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Abstract

In this paper, a method of separating variables is effectively implemented for solving a time-fractional telegraph equation (TFTE).
We discuss and derive the analytical solution of the TFTE with three kinds of nonhomogeneous boundary conditions, namely,
Dirichlet, Neumann and Robin boundary conditions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, there has been a great deal of interest in fractional differential equations. Historical summaries of
the developments of fractional calculus can be found in Oldham and Spanier [1], Miller and Ross [2], Samko et al. [3]
and Podlubny [4]. A number of numerical methods have been proposed for fractional differential equations [9–15].

Suspension flows are traditionally modelled by parabolic partial differential equations. Sometimes they can be
better modelled by hyperbolic equations such as the telegraph equation, which have parabolic asymptotics. In par-
ticular the experimental data described in [16,17] seem to be better modelled by the telegraph equation than by the
heat equation. Some of the related mathematics was discussed in [17]. The time-fractional telegraph equations have
recently been considered by many authors. Orsingher and Beghin [18] studied the fundamental solutions to time-
fractional telegraph equations of order 2α. They obtained the Fourier transforms of the solutions for any α and gave
a representation of their inverses in terms of stable densities. For the special case α = 1/2, they also showed that the
fundamental solution is the probability density of a telegraph process with Brownian time. Beghin and Orsingher [19]
considered the fractional telegraph equation with partial fractional derivatives of rational order α = m/n with m < n.
They proved that the fundamental solution to the Cauchy problem for the time-fractional telegraph equation can be
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expressed as the density of the composition of two processes, one depending on m and the other depending on n.
Recently Momani [20] derived the analytic and approximate solutions of the space- and time-fractional telegraph
equation with some special initial and boundary conditions using Adomian decomposition.

In this paper, we derive the analytical solution of the nonhomogeneous time-fractional telegraph equation under
three types of nonhomogeneous boundary conditions using the method of separation of variables.

In Section 2, we give some relevant definitions and a related theorem. In Section 3 we derive the analytical solution
of the nonhomogeneous time-fractional telegraph equation with Dirichlet boundary condition. In Sections 4 and 5, we
discuss the analytical solution of the nonhomogeneous time-fractional telegraph equation with Neumann and Robin
boundary conditions, respectively. Some conclusions are drawn in Section 6.

2. Basic concepts and theorem

We consider the following nonhomogeneous time-fractional telegraph equation:

D2α
t u(x, t) + aDα

t u(x, t) = k
∂2u(x, t)

∂x2
+ f (x, t), 0 < x < L, t > 0,

1

2
< α � 1, (1)

where D2α
t and Dα

t are Caputo fractional derivatives with respect to t , the rate a is an arbitrary nonnegative constant
and k is an arbitrary positive constant, x and t are the space and time variables, f (x, t) is a sufficiently smooth
function. The Caputo fractional derivative of order α is defined as [4]

Dα
t f (t) =

{ 1
Γ (m−α)

∫ t

0
f m(τ)

(t−τ)1+α−m dτ, m − 1 < α < m,

dm

dtm
f (t), α = m,

(2)

for m ∈ N.
When a = 0, Eq. (1) is the fractional counterpart of the nonhomogeneous wave equation. In fact, without the forc-

ing term f (x, t), and with a = 0, Eq. (1) is known as the fractional diffusion–wave equation studied in Schneider and
Wyss [5], Mainardi [6], and [24]. Daftardar-Gejji and Jafari [23] investigated boundary value problems for the equa-
tion. Anh and Leonenko [7,8] considered the fractional diffusion–wave equation under some random initial conditions
and obtained their renormalized solutions. Gaussian and non-Gaussian scaling laws are established for these solutions
in terms of multiple stochastic integrals. The present paper considers the nonstochastic situation, and the solutions
obtained here, in terms of the multivariate Mittag-Leffler function, contain corresponding results for boundary and
initial value problems for the wave equation, namely, when α = 1.

For convenience, we introduce the following definitions and theorem, which are used further in this paper.

Definition 2.1. (See [21].) A real or complex-valued function f (x), x > 0, is said to be in the space Cα,α ∈ R, if
there exists a real number p > α such that

f (x) = xpf1(x) (3)

for a function f1(x) in C[0,∞].

