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SUMMARY

p21-activated kinases have been classified into
two groups based on their domain architecture.
Group II PAKs (PAK4–6) regulate a wide variety
of cellular functions, and PAK deregulation has
been linked to tumor development. Structural
comparison of five high-resolution structures
comprising all active, monophosphorylated
group II catalytic domains revealed a surprising
degree of domain plasticity, including a number
of catalytically productive and nonproductive
conformers. Rearrangements of helix aC, a key
regulatory element of kinase function, resulted
in an additional helical turn at the aC N terminus
and a distortion of its C terminus, a movement
hitherto unseen in protein kinases. The ob-
served structural changes led to the formation
of interactions between conserved residues
that structurally link the glycine-rich loop, aC,
and the activation segment and firmly anchor
aC in an active conformation. Inhibitor screen-
ing identified six potent PAK inhibitors from
which a tri-substituted purine inhibitor was
cocrystallized with PAK4 and PAK5.

INTRODUCTION

The control of most cellular functions relies on the spatial

and temporal control of protein phosphorylation by ki-

nases and phosphatases, and dysregulation of such

signaling cascades has been linked to a large number of

human diseases. The catalytic activity of protein kinases

is therefore tightly regulated, and protein kinases are

excellent targets for therapeutic intervention.

A molecular and mechanistic understanding of protein

kinase function is essential for understanding their roles

in physiology and for guiding the development of potent

and selective therapeutics. All protein kinases share the

same overall structure and catalytic mechanism of ATP
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g-phosphate transfer. The catalytic core of protein

kinases comprises two domains called the kinase lobes.

The cofactor ATP binds to a cleft created by the interaction

of both lobes with the hinge backbone and the glycine-rich

loop that regulates ATP binding and ADP release (Aimes

et al., 2000; Grant et al., 1996). Helix aC is another key

regulatory element. The center of this helix contains a

conserved glutamate residue that forms an ion pair with

a lysine residue in active kinases. This lysine residue also

coordinates the ATP a- and b-phosphates and is required

for kinase activity. In addition, the aC helix often interacts

with the DFG motif in the kinase activation segment, an-

other conserved motif involved in nucleotide binding. The

proximity of aC to the active site and its interactions with

many conserved and essential kinase elements points

to a central role in kinase regulation (Jeffrey et al., 1995;

Sicheri and Kuriyan, 1997). In addition, linkage between

the activation segment and aC underlies the allosteric

regulation that couples substrate recognition to cofactor

binding (Yamaguchi and Hendrickson, 1996).

The active state of kinases is well defined and com-

prises a closed lobe conformation, a well-structured acti-

vation loop suitable for recognition of the substrate, and

a firmly anchored aC helix forming an ion pair with the ac-

tive site lysine, enabling cofactor binding. By contrast,

crystal structures of inactive kinases have revealed a large

diversity of conformations, and at least one of the key

regulatory elements is often displaced or disordered

(Huse and Kuriyan, 2002). However, enzymatically active

kinases may also crystallize in catalytically nonproductive

conformations.

p21-activated protein kinases (PAKs) play central roles

in a wide range of cellular processes, including regulation

of cell motility, morphology, and cytoskeletal dynamics

(Abo et al., 1998; Bokoch, 2003; Daub et al., 2001; Dhar-

mawardhane et al., 1997; Kumar et al., 2006; Sells et al.,

1997; Vadlamudi and Kumar, 2003). PAKs are serine/thre-

onine protein kinases that are regulated by Rho GTPases

of the Cdc42 and Rac families (Knaus et al., 1995; Manser

et al., 1994; Martin et al., 1995). In humans, the PAK family

comprises six members, which are classified into groups I

(PAK1, -2, and -3) and II (PAK4, -5, and -6) based on their

domain architecture and regulatory properties (Bokoch,
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2003; Jaffer and Chernoff, 2002; Kumar et al., 2006; Zhao

