis, so
that the claim is proved. There are therefore g > 2 distinct R-classes. Note
that ¢ is a divisor of p; otherwise b # (a’* b) for an i not dividing p.
Using then the fact that u £ wu = u # wwu, deduced from the definition of
relation &, we obtain b # (a* * b) for all k, in particular those for which
ki=1 (mod p), and this leads to (a* b) # (b xa = b).

We now map W onto the set N={f":0<i<q}lu{fiog:0<i<g}, as
follows. For each i<gq, the image of a'*%9, j=0, is f, while the whole
R-class of element a' * b is mapped onto f7o g. In this set, define operation
o such that fo(f‘og)=f'*'og, where i+1 is taken modulo ¢, and
(fog)ox=f"ogforall xeN. Every f"is the i th power of f, taken relative
to o. The set N with operation o is a monoid; it is a homomorphic image
of W, and is isomorphic to GR,(,,. |

LEMMA 4.9. Problems MEMB({GR,,,>) and MEMB({GL,,,>) are
NP-hard for all p=2.

Proof. We first prove NP-hardness for MEMB({GR,(,,>), by reduc-
tion from the following variant of problem 3SAT (Garey and Johnson,
1979).

Given a set of Boolean variables U= {u,, .., u,} and a set of clauses
K={cy,..,c,}, each of the form c¢,=(u,, u;;, u;;), where none of the
variables is negated, decide whether there exists an assignment of truth
values to the variables such that, for each clause c;, exactly one of u;;, u;,,
and u;; has value true.

From an instance (U, C) of 3SAT, we build an instance (X, 4, f) of
MEMB({GR,;)>), as follows. We define 4 = {a,, .., a,} U {b, d, 1}, where
each generator a; is associated to variable ;. The set X is partitioned
into connected components C;, 1<j<m, each consisting of a strongly
connected component K; with eight states labelled (FFF); to (TTT);, of a
second SCC K/ with eight states labelled (000); to (111);, and of states x,
and y;. The generators act on connected component C; as follows.

(1) Every a; such that u,¢ {u;, u;,, u;3} acts on C; as the identity.

(2) Generator g,, permutes state (FPQ); with (TPQ),;, and (0apB);
with (laf);, for every combination of P,Qe{F, T} and a,fe {0, 1}.

643/113/1-2
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It maps each of states x; and y; to itself. The action of generators a;, and
a;; is defined similarly.

(3) Generator b maps (TFF); to (100),, (FTF); to (010); and (FFT),
to (001);, and every other state of K, to x;,. Meanwhile, it acts as the
identity on the states of K/, on x;, and on y,.

(4) Generator d maps all the states of C; onto x;, with the exception

of (000); and y;, which are mapped to y;.
Connected component C; is represented in Fig. 3, where the index j, arrows
to x,, and self-loops have been omitted in order to improve legibility. In
C,, test-transformation f maps the three states y,, (FFF);, and (000);, onto
¥;» and the other 15 states onto x;. It is straightforward to verify that the
instance (X, A, /') can be built from (U, C) in logarithmic space.

We claim that f encodes a solution to 3SAT if it can be written as
f=vbw, where v is an expression containing neither b nor d, where w con-
tains at least one d, and where the occurrences of @; in v are counted in
order to provide the truth value assigned to variable #,, with an odd
number of @; meaning u, := true, and an even number u, := false.