Definition 2.2. (See [22].) A function f (x), x > 0, is said to be in the space Cm
α , m ∈ N0 = N ∪ {0}, if and only if

f m ∈ Cα.

Definition 2.3. (See [22].) A multivariate Mittag-Leffler function is defined as

E(a1,...,an),b(z1, . . . , zn) :=
∞∑

k=0

∑
l1+···+ln=k
l1�0,...,ln�0

k!
l1! × · · · × ln!

∏n
i=1 z

li
i

Γ (b + ∑n
i=1 aili)

(4)

in which b > 0, ai > 0, |zi | < ∞, i = 1, . . . , n.
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In particular, if n = 1, the multivariate Mittag-Leffler function is reduced to the Mittag-Leffler function

Ea1,b(z1) =
∞∑

k=0

zk
1

Γ (b + ka1)
, a1, b > 0, |z1| < ∞. (5)

Theorem 2.4. Let μ > μ1 > · · · > μn � 0, mi − 1 < μi � mi , mi ∈ N0 = N ∪ {0}, λi ∈ R, i = 1, . . . , n. The initial
value problem⎧⎪⎨

⎪⎩
(
Dμy

)
(x) −

n∑
i=1

λi

(
Dμi y

)
(x) = g(x),

yk(0) = ck ∈R, k = 0, . . . ,m − 1, m − 1 < μ � m,

(6)

where the function g(x) is assumed to lie in C−1 if μ ∈ N , in C1−1 if μ /∈ N , and the unknown function y(x) is to be
determined in the space Cm

−1, has the solution

y(x) = yg(x) +
m−1∑
k=0

ckuk(x), x � 0, (7)

where

yg(x) =
x∫

0

tμ−1E(.),μ(t)g(x − t) dt, (8)

and

uk(x) = xk

k! +
n∑

i=lk+1

λix
k+μ−μi E(.),k+1+μ−μi

(x), k = 0, . . . ,m − 1, (9)

fulfills the initial conditions u
(l)
k (0) = δkl , k, l = 0, . . . ,m − 1. The function

E(.),β(x) = Eμ−μ1,...,μ−μn,β

(
λ1x

μ−μ1, . . . , λnx
μ−μn

)
. (10)

The natural numbers lk , k = 0, . . . ,m − 1, are determined from the condition{
mlk � k + 1,

mlk+1 � k.
(11)

In the case mi � k, i = 1, . . . ,m − 1, we set lk := 0, and if mi � k + 1, i = 1, . . . ,m − 1, then lk := n.

Proof. See [22]. �
3. Nonhomogeneous time-fractional telegraph equation with Dirichlet boundary condition

In this section, we determine the solution of the following time-fractional telegraph equation:

D2α
t u(x, t) + aDα

t u(x, t) = k
∂2u(x, t)

∂x2
+ f (x, t), 0 < x < L, t > 0,

1

2
< α � 1, (12)

with the initial conditions

u(x,0) = φ(x), ut (x,0) = ψ(x), 0 � x � L, (13)

and the nonhomogeneous boundary conditions

u(0, t) = μ1(t), u(L, t) = μ2(t), t > 0, (14)
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using the method of separating variables, where φ(x),ψ(x) are continuous functions satisfying φ(0) = μ1(0), φ(L) =
μ2(0), μ1(t) and μ2(t) are nonzero smooth functions with order-one continuous derivative.

In order to solve the problem with nonhomogeneous boundary, we firstly transform the nonhomogeneous boundary
into a homogeneous boundary condition. Let

u(x, t) = W1(x, t) + V1(x, t)

where W1(x, t) is a new unknown function and

V1(x, t) = μ1(t) + (μ2(t) − μ1(t))x

L
(15)

satisfies the boundary conditions

V1(0, t) = μ1(t), V1(L, t) = μ2(t). (16)

The function W1(x, t) then satisfies the problem with homogeneous boundary conditions:⎧⎪⎨
⎪⎩

D2α
t W1(x, t) + aDα

t W1(x, t) = k
∂2W1(x,t)

∂x2 + f̃ (x, t), 0 < x < L, t > 0,

W1(x,0) = φ1(x),
∂W1(x,0)

∂t
= ψ1(x), 0 � x � L,

W1(0, t) = W1(L, t) = 0, t � 0,

(17)

in which

f̃ (x, t) = −D2α
t V1(x, t) − aDα

t V1(x, t) + f (x, t),

φ1(x) = φ(x) − μ1(0) − 1

L

[
μ2(0) − μ1(0)

]
x,

ψ1(x) = ψ(x) − μ′
1(0) − 1

L

[
μ′

2(0) − μ′
1(0)

]
x. (18)

We solve the corresponding homogeneous equation in (17) (f̃ (x, t) being replaced by 0) with the boundary conditions
by the method of separation of variables.

