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Abstract

The Busemann–Petty problem asks whether origin-symmetric convex bodies in Rn with
smaller central hyperplane sections necessarily have smaller n-dimensional volume. It is known
that the answer to this problem is affirmative if n�4 and negative if n�5. We study this
problem in hyperbolic and spherical spaces.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The Busemann–Petty problem asks the following question. Given two convex origin-
symmetric bodies K and L in Rn such that

voln−1(K ∩ H)�voln−1(L ∩ H)

for every central hyperplane H in Rn, does it follow that

voln(K)�voln(L)?
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The answer to this problem in Rn is known to be affirmative if n�4 and negative if
n�5. The solution appeared as the result of work of many mathematicians (see [6] or
[23] for historical details).

In this paper, we consider the Busemann–Petty problem in hyperbolic and spherical
spaces in place of the Euclidean space. We prove

Theorem 1.1. Let K and L be centrally symmetric convex bodies in the spherical space
Sn, n�4 (more precisely in a hemisphere) such that

voln−1(K ∩ H)�voln−1(L ∩ H) (1)

for every central totally-geodesic hyperplane H in Sn. Then

voln(K)�voln(L).

On the other hand, if n�5 there are convex symmetric bodies K, L ⊂ Sn that satisfy
(1) but voln(K) > voln(L).

So, the answer to the Busemann–Petty in Sn is exactly the same as in the Euclidean
space. However, the situation in the hyperbolic space is different. Trivially, the answer
is affirmative if n = 2, since the condition (1) in this case is equivalent to K ⊆ L, but
for higher dimensions we have the following:

Theorem 1.2. There are convex centrally symmetric bodies K, L ⊂ Hn, n�3 that
satisfy the condition

voln−1(K ∩ H)�voln−1(L ∩ H)

for every central totally-geodesic hyperplane H in Hn, but voln(K) > voln(L).

The idea to find analogs of known results in non-Euclidean spaces is not new. For
example in [4] the authors study intrinsic volumes in hyperbolic and spherical spaces.
The Brunn–Minkowski inequality in different spaces is discussed in [5]. Also a number
of papers is concerned with other generalizations of the Busemann–Petty problem. In
our proof we will be using results from [24], where Zvavitch studied the Busemann–
Petty problem for arbitrary measures. For other generalizations of the Busemann–Petty
problem see [2,11–14,21,16].

2. Preliminaries

Let Sn be the unit sphere in Rn+1. Using the stereographic projection (from the north
pole onto the hyperplane containing the equator) we can think of it as Rn equipped
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with the metric of constant curvature +1:

ds2 = 4
dx2

1 + · · · + dx2
n

(1 + (x2
1 + · · · + x2

n))2
,

where x1, . . . , xn are the standard Euclidean coordinates in Rn. (See [3, §9, §10, 20,
§4.5] for details about the spherical and hyperbolic spaces). It is well-known that
geodesic lines on the sphere are great circles. Later on, in order to define convexity,
we will need the uniqueness property of geodesics joining given 2 points. But this is
not the case on the sphere. However if we restrict ourselves to an open hemisphere,
then for any two points there exists a unique geodesic segment connecting them. Under
the stereographic projection the open south hemisphere gets mapped onto the open unit
ball Bn in Rn. This is the model we will be working in. The geodesics in this model
are arcs of the circles intersecting the boundary of the ball Bn in antipodal points and
straight lines through the origin.

Also it is well-known that the hyperbolic space Hn can be identified with the interior
of the unit ball in Rn with the metric:

ds2 = 4
dx2

1 + · · · + dx2
n

(1 − (x2
1 + · · · + x2

n))2
.

This is the Poincaré model of the hyperbolic space in the ball. Note that it can be
also obtained from the pseudosphere in the Lorentzian space via the stereographic
projection. The geodesic lines in this model are arcs of the circles orthogonal to the
boundary of the ball Bn and straight lines through the origin.