and Manser, 2005). Group I family members contain an

N-terminal regulatory domain and a highly conserved C-

terminal catalytic domain. The regulatory domain consists

of a GTPase-binding domain (CRIB) and an overlapping

inhibitory switch (IS) domain (Bokoch, 2003; Jaffer and

Chernoff, 2002) and detailed structural and biochemical

studies on PAK1 revealed the mechanism of its activation

(Gizachew et al., 2000; Hoffman et al., 2000; Leeuw et al.,

1998; Lei et al., 2000; Morreale et al., 2000; Thompson

et al., 1998). In PAK1, residues of the kinase inhibitor (KI)

segment, which acts as a pseudo substrate, bind to the

cleft between the two kinase lobes. This block is released

upon binding of GTP-bound Cdc42 or Rac, liberating the

enzyme to undergo autoactivation by phosphorylation

(Lei et al., 2000).

The mechanisms that underlie the regulation of group II

PAKs is less clear since they contain no obvious autoregu-

latory switch domain (Jaffer and Chernoff, 2002). How-

ever, group II PAKs do contain p21-binding domains but

are active in the absence of GTPases (Abo et al., 1998;

Cotteret et al., 2003). Coexpression of PAK4 and Cdc42

results in translocation of PAK4 to the Golgi and the induc-

tion of filopodia, suggesting that association with

GTPases plays a role in targeting group II PAKs to cellular

locations (Abo et al., 1998; Dan et al., 2001). Removal of

the N terminus results in an increase in kinase activity for

PAK5, suggesting that group II PAKs’ kinase activity might

also be modulated by intra- or intermolecular interactions

(Ching et al., 2003).

Comparison of five high-resolution crystal structures

comprising the kinase domains of all three mono-

phosphorylated, enzymatically active group II PAK family

members revealed a number of catalytically productive

and nonproductive conformers presumably representing

snapshots of catalytic domain movements during cataly-

sis. These structural rearrangements involve a sliding

movement of the aC helix, adding an additional turn at

the aC N terminus and a distortion of the aC C terminus.

The result of this reorganization of aC is the formation of

three anchor points that couple this important helix with

the glycine-rich loop and the activation segment. This

mechanism also distinguishes group II PAKs from the

closely related group I family members in which aC moves

with aA as a rigid body to bring residues important for ATP

binding in close proximity to the active site. The described

plasticity of group II PAKs is a prerequisite for the struc-

ture-based design of subgroup-specific inhibitors that

may find applications as anticancer drugs.

RESULTS

Overview of the Structures

The structures determined in this study report the cata-

lytic domains of all three members of the group II family

(PAK4, PAK5, and PAK6). All enzymes were monophos-

phorylated at the activation loop positions corresponding

to Ser474 in PAK4. The three catalytic domain structures

comprise the typical two-domain architecture of protein
202 Structure 15, 201–213, February 2007 ª2007 Elsevier Ltd
kinases, with a well-ordered activation segment (Fig-

ure 1A). Constructs of the three group II PAKs included

the N-terminal helices aA and aB, which are characteristic

of PAK family members (Lei et al., 2000, 2005). All struc-

tures used were refined at high resolution to appropriate

Rfree values and had acceptable deviations form standard

bond length and geometry (Table 1).

The catalytic domains of the group II PAKs share about

75% sequence identity. As expected, the overall struc-

tures are similar. Ca main chain atoms of all determined

structures superimpose with an rmsd of about 2 Å, and

isolated lobes superimpose with an rmsd of about 0.6 Å

for the C-terminal lobe and 2.1 Å for the N-terminal lobe.

Superimposition on the structurally conserved C-terminal

lobe of the determined group II PAK structures highlighted

areas of structural diversity. The main structural differ-

ences were observed in the conformation of the glycine-

rich loop, helix aC, and the N-terminal helix (Figure 1B).