If we let W1(x, t) = X(x)T (t) and substitute for W1(x, t) in (17), we obtain an ordinary linear differential equation
for X(x):

X′′(x) + λ

k
X(x) = 0, X(0) = X(L) = 0, (19)

and a fractional ordinary linear differential equation with the Caputo derivative for T (t),

D2α
t T (t) + aDα

t T (t) + λT (t) = 0, (20)

where the parameter λ is a positive constant.
The Sturm–Liouville problem given by (19) has eigenvalues

λn = n2π2k

L2
, n = 1,2, . . . ,

and corresponding eigenfunctions

Xn(x) = sin
nπx

L
, n = 1,2, . . . .

Now we seek a solution of the nonhomogeneous problem in (17) of the form

W1(x, t) =
∞∑

n=1

Bn(t) sin
nπx

L
. (21)

We assume that the series can be differentiated term by term. In order to determine Bn(t), we expand f̃ (x, t) as a
Fourier series by the eigenfunctions {sin nπx }:
L
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f̃ (x, t) =
∞∑

n=1

f̃n(t) sin
nπx

L
, (22)

where

f̃n(t) = 2

L

L∫
0

f̃ (x, t) sin
nπx

L
dx. (23)

Substituting (21), (22) into (17) yields

∞∑
n=1

sin
nπx

L
D2α

t Bn(t) + a

∞∑
n=1

sin
nπx

L
Dα

t Bn(t) = −n2π2k

L2

∞∑
n=1

sin
nπx

L
Bn(t) +

∞∑
n=1

f̃n(t) sin
nπx

L
. (24)

By equating the coefficients of both members we get

D2α
t Bn(t) + aDα

t Bn(t) + n2π2k

L2
Bn(t) = f̃n(t). (25)

Since W1(x, t) satisfies the initial conditions in (17), we must have{∑∞
n=0 Bn(0) sin nπx

L
= φ1(x), 0 < x < L,∑∞

n=0 B ′
n(0) sin nπx

L
= ψ1(x), 0 < x < L,

(26)

which yields{
Bn(0) = 2

L

∫ L

0 φ1(x) sin nπx
L

dx, n = 1,2, . . . ,

B ′
n(0) = 2

L

∫ L

0 ψ1(x) sin nπx
L

dx, n = 1,2, . . . .
(27)

For each value of n, (25) and (27) make up a fractional initial value problem.
According to Theorem 2.4, the fractional initial value problem has the solution

Bn(t) =
t∫

0

τ 2α−1E(α,2α),2α

(
−aτα,

−kπ2n2

L2
τ 2α

)
f̃n(t − τ) dτ + Bn(0)u0(t) + B ′

n(0)u1(t), (28)

in which

u0(t) = 1 − kπ2n2

L2
t2αE(α,2α),1+2α

(
−atα,−kπ2n2

L2
t2α

)
, (29)

u1(t) = t − at1+αE(α,2α),2+α

(
−atα,−kπ2n2

L2
t2α

)
− kπ2n2

L2
t1+2αE(α,2α),2+2α

(
−atα,−kπ2n2

L2
t2α

)
, (30)

where the multivariate Mittag-Leffler function is given in Definition 2.3. Hence we get the solution of the initial-
boundary value problem (17) in the form

W1(x, t) =
∞∑

n=1

Bn(t) sin
nπx

L

=
∞∑

n=1

[ t∫
0

τ 2α−1E(α,2α),2α

(
−aτα,−kπ2n2

L2
τ 2α

)
f̃n(t − τ) dτ + Bn(0)u0(t) + B ′

n(0)u1(t)

]
sin

nπx

L
,

(31)

where functions u0(t) and u1(t) are given in (29) and (30), respectively. Therefore, we obtain the solution of problem
(12)–(14) as
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u(x, t) =
∞∑

n=1

[ t∫
0

τ 2α−1E(α,2α),2α

(
−aτα,−kπ2n2

L2
τ 2α

)
f̃n(t − τ) dτ

+ Bn(0)u0(t) + B ′
n(0)u1(t)

]
sin

nπx

L
+ μ1(t) + (μ2(t) − μ1(t))x

L
. (32)

3.1. Special cases

In this subsection, we consider a number of special cases with results already available in the literature. We aim
to show that the solution obtained above agree with those established in these special cases. This indicates that the
concept of fractional derivatives extends the concept of derivatives of integer order.