Since both geometries are defined in the unit ball in Rn, we will treat them simul-
taneously, considering the open ball Bn ⊂ Rn with the metric

ds2 = 4
dx2

1 + · · · + dx2
n

(1 + � (x2
1 + · · · + x2

n))2
, (2)

where � = −1 for the hyperbolic case, +1 for the spherical space. In addition if we
consider � = 0 we get the original case of the Euclidean space.

The definition of convexity in hyperbolic and spherical spaces (recall that we work
in an open hemisphere) is analogous to that in the Euclidean space (see [19, Chapter
I, §12]). A body K (compact set with non-empty interior) is called convex if for every
pair of points in K the geodesic segment joining them also belongs to the body K. For
our definition of convexity in Sn it is crucial that we work in an open hemisphere,
since in this case we have a unique geodesic segment through any two points.

Let K be a body in the open unit ball Bn. In order to distinguish between different
types of convexity we will adopt the following system of notations. The body K is
called s-convex (or +1-convex), if it is convex in the spherical metric defined in the
ball Bn. Similarly it is called h-convex (or −1-convex) if it is convex with respect to
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Fig. 1. Three types of convexity.

the hyperbolic metric. e-convex bodies (or 0-convex) are the bodies convex in the usual
Euclidean sense. Analogously s-(h-,e-)geodesics are the straight lines of the spherical
(hyperbolic, Euclidean) metric. (In this terminology we follow [18]. Note that in the
literature there are other definitions of h-convexity or �-convexity which have absolutely
different meaning).

Some examples of convex hulls of four points with respect to hyperbolic, Euclidean
and spherical metrics correspondingly are shown in Fig. 1.

Clearly, any s-convex body containing the origin is also e-convex and any e-convex
body containing the origin is h-convex. (See for example [18]).

A submanifold F in a Riemannian space R is called totally geodesic if every geodesic
in F is also a geodesic in the space R. In the Euclidean space the totally geodesic
submanifolds are Euclidean planes, on the sphere they are great subspheres. In the
Poincaré model of the hyperbolic space described above the totally geodesic submani-
folds are represented by the spheres orthogonal to the boundary of the unit ball Bn. In
a sense, totally geodesic submanifolds are analogs of Euclidean planes in Riemannian
spaces. For elementary properties of totally geodesic submanifolds see [1, Chap. 5,
§5].

The Minkowski functional of a star-shaped origin-symmetric body K ⊂ Rn is defined
as

‖x‖K = min{a�0 : x ∈ aK}.

The radial function of K is given by �K(x) = ‖x‖−1
K . If x ∈ Sn−1 then the radial

function �K(x) is the Euclidean distance from the origin to the boundary of K in the
direction of x.

For a centrally-symmetric �-convex body K ∈ Bn (� = 0, 1, −1) consider the section
of K by the hypersurface �⊥ = {〈x, �〉 = 0}, where 〈·, ·〉 is the Euclidean scalar product.
Clearly such a hypersurface is a totally geodesic hyperplane in the metric (2) for any
� = 0, 1, −1. This hyperplane passes through the origin with the normal vector �.

The volume element of the metric (2) equals

d�n = 2n dx1 · · · dxn

(1 + � (x2
1 + · · · + x2

n))n
= 2n dx

(1 + �|x|2)n .
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Therefore the volume of a body K is given by the formula

voln(K) =
∫
K

d�n = 2n

∫
K

dx

(1 + � |x|2)n .

Note that in polar coordinates the latter formula looks as follows:

voln(K) = 2n

∫
Sn−1

∫ ‖�‖−1
K

0

rn−1

(1 + �r2)n
dr d�. (3)

Similarly the volume element of the hypersurface �⊥ is

d�n−1 = 2n−1 dx

(1 + � |x|2)n−1 ,

therefore the (n − 1)-volume of the section of K by the hyperplane �⊥ is given by the
formula

SK(�) =
∫
K∩〈x,�〉=0

d�n−1 = 2n−1
∫
K∩〈x,�〉=0

dx

(1 + � |x|2)n−1 .