G)e—r——(Cm)
3

ﬁ'

FiG. 3. Connected component of (X, 4) reducing 3SAT to MEMB(GR,).
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Indeed, let a solution to an instance of 3SAT assign the value true to
variables u,, ..., 4;. Consider the transformation g=a, ---a,ba, ---a,d. For
every clause c;, exactly one of a;, a;,, and a;, appears in g, so that g acts
on component C; the same way as f does; therefore, fe (4). Conversely,
if fe{A), then it can be expressed as f = gbhdk, with ge (a,, ..,a,) and
he {a,, .. a,, b). To see this, observe that the presence of at least one d
in f, and of at least one b to the left of the 4, are necessary in order to have
(FFF),f = y,. Furthermore, in order to bring (FFF); to y;, we must first
have (FFF), gbe K], which imposes (FFF), g € {(TFF);, (FTF),, (FFT),};
this implies that exactly one of a;,, a;;, or a;; occurs in g an odd number
of times. In our interpretation, this means that clause c; is satisfied. (The
presence of SCC K| is necessary in order to uniquely define the image by
f of every state of K;, something which we could not obtain with a smaller
construction.)

We also have to show that this actually is an instance of
MEMB({GR;,>), by proving that the monoid we work on belongs
indeed to the variety generated by GR|,,. Since this is a technical exercise
on a very specific monoid, we defer it to the Appendix.

For p >3, we adapt this reduction to the variety (GR,,,» as follows. In
each connected component C;, we expand SCCs K and K/ from 8 up to p’
states, and we redefine the generators in such a way that a solution to
3SAT is encoded as f=vbw as before, where the number of occurrences in
v of generator q, is either congruent to 1 modulo p, if u; := true, or to 0,
if u, ;= false.

The automaton built for this reduction has connected components of
constant size. Thanks to this, membership testing in this automaton can be
reduced to a polynomial-size instance of MEMB({GL,,,>), using a
method described in Beaudry et al. (1989). |

To conclude this section, we show that MEMB(GR,} and MEMB(GL,)
are NP-complete. Since by Proposition 3.2, these varieties are the maximal
extensions of R, and L, respectively, this means that “combining” groups
with monoids from either R, or L,, no matter how intricately, does not
take the computational complexity of the membership problem outside
of NP.

THEOREM 4.10. Problems MEMB(GR,) and MEMB(GL,) are NP-
complete.

Since NP-hardness was proved above, we only have to exhibit for each
variety an algorithm which tests membership in nondeterministic polyno-
mial time.
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LemMma 4.11. Membership testing in GR, can be done in NP.

Proof. We build an algorithm for membership testing, which works in
four steps. It is based on Proposition 5.1, which shows that the set of those
transformations of (A4 ) which permute Xf is generated by a subset of 4
(that is, its restriction to Xf). The first step consists in computing .«/(f ).
Steps 2 and 3 use a decomposition of f as f=b h byh,---b h,, with
b,ed(f), 1 <i<k, and where each #; belongs to <{b,, .., b;)>. Since the
action of hA; reduces to permuting the states of Xbh,.--b,_h;,_ b;=
Xb, ---b;, we can guess this action, and then use a test for membership in
the permutation group of automaton (Xb,---b,, {by,..b;}). The
algorithm thus reads as follows.

input:  automaton (X, A4), test-transformation f;

step 1 compute the set /(f)={aed: Xaf =Xf};

step 2: guess an ordering b,, ..., b, for the elements of &/(f);

step 3. fori:=1to k do
guess a permutation A, of the set Xb, ---b;;
test whether A; belongs to the permutation group of (Xb,---b,,
{b1, ., b;}); if not, halt;

step 4: f f=bh,---b h,, then fe (4). |

LEMMA 4.12. Membership testing in GL, can be done in NP.

Proof. Proposition 5.1, on which the above algorithm is based, does
not have an equivalent in GL,. Therefore, instead of testing for mem-
bership of f in (X, 4), we work in the reverse automaton (2%, 4~"), where
(A~ '>eGR,, and we decide whether there exists a transformation
g 'e{A4™ ") such that {y} g '={y} S~ for every state ye Xf. We guess
a decomposition of g into g=h.b,---h b, that is, actually g~ '=
b 'h'--b7'h, ', and we apply on g~' a sequence of tests similar to
those done on an instance of MEMB(GR,). In order to test membership
is nondeterministic polynomial time, we restrict the size of the automaton
we work on: we show that each 4, ' needs to be defined only on a polyno-
mial-sized subset of 2%,