Let us first consider a = 0 in (32). Then

u0(t) = 1 − kπ2n2

L2
t2αE(α,2α),1+2α

(
−atα,−kπ2n2

L2
t2α

)

= 1 − kπ2n2

L2
t2αE2α,1+2α

(
−kπ2n2

L2
t2α

)

= 1 − kπ2n2

L2
t2α

∞∑
m=0

(− kπ2n2

L2 t2α)m

Γ (2αm + 1 + 2α)

=
∞∑

m=0

(− kπ2n2

L2 t2α)m

Γ (2αm + 1)

= E2α,1

(
−kπ2n2

L2
t2α

)
(33)

and

u1(t) = t − at1+αE(α,2α),2+α

(
−atα,−kπ2n2

L2
t2α

)
− kπ2n2

L2
t1+2αE(α,2α),2+2α

(
−atα,−kπ2n2

L2
t2α

)

= t − kπ2n2

L2
t1+2αE2α,2+2α

(
−kπ2n2

L2
t2α

)

= t − kπ2n2

L2
t1+2α

∞∑
m=0

(− kπ2n2

L2 t2α)m

Γ (2α(m + 1) + 2)

= t

∞∑
m=0

(− kπ2n2

L2 t2α)m

Γ (2αm + 2)

= tE2α,2

(
−kπ2n2

L2
t2α

)
. (34)

Substituting (33) and (34) into (32), we obtain

u(x, t) =
∞∑

n=1

[ t∫
0

τ 2α−1E2α,2α

(
−kπ2n2

L2
τ 2α

)
f̃n(t − τ) dτ

+ Bn(0)E2α,1

(
−kπ2n2

L2
t2α

)
+ tB ′

n(0)E2α,2

(
−kπ2n2

L2
t2α

)]
sin

nπx

L

+ μ1(t) + (μ2(t) − μ1(t)x)

L
, (35)

where Bn(0),B ′
n(0) are given by (27), f̃n(t) is given by (23).
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If we let ψ(x) = 0, μ1(t) = μ2(t) = 0, L = π , f (x, t) = q(t) in (35) (to compare with the results in [23]), and
note 1 = ∑∞

n=1
2[1−(−1)n]

nπ
sinnx, B ′

n(0) = 0, then we have

u(x, t) = 2

π

∞∑
n=1

E2α,1
(−kn2t2α

)
sinnx

π∫
0

φ(x) sinnx dx

+
∞∑

n=1

sinnx · 2[1 − (−1)n]
nπ

t∫
0

τ 2α−1E2α,2α

(−kn2t2α
)
q(t − τ) dτ. (36)

This result is in accord with the result obtained in [23].
We next look at the case of zero forcing, i.e. f (x, t) = 0 in (36). The corresponding solution is

u(x, t) = 2

π

∞∑
n=1

E2α,1
(−kn2t2α

)
sinnx

π∫
0

φ(x) sinnx dx. (37)

The result agrees with that discussed by Agrawal [24].
In particular, let a = 0, α = 1, μ1(t) = μ2(t) = 0 in (32), then

u0(t) = 1 − kπ2n2

L2
t2αE(α,2α),1+2α

(
−atα,−kπ2n2

L2
t2α

)

= 1 − kπ2n2

L2
t2E2,3

(
−kπ2n2

L2
t2

)

= 1 − kπ2n2

L2
t2

∞∑
m=0

(− kπ2n2

L2 t2)m

Γ (2m + 3)

= 1 − kπ2n2

L2
t2

∞∑
m=0

(−1)m(
√

kπnt
L

)2m

(2m + 2)!

=
∞∑

m=0

(−1)m(
√

kπnt
L

)2m

(2m)!