One of the tools of this paper is the Fourier transform of distributions. Let � be
a function from the Schwartz space S of rapidly decreasing infinitely differentiable
functions on Rn. We define the Fourier transform of � by

�̂(�) =
∫

Rn
�(x)e−i〈x,�〉 dx, � ∈ Rn.

The Fourier transform of a distribution f is defined by 〈f̂ , �〉 = 〈f, �̂〉 for every test
function � from the space S.

We say that a distribution f is positive definite, if its Fourier transform is a positive
distribution, in the sense that 〈f̂ , �〉�0 for every non-negative test function �.

If a distribution f acts on test functions in the same way as a continuous function
g then we write that f (x) = g(x) pointwise. This is just notation meaning that f and
g coincide on all test functions. In particular if f̂ = g on test functions we write
f̂ (x) = g(x) pointwise, where in the left-hand side we do not mean the convergent
Fourier integral, but understand this as equality of distributions. We write (‖x‖p)∧(�)

meaning the values of the continuous function to which this is equal as a distribution.
The spherical Radon transform R : C(Sn−1) → C(Sn−1) is defined by

Rf (�) =
∫
Sn−1∩�⊥

f (x) dx.
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The following Lemma gives a relation between the spherical Radon transform and the
Fourier transform. (See [8, Lemma 2.5], or [22] for more general results.)

Lemma 2.1. Let g(x) be an even homogeneous function of degree −n+1 on Rn \ {0},
n > 1, so that g(x)|Sn−1 ∈ C(Sn−1) then

Rg(�) = 1

�
ĝ(�), ∀� ∈ Sn−1.

The latter equality means that ĝ is a homogeneous function of degree −1 on Rn,
whose values on Sn−1 are equal to Rg.

Now we derive a formula for the function SK(�) using the Fourier transform, similar
to [24]. For � = 0 this is the formula from [9].

Lemma 2.2. Let K be an origin-symmetric �-convex body in Bn with Minkowski func-
tional ‖ · ‖K . Let � ∈ Sn−1 and �⊥ be the hyperplane through the origin orthogonal
to �. Then the volume of the section of the body K by the hyperplane�⊥ in the metric
(2) equals

SK(�) = 2n−1

�

(
|x|−n+1

2

∫ |x|
‖x‖K

0

rn−2

(1 + � r2)n−1 dr

)∧
(�).

Proof. Passing to spherical coordinates we get

SK(�) = 2n−1
∫
�⊥

�(‖x‖K)
dx

(1 + � |x|2)n−1

= 2n−1
∫
Sn−1∩�⊥

∫ ‖�‖−1
K

0

rn−2dr

(1 + � r2)n−1 d�.

We can rewrite the integral above as follows (note that |x| = 1, since x ∈ Sn−1):

SK(�) = 2n−1
∫
Sn−1∩�⊥

|x|−n+1
∫ |x|/‖x‖K

0

rn−2dr

(1 + � r2)n−1 dx.

The function under the spherical integral is a homogeneous function of x of degree
−n + 1 and therefore by Lemma 2.1

SK(�) = 2n−1

�

(
|x|−n+1

2

∫ |x|
‖x‖K

0

rn−2

(1 + � r2)n−1 dr

)∧
(�). �
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3. Proofs of main results

First we construct counterexamples to the Busemann–Petty problem in Hn and Sn

for n�5.

Theorem 3.1. There exist convex origin-symmetric bodies K and L in Sn (or Hn),
n�5 such that

voln−1(K ∩ H)�voln−1(L ∩ H)

for every central hyperplane, but voln(K) > voln(L).

Proof. We will show the proof only for the case of the spherical space, the hyperbolic
case is similar. The idea here is to use the property that any Riemannian space locally
looks as “almost" Euclidean.

Let K and L be convex origin-symmetric bodies in Rn that give a counterexample
to the original Busemann–Petty problem (see for example [15, Section 5.1]). That is

EVoln−1(K ∩ H)�EVoln−1(L ∩ H) (4)

for every central hyperplane H, but

EVoln(L) < EVoln(K). (5)

(Here we denote the usual Euclidean volume by EVol to avoid confusion with the
spherical volume.)