Let g,=b,h,_,b,_,---hb, be a transformaion of (X, 4). From Pin
(1984, Chap.3) and Proposition 2.1(5), defining identity h,g,=g’h; g,
together with /(g;)=.7(h;g;,) implies that h,g,# g, which in turn
implies that xg,= yg, <> xh,g,= yh,g,, for all x, ye X. Therefore, for any
ze Xg,, there exists a state y e Xg,, such that

{z} g/ 'h'={xeX :xh,g;=z}={y} g 'h; "

in other words, A, ' permutes the {x} g, ', xe Xg,, between themselves.



THRESHOLD ONE MONOIDS 19

Starting with Yo= {{y}: yeXf}, we can iteratively define each set
Y, c2% 1<i<k,asbeing Y,= Y, g, ', or equivalently Y;,=Y, b ', with
the properties that Y, h;'=Y;, and that |Y;| <|Y,| <|X|. The algorithm
reads therefore as follows.

input: automaton (X, A), test-transformation f;
step 1. compute the set o/(f)={aeA: Xaf = Xf};
step 2: guess an ordering b,, ..., b, for the elements of <7(f);
step 3: et Yo={{y}:yeXf};
step 4: fori:=1to k do
compute the set ¥, ={Eb;':Ee Y, ,};
guess a permutation A ' of Y;;
test whether A ' belongs to the permutation group of
(Y, {b7', . b7}
if not, halt;
step 5: for each state yeXf, test whether {y}b, 'h;' b, 'h;'=

27 A
if this is so, then fe (4)>. |

5. CHARACTERIZATION OF AUTOMATA

We now solve the characterization problem in some varieties of
threshold one monoids which were relevant to our study of the mem-
bership problem. Knowledge provided by this work is central to our proof
of Lemma 4.11. Also, addressing this problem goes along with the intuition
that it would make little sense to consider an instance of MEMB(V) for
some variety V and declare it easy to solve, if it were hard to test whether
this actually is an instance of MEMB(V). We show that transformation
monoids in GJ,, GR,, and GL, can be characterized in AC°. Meanwhile,
efficient characterizations for varieties R, v L, v G, for A, v G, and for
DS,, that is, algorithms which avoid testing exhaustively the defining
identities on all monoid elements, still remain to be found.

The first result concerns variety of GR;. It shows that automata (X, 4)
for which (A4} e GR, are subject to restrictions which strongly influence
their behaviour (condition 3 in the proposition). The same result is stated
in another form (condition 2), which highlights those properties peculiar
to GR,. This statement uses the notion of the alphabet of a strongly
connected component K< X :

H(K)y={aeA: KnXa#J}.

As mentioned previously, this proposition implies that, for any ge (A4,
the group of those elements of (4> e GR, which permute Xg is generated
by a subset of 4.
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PROPOSITION 5.1.  The following statements on an automaton (X, A) are
equivalent :

(1) the transformation monoid (A ) of (X, A) belongs to GR;

(2) (A>eDS, and, for every SCC K and a€ A, either Kan K= or
Ka=K;

(3) for every ae A and SCC K, either Ka=K or Kan K= (; in the
latter case, for every state xe K, xa belongs to an SCCK' such that
A (K)c A(K').

Proof. (1=3) Let {(4)eGR, be a monoid of period p. Let ae A and
SCC K be such that Xan K+# ¢, so that there are states xe X and ye K
such that xa=y. Then, a**'=a= yae K. For every other state ze K,
there exists a transformation fe (A4 ) such that yaf=z. From this, we
obtain

(af)? ' =af = ylaf )P+ ' = yaf =z=>zaeKk,

and therefore Ka< K. In order to show that Ka= K, assume that there
exist xeK and he (4) such that xahe K— Ka. Then aha’?=ah=
xah € Ka, a contradiction. In the case where K n Xa = J, consider a state
xe K and a generator be /(K); as shown above, b” acts as the identity
on K. Denoting by K’ the SCC of xa, we have xa = xb?a = xb"ab?, so that
K' n Xb# 5, and therefore be o/ (K').