= cos

√
kπnt

L
(38)

and

u1(t) = t − at1+αE(α,2α),2+α

(
−atα,−kπ2n2

L2
t2α

)
− kπ2n2

L2
t1+2αE(α,2α),2+2α

(
−atα,−kπ2n2

L2
t2α

)

= t − kπ2n2

L2
t3E2,4

(
−kπ2n2

L2
t2

)

= t + t · −kπ2n2t2

L2

∞∑
m=0

(− kπ2n2t2

L2 )m

(2m + 3)!

= L√
knπ

sin

√
knπt

L
. (39)

Substituting (38) and (39) into (32), we obtain

u(x, t) =
∞∑

n=1

(
2

L

L∫
φ(x) sin

nπx

L
dx · cos

nπ

L

√
kt
0
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+ L√
kπn

· 2

L

L∫
0

ψ(x) sin
nπx

L
dx · sin

nπ

L

√
kt

)
· sin

nπ

L
x

+
∞∑

n=1

L√
kπn

· sin
nπ

L
x

t∫
0

(
sin

√
kπn

L
(t − τ) · 2

L

L∫
0

f (ξ, τ ) sin
nπξ

L
dξ

)
dτ. (40)

This result is indeed the solution of the integer order wave equation [25].

4. Nonhomogeneous time-fractional telegraph equation with Neumann boundary condition

In this section, we determine solution of the following time-fractional telegraph equation with Neumann boundary
condition using the method of separating variables⎧⎪⎪⎪⎨

⎪⎪⎪⎩
D2α

t u(x, t) + aDα
t u(x, t) = k

∂2u(x,t)

∂x2 + f (x, t), 0 < x < L, t > 0,

u(x,0) = φ(x), ut (x,0) = ψ(x), 0 � x � L,

ux(0, t) = μ1(t), t � 0,

ux(L, t) = μ2(t), t � 0,

(41)

where f (x, t), φ(x),ψ(x),μ1(t),μ2(t) are as defined in Section 3.
In a similar manner, we transform the nonhomogeneous boundary condition into a homogeneous boundary condi-

tion. Let

u(x, t) = W2(x, t) + V2(x, t),

where V2(x, t) = [μ2(t)−μ1(t)]x2

2L
+ μ1(t)x fulfills the boundary condition

Vx(0, t) = μ1(t),

Vx(L, t) = μ2(t), (42)

and the function W2(x, t) satisfies the homogeneous boundary-value problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D2α
t W2(x, t) + aDα

t W2(x, t) = k
∂2W2(x,t)

∂x2 + f̃ (x, t), 0 � x � L, t � 0,

W2(x,0) = φ2(x), 0 � x � L,
∂W2(x,0)

∂t
= ψ2(x), 0 � x � L,

∂W2(0,t)
∂x

= ∂W2(L,t)
∂x

= 0, t � 0,

(43)

where

f̃ (x, t) = −D2α
t V2(x, t) − aDα

t V2(x, t) + k[μ2(t) − μ1(t)]
L

+ f (x, t),

φ2(x) = φ(x) − [μ2(0) − μ1(0)]x2

2L
− μ1(0)x,

ψ2(x) = ψ(x) − [μ′
2(0) − μ′

1(0)]x2

2L
− μ′

1(0)x. (44)

We now solve the corresponding homogeneous equation (41) (supposing that f̃ (x, t) = 0). We assume that the
solution of the homogeneous equation takes the form

W2(x, t) = X(x)T (t).

Substituting this representation into (41) (letting f̃ (x, t) = 0), we get the following ODE with boundary values:{
X′′(x) + λ

k
X(x) = 0,

′ ′ (45)

X (0) = X (L) = 0.
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A straightforward calculation shows that the eigenvalues of the Sturm–Liouville problem (45) are

λn = kπ2n2

L2
, n = 1,2, . . . ,

and corresponding eigenfunctions

Xn(x) = cos
nπ

L
x, n = 1,2, . . . .