In fact, since the inequality (5) is strict, we can dilate one of the bodies a little
to make the inequality (4) strict. Recall also, that in the original counterexample the
body L was strictly convex, and the body K was obtained from the body L by small
perturbations. Note that K can also be made strictly convex.

In view of the latter remarks, we will assume that K and L are strictly convex
origin-symmetric bodies that satisfy the strict version of (4). Moreover, the function
EVoln−1(K ∩ H)/EVoln−1(L ∩ H) is a continuous function of � ∈ Sn−1, where � is
the normal vector to the hyperplane H. Since this function is strictly less than 1, there
exists an 	 > 0 such that

EVoln−1(K ∩ H) < (1 − 	)EVoln−1(L ∩ H)

for all H and

EVoln(L) < (1 − 	)EVoln(K).
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Clearly, any dilations 
K and 
L also provide a counterexample. We can take 
 so
small that both bodies K and L lie in a ball of radius r that satisfies the inequality:

1 − 	� 1

(1 + r2)n
< 1.

Now the volumes of the bodies K and L in the spherical metric are related by the
inequality:

voln(L) = 2n

∫
L

dx

(1 + |x|2)n �2n

∫
L

dx = 2nEVoln(L) < (1 − 	)2nEVoln(K)

= (1 − 	) 2n

∫
K

dx�2n

∫
K

dx

(1 + |x|2)n = voln(K).

Analogously, for the volumes of sections we have

voln−1(K ∩ �⊥) = 2n−1
∫
K∩〈x,�〉=0

dx

(1 + |x|2)n−1 �2n−1
∫
K∩〈x,�〉=0

dx

< (1 − 	)2n−1
∫
L∩〈x,�〉=0

dx�2n−1
∫
L∩〈x,�〉=0

dx

(1 + |x|2)n−1

= voln−1(L ∩ �⊥).

To finish the proof we only need to show that if K is a strictly e-convex body, then

K is s-convex for sufficiently small 
. Consider the boundary of the body K. Define

k = min{ki(x) : x ∈ �K, i = 1, . . . , n − 1},

where ki(x), i = 1, . . . , n−1, are the principal curvatures at the point x on the boundary
of K. Since K is strictly e-convex the quantity defined above is strictly positive: k > 0.
For the body 
K it is equal to k/
. On the other hand in a small neighborhood of the
origin the totally geodesic s-planes are the spheres with almost zero curvature (from
the Euclidean point of view). Consider all the spheres, which are totally geodesic in
the spherical metric and tangent to the body 
K , and let R be the smallest radius of
all such spheres. We can choose an 
 so small that

k/
 > 1/R

and therefore the body 
K lies on one side with respect to any tangent totally geodesic
s-hyperplane. Hence 
K is s-convex.

The situation in the hyperbolic space is even easier since every e-convex body con-
taining the origin is also h-convex. �
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In 1988 Lutwak [17] introduced the concept of intersection body and proved that the
Busemann–Petty problem has affirmative answer if the body with smaller sections is
an intersection body. Later, in [10] Koldobsky proved that a body K is an intersection
body if and only if ‖x‖−1

K is a positive definite distribution. Then in [11] Koldobsky
generalized Lutwak’s connection using the following Parseval’s formula on the sphere:

Lemma 3.2. If K and L are origin symmetric infinitely smooth bodies in Rn and
0 < p < n, then (‖x‖−p

K )∧ and (‖x‖−n+p
L )∧ are continuous functions on Sn−1 and∫

Sn−1

(
‖x‖−p

K

)∧
(�)

(
‖x‖−n+p

L

)∧
(�) d� = (2�)n

∫
Sn−1

‖x‖−p
K ‖x‖−n+p

L dx.

In fact we will be using the following version of this Lemma, see [11, Corollary 1].