(3=2) Consider a state x and a transformation g=a,---a,, and
denote by K the SCC of x. An induction on r shows that the image xg of
x belongs to an SCC K’ such that & (K)u {a,, .., a,} = (K'). Therefore,
g permutes the states of X', and xg”* ' = xg for some p>1.

(2=1) Let {(4) be a threshold one monoid of period p. For any
state x and transformations f and g of an automaton (X, A) satisfying (2),
having x(fg)?*' = xfg implies Kan K # (J for every generator ae o/(fg),
where K denotes the SCC of xfg. Hence f and g act as permutations
on K, and therefore (xfg)f*=xfg. §

This result suggests an algorithm which decides whether the transforma-
tion monoid of an automaton belongs to GR,; computation of the SCCs
is done in nondeterministic log-space, and condition (3) is verified on each
of them in 4C°

We now develop an alternate method to characterize a transformation
monoid in this variety: we show that it suffices to test whether the
generators satisfy the defining identities. This method has the advantage of
being applicable to the varieties GL, and GJ,.

PROPOSITION 5.2.  The transformation monoid of (X, A) belongs to GR,
if, and only if, Ap >0:Va, be A, a?* ' = a and aba® = ab.
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Proof. It suffices to prove the (if') direction; this is done in three steps.
We first show that aha” = ah for every ac A and he {4 ), by induction on
the length of an expression for A. Indeed, if A= gb, where be A and
aga® = ag, then

agha® = aga"ba’” = aga® " 'aba® = aga®b = agb.

Next, we show {4)eDS,, which is equivalent to proving that Xh*= Xh
for every he (A). With h=ab, where a, be A, assume that Xabab < Xab.
This implies that | Xabab| < |Xab|, which means that

| Xaba) < | Xab| v | Xabab| < | Xabay,
and this leads to a contradiction. Indeed, in the first case, we have
| Xab| = | Xaba”| = | Xabaa® ~'| < |Xaba| < |Xab|;
in the second case,
| Xaba| = | Xabab®| = | Xababb? ~'| < | Xabab| < | Xaba|.

The argument can be extended to longer expressions. Finally, we show that
ghg? =gh for all g, he {A4), by induction on the length of an expression
for g. As an induction hypothesis, assume that g=kb, with be 4, that
khk? = kh, and that kbhk? = kbh. Then

gh = kbh = kbhk? = kbhkk” ' = kbhkbb? ~ 'k~ .
We then use the fact that (kb)”*! = kb to obtain
gh = kbh(kb) b?~'k?~' = kbh(kb)Pkbb? ~ kP!
= kbh(kb)?kk? ' = kbh(kb)? = ghg”. |

COROLLARY 5.3. The transformation monoid of (X, A) belongs to GL, if,
and only if, ip>0:Va,be A, a?*' =a and afba = ba.

COROLLARY 5.4. The transformation monoid of (X, A) belongs to GJ, if,
and only if, 3p>0:Va, be A, a**' = a and a’b = ba®.

Whether the transformation monoid of (X, 4) belongs to GR,, to GL,,
or to GJ,, can therefore be decided in 4C° with the following algorithm,
which we write in terms of GR,. The first step consists in verifying whether
each generator a is of threshold one. If this is so, then a” can be computed
in AC° with the method described in the proof of Lemma 4.4. Adaptation
of the algorithm to varieties GJ, or GL, consists merely in modifying the
test in step 2.
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input.  automaton (X, 4); with |X|=m, let p=m!;
step 1: for every ae A, test whether Xa? = Xa;
step 2: for every a, be A, test whether aba” = ab.