Hence, the solution of the nonhomogeneous equation (43) has the form

W2(x, t) =
∞∑

n=1

Bn(t) cos
nπ

L
x. (46)

We assume that the series is convergent. In order to determine Bn(t), we expand f̃ (x, t) in a Fourier series by the
eigenfunction {cos nπ

L
x},

f̃ (x, t) =
∞∑

n=1

f̃n(t) cos
nπ

L
x, (47)

where the Fourier coefficients are

f̃n(t) = 2

L

L∫
0

f̃ (x, t) cos
nπx

L
dx, n = 1,2, . . . . (48)

Inserting (46) and (47) into (43), we obtain the following fractional differential equation:

D2α
t Bn(t) + aDα

t Bn(t) + kπ2n2

L2
Bn(t) = f̃n(t). (49)

Since W2(x, t) satisfies the initial conditions in (43){∑∞
n=1 Bn(0) cos nπx

L
= φ2(x), 0 < x < L,∑∞

n=1 B ′
n(0) cos nπx

L
= ψ2(x), 0 < x < L,

(50)

we obtain{
Bn(0) = 2

L

∫ L

0 φ2(x) cos nπx
L

, n = 1,2, . . . ,

B ′
n(0) = 2

L

∫ L

0 ψ2(x) cos nπx
L

, n = 1,2, . . . .
(51)

According to Theorem 2.4, the solution of the fractional differential equation (49) with initial value (51) is

Bn(t) =
t∫

0

τ 2α−1E(α,2α),2α

(
−aτα,−kπ2n2

L2
τ 2α

)
f̃n(t − τ) dτ + Bn(0)u0(t) + B ′

n(0)u1(t), (52)

where the functions u0(t), u1(t) are given in (29) and (30). Thus, we obtain the solution to the problem (43) as

W2(x, t) =
∞∑

n=1

Bn(t) cos
nπx

L

=
∞∑

n=1

[ t∫
0

τ 2α−1E(α,2α),2α

(
−aτα,−kπ2n2

L2
τ 2α

)
f̃n(t − τ) dτ

+ Bn(0)u0(t) + B ′
n(0)u1(t)

]
cos

nπx

L
, (53)
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where Bn(0), B ′
n(0) are given in (51), f̃n(t) is given in (48), u0(t), u1(t) are given in (29), (30), respectively. Then the

solution of (41) is obtained in terms of the multivariate Mittag-Leffler type function E(.),β(x) as

u(x, t) =
∞∑

n=1

[ t∫
0

τ 2α−1E(α,2α),2α

(
−aτα,−kπ2n2

L2
τ 2α

)
f̃n(t − τ) dτ

+ Bn(0)u0(t) + B ′
n(0)u1(t)

]
cos

nπx

L
+ [μ2(t) − μ1(t)]x2

2L
+ μ1(t)x. (54)

In particular, let a = 0, k = 1, α = 1 in (41); then the fractional order equation is reduced to an integer order wave
equation with Neumann boundary.

Now, applying (54), we get

t∫
0

x2α−1E(α,2α),2α

(
−axα,−kn2π2

L2
x2α

)
f̃n(t − x)dx =

t∫
0

xE2,2

(
−n2π2

L2
x2

)
f̃n(t − x)dx

=
t∫

0

x

∞∑
m=0

(−1)m(nπ
L

x)2m

(2m + 1)! f̃n(t − x)dx

= L

nπ

t∫
0

∞∑
m=0

(−1)m(nπ
L

x)2m+1

(2m + 1)! f̃n(t − x)dx

= L

nπ

t∫
0

sin
nπ(t − τ)

L
f̃n(t − τ) dτ. (55)

Furthermore

u0(t) = 1 − kn2π2

L2
t2αE(α,2α),1+2α

(
−atα,−kπ2n2

L2
t2α

)

= 1 − n2π2

L2
t2E2,3

(
−n2π2

L2
t2

)

=
∞∑

m=0

(−1)m(nπt
L

)2m

(2m)!

= cos
nπt

L
(56)

and

u1(t) = t − at1+αE(α,2α),2+α

(
−atα,−kπ2n2

L2
t2α

)

− kn2π2

L2
t1+2αE(α,2α),2+2α

(
−atα,−kπ2n2

L2
t2α

)

= t − n2π2

L2
t3E2,4

(
−n2π2

L2
t2

)

= t + t · −n2π2t2

L2

∞∑
m=0

(−n2π2t2

L2 )m

(2m + 3)!

= L
sin

nπt
. (57)
nπ L
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Substituting (55)–(57) into (54), we obtain

u(x, t) =
∞∑

n=1

[
L

nπ

t∫
0

sin
nπ(t − τ)

L
f̃n(τ ) dτ + Bn(0) cos

nπt

L

+ L

nπ
B ′

n(0) sin
nπ(t)

L

]
cos

nπx

L
+ [μ2(t) − μ1(t)]x2

2L
+ μ1(t)x, (58)

where f̃n(t) is given by (48), and Bn(0), B ′
n(0) are given as (51).