Group II PAKs share about 50% sequence identity with

group I family members, and the superimposition of their

overall structures is comparable with rmsd differences

calculated between structures of group II PAKs.

Kinases are known to be extremely dynamic molecules

that can adopt a large number of conformations in solution

(Vogtherr et al., 2006). This plasticity is realized by a multi-

tude of motions between and within the two kinase lobe

domains that are essential for the regulation of enzymatic

activity. ATP and ATP-mimetic inhibitors have been shown

to stabilize closed, active conformations (Taylor et al.,

2005). To shed light on this conformational plasticity of

group II PAKs, we identified small-molecule inhibitors

and used them to trap the kinase domains in their closed

conformations. Binding of adenine-mimetic inhibitors to

the active sites of PAK4 and PAK5 resulted in the ex-

pected clamping movement of the two kinase lobes and

closure of the active site, as will be described below.

For this study, we defined conformations in which (i) the

conserved salt bridge between the aC glutamate and the

active site lysine was formed (<3 Å), (ii) the activation loop

was well ordered, and (iii) the two kinase lobes were in

a closed conformation as catalytically productive. In addi-

tion to the two inhibitor-trapped PAK4 and PAK5 struc-

tures, we also solved the structure of PAK4 trapped in

a catalytically productive conformation in complex with

ethylene glycol (PAK4Etgly). Finally, we solved the struc-

ture of noncatalytically productive apo structures of

PAK4, PAK5, and PAK6. Interestingly, PAK5 crystallized

with two molecules in the asymmetric unit; one molecule

was found in a noncatalytically productive conformation

with an unoccupied active site (apo-PAK5), and the other

bound the purine inhibitor and was in a closed, catalyti-

cally productive conformation.

In the apo structure of PAK4, large regions of the kinase

domain were disordered, including parts of helix aC, the

glycine-rich loop, as well as part of the activation segment.

Evidently, the activation segments remain quite flexible in

that crystal form despite the presence of the activating

phosphorylation site at residue Ser474. The significant

disorder of PAK4 in this crystal form precluded detailed
All rights reserved
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Figure 1. Overall Structures of Group II PAKs and Sequence Comparisons

(A) Ribbon diagram showing a structural overview of PAK5. Secondary-structure elements were determined by using the program ICM Pro 3.4-8

(Molsoft LLC) and have been labeled according to a nomenclature established for PKA. The helices are shown in red, b strands are shown in green,

and the 310 helices are shown in magenta. The phosphorylated serine in the activation segment is shown in ball and stick representation.

(B) Superimposition of all catalytic domains on Ca positions of the C-terminal lobe. Apo-PAK4 is shown in green, PAK4Etgly is shown in magenta, the

PAK4 purine complex is shown in yellow, PAK5 is shown in cyan, the PAK5 purine complex is shown in orange, and apo-PAK6 is shown in red.

(C) Sequence alignment of PAK4, PAK5, PAK6, and PAK1. The blue asterisk marks the Arg487 (PAK5) conserved in group II PAKs. The red asterisk

indicates residues involved in the aC activation loop anchor, and the cyan asterisk indicates the putative activation segment phosphoryation site of

MKK6. The autophosphorylation site is indicated by ‘‘P.’’ Secondary-structure elements are colored and labeled as in (A).
structural comparisons with other PAK family members.

Details of all structures used in this study are provided in

Table S1 (see the Supplemental Data available with this

article online).