Corollary 3.3. Let f and g be functions on Rn, continuous on Sn−1 and homogeneous
of degree −1 and −n + 1, respectively. Suppose that f represents a positive definite
distribution. Then there exists a measure �0 on Sn−1 such that∫

Sn−1
ĝ(�) d�0(�) = (2�)n

∫
Sn−1

f (�) g(�) d�.

Here we do not assume that f is an infinitely differentiable function, so its Fourier
transform is not necessarily a function, but merely a measure.

Later, Zvavitch [24] solved the Busemann–Petty problem for arbitrary measures.
Namely, let fn(x) be a locally integrable function on Rn, and fn−1(x) a function on
Rn, locally integrable on central hyperplanes. Then let �n be the measure on Rn with
density fn(x) and �n−1 be the (n − 1)-dimensional measure on central hyperplanes

with density fn−1(x) such that t
fn(tx)

fn−1(tx)
is an increasing function of t for any fixed x.

Then if

‖x‖−1
K

fn(
x

‖x‖K
)

fn−1(
x

‖x‖K
)

is a positive definite distribution on Rn then the Busemann–Petty problem for these mea-
sures has affirmative answer, i.e. �n−1(K ∩ �⊥)��n−1(L∩ �⊥) implies �n(K)��n(L).
Our next result is a particular case of Zvavitch’s theorem, but for the sake of com-
pleteness we include a proof.

Theorem 3.4. Let K and L be �-convex origin-symmetric bodies in Bn such that
‖x‖−1

K

1 + � (
|x|

‖x‖K
)2

is a positive definite distribution. If

voln−1(K ∩ H)�voln−1(L ∩ H)
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for every totally geodesic hyperplane through the origin, then

voln(K)�voln(L).

Proof. Let us first prove the following elementary inequality (cf. [24]). For any a, b ∈
(0, 1)

a

1 + � a2

∫ b

a

rn−2

(1 + � r2)n−1 dr �
∫ b

a

rn−1

(1 + � r2)n
dr.

Indeed, since the function
r

1 + � r2 is increasing on the interval (0, 1) we have the

following

a

1 + � a2

∫ b

a

rn−2

(1 + � r2)n−1 dr =
∫ b

a

rn−1

(1 + � r2)n

a

1 + � a2

(
r

1 + �r2

)−1

dr

�
∫ b

a

rn−1

(1 + � r2)n
dr.

Note that latter inequality does not require that a�b.
Using the previous inequality with a = ‖x‖−1

K and b = ‖x‖−1
L we get

∫
Sn−1

‖x‖−1
K

1 + � ‖x‖−2
K

∫ ‖x‖−1
L

‖x‖−1
K

rn−2

(1 + � r2)n−1 dr dx�
∫
Sn−1

∫ ‖x‖−1
L

‖x‖−1
K

rn−1

(1 + � r2)n
dr dx.

Suppose we can show that the left-hand side is non-negative, then it will follow that

∫
Sn−1

∫ ‖x‖−1
K

0

rn−1

(1 + � r2)n
dr dx�

∫
Sn−1

∫ ‖x‖−1
L

0

rn−1

(1 + � r2)n
dr dx,

that is voln(K)�voln(L), see the polar formula (3).
So we only need to show that

∫
Sn−1

‖x‖−1
K

1 + � ‖x‖−2
K

∫ ‖x‖−1
K

0

rn−2

(1 + � r2)n−1 dr dx

�
∫
Sn−1

‖x‖−1
K

1 + � ‖x‖−2
K

∫ ‖x‖−1
L

0

rn−2

(1 + � r2)n−1 dr dx.