5. Nonhomogeneous time-fractional telegraph equation with Robin boundary condition

Let us now consider the time-fractional telegraph equation with Robin boundary condition⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D2α
t u(x, t) + aDα

t u(x, t) = k
∂2u(x,t)

∂x2 + f (x, t), 0 < x < L, t > 0,

u(x,0) = φ(x), ut (x,0) = ψ(x), 0 � x � L,

u(0, t) + α1ux(0, t) = μ1(t), t � 0,

u(L, t) + β1ux(L, t) = μ2(t), t � 0,

(59)

where α1, β1 are nonzero constants. We assume

u(x, t) = W3(x, t) + V3(x, t),

where

V3(x, t) = μ1(t) − μ2(t)

α1 − β1 − L
x − (L + β1)μ1(t) − α1μ2(t)

α1 − β1 − L
, (60)

fulfills the boundary condition⎧⎪⎨
⎪⎩

V3(0, t) + α1
∂V3(0, t)

∂x
= μ1(t),

V3(L, t) + β1
∂V3(L, t)

∂x
= μ2(t),

(61)

and the function W3(x, t) is the solution of the following problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dα
t W3(x, t) + aDα

t W3(x, t) = k
∂2W3(x,t)

∂x2 + f̃ (x, t), 0 < x < L, t > 0,

W3(x,0) = φ3(x),
∂W3(x,0)

∂t
= ψ3(x), 0 � x � L,

W3(0, t) + α1
∂W3(0,t)

∂x
= 0, t � 0,

W3(L, t) + β1
∂W3(L,t)

∂x
= 0, t � 0,

(62)

with

f̃ (x, t) = −Dα
t V3(x, t) − aD2α

t V3(x, t) + f (x, t),

φ3(x) = φ(x) − μ1(0) − μ2(0)

α1 − β1 − L
x + (L + β1)μ1(0) − α1μ2(0)

α1 − β1 − L
,

ψ3(x) = ψ(x) − μ′
1(0) − μ′

2(0)

α1 − β1 − L
x + (L + β1)μ

′
1(0) − α1μ

′
2(0)

α1 − β1 − L
. (63)

Similarly to the analysis in Section 4, we firstly assume that the solution of the homogeneous equation in (62)
(putting f̃ (x, t) = 0) has the form

W3(x, t) = X(x)T (t).

Inserting this expression into (62) (putting f̃ (x, t) = 0), we get the Sturm–Liouville problem
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⎧⎨
⎩X′′(x) + λ

k
X(x) = 0,

X(0) + α1X
′(0) = 0, X(L) + β1X

′(L) = 0.

(64)

Through a simple calculus, we know the eigenvalues satisfy the equation

tanμL = (α1 − β1)μ

1 + α1β1μ2
, μ =

√
λ

k
> 0, λ = kμ2. (65)

We can obtain the solution of this equation by numerical method. For convenience we denote the solution in (65)
as μn, n = 1,2, . . . . Then the eigenvalues are λn = kμ2

n, n = 1,2, . . . . Note that the eigenvalues are countable and
can be listed in a sequence

λ1 < λ2 < · · · < λn < · · · ,
with

lim
n→∞λn = ∞.

So the corresponding eigenfunctions are

Xn(x) = −α1μn cosμnx + sinμnx, n = 1,2, . . . .

A straightforward calculation shows that

L∫
0

X2
n(x) dx =

L∫
0

(−α1μn cosμnx + sinμnx)2 dx

= α2
1μn − 1

2
· tanμnL

1 + tan2 μnL
− α1 tan2 μnL

1 + tan2 μnL
+ (α2

1μ2
n + 1)L

2
=: bn, (66)

where tanμnL = (α1−β1)μn

1+α1β1μ
2
n
. Then the formal solution of the boundary value problem (62) is

W3(x, t) =
∞∑

n=1

Bn(t)Xn(x). (67)

We can determine Bn(0), B ′
n(0) by the following expressions:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

W3(x,0) =
∞∑

n=1

Bn(0)(−α1μn cosμnx + sinμnx) = φ3(x),

∂W3(x,0)

∂t
=

∞∑
n=1

B ′
n(0)(−α1μn cosμnx + sinμnx) = ψ3(x).