The Activation Segment Conformation

of Group II PAKs

As with many kinases, phosphorylation of key residues in

the activation segment of PAKs is required to stabilize

a conformation suitable for substrate binding. The struc-

tures of the autophosphorylated group II PAKs allowed

us to gain insight into how the active, catalytically produc-
Structure 15, 201–2
tive conformation of PAKs is stabilized by this posttrans-

lational modification. The activation loop residues impor-

tant for autoactivation (Ser474 in PAK4, Ser602 in PAK5,

and Ser560 in PAK6) were completely phosphorylated in

all structures determined, and the presence of a stoichio-

metric phosphate moiety was confirmed by ESI-MS (data

not shown). As expected, the activation segments of the

catalytic domains were very well defined and adopted

a conformation suitable for substrate binding. Interactions

stabilizing this conformation were conserved in all group II

PAK structures. As a representative case, the structure

of PAK5 will be described in detail. In PAK5, the
13, February 2007 ª2007 Elsevier Ltd All rights reserved 203
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Table 1. Crystallographic Data and Refinement Statistics

PAK4 (Apo) PAK4 + Inhibitor PAK4Etgly PAK5 PAK6

Data Collection

Space group P32 P43212 P41212 C2 P 21 21 21

Cell dimensions (Å) 118.1, 118.1, 55.53 145.8, 145.8, 42.4 63.5, 63.5, 178.4 98.7, 56.6, 120.8 59.8, 66.7, 97.0

a, b, g 90, 90, 120 90, 90, 90 90, 90, 90 90.0, 103.1, 90.0 90.0, 90.0, 90.0

Resolution (last shell) 2.3 (2.3–2.4) 2.3 (2.3–2.4) 1.6 (1.7–1.6) 1.8 (1.8–1.86) 1.60 (1.6–1.7)

Unique observationsa 38,417 (3,826) 23,590 (2,674) 49,277 (7,986) 60,040 (5,634) 177,870 (17,251)

Completenessa (%) 99.8 (100) 98.7 (92.2) 99.9 (99.5) 99.4 (94.0) 98.8 (93.6)

Redundancya 5.7 (2.7) 6.7 (5.7) 7.3 (4.2) 3.7 (3.2) 3.5 (2.5)

Rmerge
a 0.06 (0.28) 0.07 (0.41) 0.09 (0.40) 0.053 (0.39) 0.078 (0.46)

I/sIa 11.9 (3.5) 12.9 (4.0) 13.3 (3.6) 24.0 (3.1) 11.1 (2.1)

Refinement

Reflections (Rfree set) 38,386 (1,873) 19,821 (1,010) 46,301 (2,336) 56,997 (3,031) 49,551 (2,477)

Rwork/Rfree (%) 19.2/26.8 19.9/24.8 17.4/21.5 15.4/18.5 19.7/22.2

Atoms (P/L/W)b 4,231/0/36 2,269/27/117 2,270/16/205 4,731/27/615 2,335/6/350

B factors (P/L/W)b (Å2) 18.8/–/16.2 37.8/46.7/40.7 25.1/30.5/34.9 19/56/43 21/29/31

Rmsd bonds (Å) 0.007 0.012 0.008 0.010 0.016

Rmsd angles (�) 0.023 1.430 1.147 1.2 1.610

Ramachandran

Favorable (%) 99.4 100 100 97.8 98.3

Allowed (%) 0.6 0 0 2.2 1.7

a Values in brackets represent last-resolution shell values.
b (P/L/W): protein atoms, ligand atoms, water.
phosphorylated Ser602 forms a hydrogen bond network

with Arg600, Arg567, Tyr620, and Phe589. This hydrogen

bond network links both ends of the activation segment

via the catalytic loop residue Arg567 (Figure 2A). The tip

of the activation loop is further stabilized by two con-

served hydrogen bonds between Ser594 and Val597. The

phosphorylated Ser602 corresponds to Thr423 in PAK1,

whose autophosphorylation is necessary for PAK1 activa-

tion. Although there are no structural data available on

phosphorylated PAK1, a structure of an activating mutant,

T423E, was recently solved (Lei et al., 2005). A compari-

son of this structure with the phosphorylated group II

PAKs revealed that the PAK1 glutamate adopts a similar

conformation and hydrogen-bonding pattern to the phos-

phoserine in group II PAKs, suggesting that the carboxy

group mimics the phosphate moiety (Figure 2B).