6. COMMENTS

Within the conjecture NC# P# NP, we have established in the
main theorem a one-to-one correspondence between monoid varieties
J,J, vG, and R, v L, v G and complexity classes AC°, NC, and P,
respectively. This suggests that every class of computational complexity
involved in the study of the membership problem is associated with a
unique, largest variety of monoids. Therefore, a natural extension to our
work would be to look for a largest variety in which the membership
problem belongs to a complexity class such as NP. Given the results
obtained on the aperiodic monoids, this would be an extension of the
aperiodic variety DA, or of one of its subvarieties, maybe in the sense of
our “maximal extensions.” At least, Theorems 4.7 and 4.10 suggest that
NP-completeness extends beyond GR,, GL,, and A, v G, quite probably
to the “maximal extension” of A,, i.e., the whole of DS,. The significance
of this correspondence between varieties of monoids and complexity classes
remains to be determined. For instance, charting the whole lattice of this
varieties of monoids from the viewpoint of the membership problem could
prove true a property of the form “if V and W are two varieties such that
MEMB(V) and MEMB(W) belong to complexity class X, then so does
MEMB(V v W),” whose meaning might extend beyond its immediate
application to the study of the membership problem, and provide a power-
ful insight in the analysis of other problems in related areas.

APPENDIX

We show that the transformation monoid {(A4) of the automaton
described in the proof of Lemma 4.9 belongs to the variety generated by
GR, )

Denoting by N; the transformation monoid of the automaton (C;, 4)
formed by connected component C;, 1<j <m, we observe that {(4) <
Nyx .-+ x N,,, so that it suffices to prove that each N; belongs to (GR,,)).
For 1<i<3, define monoids U,= {1, o, f,a;f} and V,={1,a,,d,a,58};
each is isomorphic to GR,,,. Define also W= {1, 8, 8}, such that g6 =p
and 8 = 4. Further, let each a; act as the identity in W, in U, and in V,
for every k #i, while B (resp.d) acts as | in the monoids V, (resp. U,),
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1 <k <3. Consider next the monoid M generated by {(c,c,c,c, ¢, ¢, ¢):
cef{a;, o, 03, 8,6}}, a submonoid of the direct product of the seven
monoids defined above, and therefore an element of the variety (GR;)).
We claim that N, is a homomorphic image of M. To convince the reader
of our point, we work on a simplified version of the problem, involving
only monoids U,, V,, and W, and where all the features of the interaction
between generators f and J, and the a,’s, are retained; extending our
argument to the actual monoid N, is straightforward.

Consider the monoid M generated by {(c,c,c):ce{a,, B, d}}; it can
be seen to be isomorphic to the transformation monoid of the set
{1,2,3,4,5,6,7}, generated by

This monoid has eighteen elements:

M ={1,a,pB,35,apf, ad, fa, f6, éx, 6f, afa, afd, ada,
adB, Pas, Sap, xpas, adaf}.
Its operation has the following properties:
al=1 p*=8 82=0
Baf = pa dad = ou pop=pé Ofa=205Bd=5p
pada = Padf = fud Soflo = dufid = dafs

Meanwhile, our simplified version of N, is the transformation monoid of
the automaton ({7, F,0, 1, x, y}, {a, b,d}), where the generators act as

follows:
g (T F 01 x y) b T F 01l x vy
\F T 10 xy “Ax 001 x y

d,(T FO 1 xy
“A\x o x y o x x y

The ten elements of this monoid constitute the set

N=1{1,a,b,d ab, ad, ba, aba, bad, abad }
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and satisfy the following properties:
a*=1 b’=b d*=d
bab = ba da=db=d  bd=d

The argument consists in verifying exhaustively on the two sets M and N
that a function ¢ : M — N, such that ¢(a) =a, ¢(f)=0>b, and $(d) = d, where
we use ¢(c) as a shorthand for ¢((c, ¢, ¢)}), can be defined to have the
properties that ¢ is a monoid homomorphism, that ¢(f3)=d, and that
VxeM, ¢(x)=d.
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