But this follows from the assumption of the theorem, Parseval’s formula on the sphere
(Corollary 3.3) and formula for the volume of central sections (Lemma 2.2). Indeed,
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let �0 be the measure from Corollary 3.3 corresponding to the Fourier transform of the

positive definite distribution
‖x‖−1

K

1+� (
|x|

‖x‖K )2
, then

(2�)n
∫
Sn−1

‖x‖−1
K

1 + � ‖x‖−2
K

∫ ‖x‖−1
K

0

rn−2

(1 + � r2)n−1 dr dx

=
∫
Sn−1

(
‖x‖−1

K

1 + � (
|x|

‖x‖K
)2

)(
|x|−n+1

∫ |x|
‖x‖

K

0

rn−2

(1 + � r2)n−1 dr

)
dx

=
∫
Sn−1

(
|x|−n+1

∫ |x|
‖x‖

K

0

rn−2

(1 + � r2)n−1 dr

)∧
(�) d�0(�)

=
∫
Sn−1

�

2n−1 SK(�) d�0(�)�
∫
Sn−1

�

2n−1 SL(�) d�0(�)

=
∫
Sn−1

(
|x|−n+1

∫ |x|
‖x‖

L

0

rn−2

(1 + � r2)n−1 dr

)∧
(�) d�0(�)

= (2�)n
∫
Sn−1

‖x‖−1
K

1 + � ‖x‖−2
K

∫ ‖x‖−1
L

0

rn−2

(1 + � r2)n−1 dr. �

Remark 3.5. Since ‖x‖−1
K is positive definite for any convex origin-symmetric body

in Rn, n�4 (see [6]), the previous theorem implies the affirmative part of the original
Busemann–Petty problem in Rn.

Now we investigate for which classes of bodies
‖x‖−1

K

1 + � (
|x|

‖x‖K
)2

is a positive definite

distribution.

Proposition 3.6. Let K be an origin-symmetric body in Bn, n�4.

(i) If K is h-convex then
‖x‖−1

K

1 + (
|x|

‖x‖K
)2

is positive definite.

(ii) If K is s-convex then
‖x‖−1

K

1 − (
|x|

‖x‖K
)2

is positive definite.

Proof. (i) Consider a h-convex origin-symmetric body K ⊂ Bn, n�4. Define a body
M by the formula:

‖x‖−1
M = ‖x‖−1

K

1 + (
|x|

‖x‖K
)2

.
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It is enough to show that M is e-convex. If we pass to polar coordinates then the map

(r, �) �→
(

r

1 + r2 , �

)
transforms the body K into the body M.

Take two points in K and connect them by a hyperbolic segment. This segment
belongs to K since K is h-convex. Consider the 2-dimensional plane through the origin
and these 2 points. The section of the body K by this plane is a 2-dimensional h-convex
body. Introduce polar coordinates on this plane and (without loss of generality) assume
that the h-geodesic segment has the equation r2 − a r cos � + 1 = 0. Applying the
above transformation one can see that this h-segment gets mapped into an e-segment

given by the equation r = 1

a cos �
. Therefore the body M is e-convex and (‖x‖−1

M )∧

is positive in dimensions n�4 (see [6]).
(ii) Similar to (i). Take a s-geodesic given by the equation r2 + a r cos � − 1 = 0.

The image of this geodesic under the map

(r, �) �→
(

r

1 − r2 , �

)
(6)

is an e-geodesic r = 1

a cos �
. �

Since every s-convex body containing the origin is h-convex, we have the following

Corollary 3.7.
‖x‖−1

K

1 + (
|x|

‖x‖K
)2

is positive-definite for every origin-symmetric s-convex

body K in dimension n�4.
This fact combined with Theorem 3.4 implies the affirmative answer to the spherical

Busemann–Petty problem for n�4.

However not every h-convex body is s-convex and this idea will be used in con-
structing counterexamples to the hyperbolic Busemann–Petty problem.

First we remind the following fact:

Theorem 3.8 (Gardner et al. [6, Theorem 1]). Let K be an origin-symmetric star body
in Rn with C∞ boundary, and let k ∈ N \ {0}, k �= n − 1. Suppose that � ∈ Sn−1, and
let A� be the corresponding parallel section function of K: A�(z) = ∫

K∩〈x,�〉=z
dx. (We

also assume that K ∩ {〈x, �〉 = z} is star-shaped for small z).
(a) If k is even, then

(‖x‖−n+k+1)∧(�) = (−1)k/2�(n − k − 1)A
(k)

� (0).
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(b) If k is odd, then

(‖x‖−n+k+1)∧(�) = (−1)(k+1)/22(n − 1 − k)k!