Molecular Interactions of the Trisubstituted

Purine Inhibitor

The closed, active conformation represents the structural

basis for the design of inhibitors targeting the active state

(type I inhibitors). To capture the group II PAKs in their

closed states, we sought to determine their structures

bound to purine-based inhibitors. These inhibitors bind

to the active site of kinases by mimicking binding of ATP
204 Structure 15, 201–213, February 2007 ª2007 Elsevier Ltd A
and stabilize structural changes that trigger closure of

the kinase lobes.

To identify small molecules that bind to PAK4, -5, and -6,

the purified proteins were screened against a kinase-

directed library of 605 potential low-molecular weight in-

hibitors by monitoring changes in protein melting temper-

ature during thermal denaturation as previously described

(Lo et al., 2004). This screening method ranks inhibitors

based on an observed shift in melting temperature, which

has been shown to correlate well with the binding strength

and IC50 values (Bullock et al., 2005). Compounds that

produced temperature shifts of more than 5�C were

further characterized in enzyme kinetic assays. The tem-

perature shift observed in the presence of 10 mM inhibitor

corresponded well with the enzyme inhibition data

(Table 2). The most potent inhibitor was the nonspecific

KI staurosporine. The related molecule K252a also

inhibited group II PAKs. Interestingly, three different com-

pounds developed for the specific inhibition of cyclin-

dependent kinases (cdks) and the oxoindole SU11652

were also identified as group II PAK inhibitors.

In order to elucidate the molecular mechanisms of inhi-

bition, we determined the structures of a 2, 6, 9-trisubsti-

tuted purine inhibitor (N-(cis-2-Aminocyclohexyl)-N-(3-

chlorophenyl)-9-ethyl-9H-purine-2, 6-diamine) with PAK4

and PAK5 (Figure 3). This inhibitor was first identified as
ll rights reserved
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a potent inhibitor for CDKs (Dalgarno et al., 2006; Giocanti

et al., 1999) and was subsequently also described as an

Src inhibitor (Wang et al., 2003). In PAK4 and PAK5, the

inhibitor interacted with conserved active site residues.

The binding orientations of the purine scaffold in PAK4

and PAK5 differed slightly (Figure 3B); however, the

mode of binding was identical to the one observed in the

Src kinase complex (Dalgarno et al., 2006). As an example,

the interactions of the inhibitor and the PAK4 kinase do-

main are described. In PAK4, and in the analogous resi-

dues in PAK5, the inhibitor forms two hydrogen bonds

with the hinge backbone residue Leu398. In addition, sev-

eral hydrophobic interactions with the active site residues

Phe397, Ile327, Ala348, and Val335 in the N-terminal ki-

nase lobe and Leu398, Leu447, Gly401 and Val379 in the

C-terminal kinase lobe are present (Figure 3C).

Figure 2. Structural Comparison of Activation Segments

(A) Superimposition of the activation segments of group II PAKs show-

ing conserved interactions: the PAK4 purine complex is shown in yel-

low, apo-PAK5 is shown in cyan, the PAK5 purine complex is shown in

orange, and PAK6 is shown in red. The hydrogen bond network formed

by the phosphoserine residue is shown, and interacting residues are

labeled by using PAK5 numbering.

(B) Superimposition comparing the activation segment of PAK1 (acti-

vated PAK1 mutant T423E, green) with group II PAKs (PAK5 purine

complex, semitransparent); both proteins show similar activation seg-

ment conformation and interactions indicating that the glutamate res-

idue successfully mimics the PAK1 phosphothreonine.
Structure 15, 201–
Conversion of Group II PAKs to Their Catalytically

Productive Conformation Is Characterized

by Three Main Motions

The collective structures of the PAKs that we determined

captured the enzymes in a number of states that ranged

from catalytically productive to different extents of catalyt-

ically nonproductive. By examining these structures, we

were able to glean a common mechanism present in

group II PAKs for these structural transitions. In general,

the superimposition of the large domains of the apo-

and ligand-bound conformations in the various structures

(Figure 4) showed a ‘‘clamping’’ movement that could be

deconvoluted into two different smaller movements and

a third swinging movement.