(68)

We assume that φ3(x),ψ3(x) are continuous functions with order-one derivative. Multiplying (68) by
(−α1μn cosμnx + sinμnL) and integrating from 0 to L with respect to x, we get⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Bn(0) = b−1
n

L∫
0

φ3(ξ)(−α1μn cosμnξ + sinμnξ)dξ,

B ′
n(0) = b−1

n

L∫
0

ψ3(ξ)(−α1μn cosμnξ + sinμnξ)dξ.

(69)

Here bn is given in (66).
As in Section 4 we also expand f̃ (x, t) in a Fourier series in the interval [0,L] by the eigenfunctions

{−α1μn cosμnx + sinμnx},
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f̃ (x, t) =
∞∑

n=1

f̃n(t)(−α1μn cosμnx + sinμnx), (70)

where

f̃n(t) = b−1
n

L∫
0

f̃ (ξ, t)(−α1μn cosμnξ + sinμnξ)dξ. (71)

Substituting (67), (70) and (71) into Eq. (62) we obtain the fractional linear differential equation fulfilling condi-
tions (69)

D2α
t Bn(t) + aD2α

t Bn(t) + kμ2
nBn(t) = f̃n(t), n = 1,2, . . . . (72)

According to Theorem 2.4,

Bn(t) =
t∫

0

x2α−1E(α,2α),2α

(−axα,−kμ2
nx

2α
)
f̃n(t − x)dx + Bn(0)u0(t) + B ′

n(0)u1(t) (73)

in which

u0(t) = 1 − kμ2
nt

2αE(α,2α),1+2α

(−atα,−kμ2
nt

2α
)
,

u1(t) = t − at1+αE(α,2α),2+α

(−atα,−kμ2
nt

2α
) − kμ2

nt
1+2αE(α,2α),2+2α

(−atα,−kμ2
nt

2α
)
. (74)

Consequently the solution of the nonhomogeneous time-fractional telegraph equation with Robin boundary condi-
tion is

u(x, t) = W3(x, t) + V3(x, t)

=
∞∑

n=1

Bn(t)(−α1μn cosμnx + sinμnx) + μ1(t) − μ2(t)

α1 − β1 − L
x − (L + β1)μ1(t) − α1μ2(t)

α1 − β1 − L
. (75)

In particular, letting a = 0, k = 1, α = 1, α1 = β1 = 1 in (59), the fractional order equation is reduced to an integer
order wave equation with Robin boundary.

Now, noting that tanμL = (α1−β1)μ

1+α1β1μ
2 = 0, μ = √

λ, then μn = nπ
L

, n = 1,2, . . . . From (56) and (57), we then get

u0(t) = 1 − kμ2
nt

2αE(α,2α),1+2α

(−atα,−kμ2
nt

2α
)

= 1 − n2π2

L2
t2E2,3

(
−n2π2

L2
t2

)

= cos
nπt

L
, (76)

and

u1(t) = t − at1+αE(α,2α),2+α

(−atα,−kμ2
nt

2α
)

− kμ2
nt

1+2αE(α,2α),2+2α

(−atα,−kμ2
nt

2α
)

= L

nπ
sin

nπt

L
. (77)

Inserting (76) and (77) into (75) we obtain

u(x, t) =
∞∑

n=1

[
L

nπ

t∫
0

sin
nπ(t − τ)

L
f̃n(τ ) dτ + Bn(0) cos

nπt

L
+ L

nπ
B ′

n(0) sin
nπt

L

]

×
(

−nπ

L
cos

nπt

L
+ sin

nπ

L
x

)
+ [μ2(t) − μ1(t)]x

L
+ (L + 1)μ1(t) − μ2(t)

L
, (78)

where f̃n(t) is given by (71), and Bn(0), B ′
n(0) are given by (69).
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6. Conclusions

We have derived the analytical solutions of the nonhomogeneous time-fractional telegraph equation under three
kinds of boundary conditions using the separation-of-variables method. The time fractional derivative is considered
in the Caputo sense. The solutions, which are given in the form of the multivariate Mittag-Leffler function, reduce to
those of the integer order telegraph equation and corresponding wave and diffusion equations.
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