×
∫ ∞

0

A�(z) − A�(0) − A′′
�(0) z2

2 − · · · − A
(k−1)

� (0) zk−1

(k−1)!
zk+1 dz,

where A
(k)

� stands for the derivative of the order k and the Fourier transform is
considered in the sense of distributions.

In particular, it follows that for infinitely smooth bodies the Fourier transform of
‖x‖−n+k+1 restricted to the unit sphere is a continuous function (see also [15, Section
3.3]).

Now we can prove the following

Proposition 3.9. There exist h-convex origin-symmetric bodies in Bn, n�3 that give
a counterexample to the hyperbolic Busemann–Petty problem.

Proof. In view of Theorem 3.1 we are interested only in the cases n = 3 and 4. First

we construct a body L for which
‖x‖−1

L

1 − (
|x|

‖x‖L
)2

is not positive definite. Let L be a

circular cylinder of radius
√

2/2 with x1 being its axis of revolution. (See Fig. 2) To
the top and bottom of the cylinder attach spherical caps, that are totally geodesic in
the spherical metric. Clearly the body L constructed this way is e-convex and therefore

M

x1 x1

L

Fig. 2. The bodies L and M from Proposition 3.9.
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h-convex. Using the formula

‖x‖−1
M = ‖x‖−1

L

1 − (
|x|

‖x‖L
)2

(7)

we define a body M.
Clearly the body M is the image of L under the map (6). It can be checked directly

that the cylinder is mapped into the surface of revolution obtained by rotating the hy-

perbola x2 = 1
2

(√
2 +

√
2 + 4x2

1

)
about the x1-axis, and the top and bottom spherical

caps are mapped into flat disks.
In fact the body L constructed above is not smooth. But we can approximate it by

infinitely smooth e-convex bodies that differ from L only in a small neighborhood of
the edges. Since the body M is obtained from L by (7), and the denominator in (7)
is never equal to zero, the body M is also infinitely smooth. (Now that the bodies L
and M are smooth, Fig. 2 might be confusing, but we wanted to make it as simple as
possible, just to emphasize the idea).

Now that we defined the body M, we can explicitly compute its parallel section
function AM,� in the direction of the x1-axis.

AM,�(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�

(√
2 + √

2 + 4t2

2

)2

, in dimension n = 3,

4�

3

(√
2 + √

2 + 4t2

2

)3

, in dimension n = 4.

Since M is an infinitely smooth body, (‖x‖−1
M )∧ is a function. Applying Theorem 3.8

with n = 3 and q = 1 we get

(‖x‖−1
M )∧(�) = −2

∫ ∞

0

AM,�(t) − AM,�(0)

t2 dt.

Let the height of the cylindrical part of L be equal to
√

2 − 2	 and the height of its
image under (6) equal to N. If 	 tends to zero, the top and bottom parts of the body
L get closer to the sphere x2

1 + · · · + x2
n = 1. Recalling the definition of the radial

function of M:

�M(x) = �L(x)

1 − �L(x)2 , ∀x ∈ Sn−1,

one can see that the body M becomes larger in the direction of x1 as 	 → 0, and
therefore its height N approaches infinity.
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Since in dimension n = 3 the section function can be written as AM,�(t) =
�
(

1 + t2 + √
1 + 2t2

)
for −N � t �N , we get

(‖x‖−1
M )∧(�) = −2�

∫ N

0

1 + t2 + √
1 + 2t2 − 2

t2 dt − 2�
∫ ∞

N

(−2)

t2 dt

� −2�
∫ N

0
dt + 4�

∫ ∞

N

1

t2 dt = −2�N + 4�

N
< 0

for N large enough.
If n = 4 and q = 2 Theorem 3.8 implies

(‖x‖−1
M )∧(�) = −�A

′′
M,�(0) < 0,

since the second derivative of the function AM,� in dimension n = 4 equals: A
′′
M,�(0) =

8
√

2�.

Thus we have proved that

(
‖x‖−1

L

1 − (
|x|

‖x‖L
)2

)∧
(�) = (‖x‖−1

M )∧(�) is negative for some

direction �.
Now apply a standard argument to construct another body K which along with the

body K provides a counterexample to the hyperbolic Busemann–Petty problem (cf. [11,
Theorem 2] or [24, Theorem 2]). By continuity of (‖x‖−1

M )∧ there is a neighborhood
of � where this function is negative. Let

� = {� ∈ Sn−1 : (‖x‖−1
M )∧(�) < 0}.

Choose a non-positive infinitely-smooth even function v supported on �. Extend v to
a homogeneous function r−1v(�) of degree −1 on Rn. By Lemma 5 from [11] we
know that the Fourier transform of r−1v(�) is equal to r−n+1g(�) for some infinitely
smooth function g on Sn−1.

To construct a counterexample to the Busemann–Petty problem, define another body
K as follows:

∫ ‖�‖−1
K

0

rn−2

(1 − r2)n−1 dr =
∫ ‖�‖−1

L

0

rn−2

(1 − r2)n−1 dr + 	g(�)

for some 	 > 0 small enough (to guarantee that K is still convex in hyperbolic sense).
Indeed, define a function 
	(�) such that

∫ ‖�‖−1
L

0

rn−2

(1 − r2)n−1 dr + 	v(�) =
∫ ‖�‖−1

L +
	(�)

0

rn−2

(1 − r2)n−1 dr,
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then

‖�‖−1
K = ‖�‖−1

L + 
	(�).

Note that in our construction L is e-convex, but we can perturb it a little (by adding

|�|2 to the norm ‖�‖L with 
 > 0 small enough), so we can assume that L is strictly
e-convex. Therefore one can choose 	 small enough such that K is also e-convex (for
details see [24, Proposition 2]). Hence we can assume that both L and K are h-convex.
Using Lemma 2.2 we get

voln−1(K ∩ �⊥) = 2n−1

�

(
|x|−n+1

∫ |x|/‖x‖K

0

rn−2

(1 − r2)n−1 dr

)∧
(�)

= 2n−1

�

(
|x|−n+1

∫ |x|/‖x‖L

0

rn−2

(1 − r2)n−1 dr

)∧
(�) + 	v(�)

� 2n−1

�

(
|x|−n+1

∫ |x|/‖x‖L

0

rn−2

(1 − r2)n−1 dr

)∧
(�)

= voln−1(L ∩ �⊥).

Proceeding as in the proof of Theorem 3.4 we can show the opposite inequality for
volumes. Since the body L is infinitely smooth, one can use Parseval’s formula in the
form of Lemma 3.2:

(2�)n
∫
Sn−1

‖x‖−1
L

1 − ‖x‖−2
L

∫ ‖x‖−1
K

0

rn−2

(1 − r2)n−1 dr dx

=
∫
Sn−1

(
‖x‖−1

L

1 − (
|x|

‖x‖L
)2

)∧
(�)

(
|x|−n+1

∫ |x|
‖x‖

K

0

rn−2

(1 − r2)n−1 dr

)∧
(�) d�

=
∫
Sn−1

(
‖x‖−1

L

1 − (
|x|

‖x‖L
)2

)∧
(�)

(
|x|−n+1

∫ |x|
‖x‖

L

0

rn−2

(1 − r2)n−1 dr

)∧
(�) d�

+
∫
Sn−1

(
‖x‖−1

L

1 − (
|x|

‖x‖L
)2

)∧
(�)	v (�) d�

> (2�)n
∫
Sn−1

‖x‖−1
L

1 − ‖x‖−2
L

∫ ‖x‖−1
L

0

rn−2

(1 − r2)n−1 dr dx. �
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