‘‘Clamping’’ of the Two Kinase Lobes

The most evident change between the apo and inhibitor

complexes was the expected closure of the kinase lobes

induced by binding of an ATP-mimetic inhibitor, resulting

in ‘‘clamping’’ of the ligand. The rigid body movement of

the N-terminal kinase lobe toward the C-terminal lobe is

similar to what is seen in PAK1 and many other kinases

(Hubbard, 1997; Lei et al., 2005; Russo et al., 1996; Xu

et al., 1999; Yamaguchi and Hendrickson, 1996). The

detailed mechanism for the group II PAKs was best high-

lighted by the structure of PAK5 complexed with the pu-

rine inhibitor. In this crystal, the asymmetric unit accom-

modated two molecules, only one of which had the

purine bound, allowing the comparison of a catalytically

productive, inhibitor-bound conformation with an open,

catalytically nonproductive apo structure under identical

crystallization conditions. Comparison of both PAK5 con-

formations and the apo- and inhibitor-bound PAK4 struc-

tures identified a well-defined hinge region composed of

a short stretch of the loop located C-terminal to strand

b5 and the loop N-terminal to b4 (Figure 4B). It is also

noteworthy that Glu524 is in the immediate vicinity of the

residues involved in the hinge movement. This residue

participates in a salt bridge (PAK5: Glu524–Lys583) that

is conserved in both group I and II PAKs. This salt bridge

is located at the interface of the C-terminal and the N-ter-

minal kinase lobes in the open (apo) and closed (inhibitor

complex) states; Glu524 belongs to the N-terminal lobe,

and Lys583 is located in the C-terminal lobe, suggesting

a stabilizing role in the closed conformation of PAKs.

Closure of the Glycine-Rich Lobe

Theglycine-rich loophasbeensuggested toplay role in fine

adjustment of the ATP-binding site, and structural changes

in that key regulatory element also participate in the regula-

tion of ADP release and thereby determine the catalytic rate

(Aimes et al., 2000). When the core b sheet (comprised of

strands b0–b5) of the N-terminal lobe of open and closed

catalytic domain conformations was superimposed, a sec-

ond movement was observed in the glycine-rich loop

(Figure 4C); this movement leads to further closure of the

two lobes in the inhibitor-bound structure.

Independent Swinging of the aC Helix

toward the Active Site

The N-terminal lobe helix aC represents one of the most-

studied regulatory elements of kinase function. Upon
213, February 2007 ª2007 Elsevier Ltd All rights reserved 205
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Table 2. Inhibitor Screening

Tm Shift (�C) % Activity at 10 mM

Compound Name Chemical Structure PAK4 PAK5 PAK6 PAK4 PAK5 PAK6

Cdk1 Inhibitor 7.0 ± 1.5 7.1 ± 0.3 7.0 ± 0.3 56 12 23

Cdk1/2 Inhibitor III 6.5 ± 0.2 5.6 ± 0.3 5.6 ± 0.8 62 7.0 18

Purvalanol A 5.0 ± 0.3 4.5 ± 0.2 5.4 ± 0.5 20 24 48

K252a 4.5 ± 0.3 5.9 ± 0.3 8.6 ± 1.0 16 22 16

Staurosporine 13.1 ± 1.5 12.5 ± 0.3 16.6 ± 0.5 0 0 0

SU11652 6.4 ± 1.2 5.3 ± 0.2 5.3 ± 0.3 34 43 75
activation of kinases, this helix swings toward the active

site, and a conserved salt bridge between a glutamate

in the aC helix and the active site lysine is formed (Cana-

garajah et al., 1997). A recent report suggested that in

kinases like PAK1, which contain an additional helix N-
206 Structure 15, 201–213, February 2007 ª2007 Elsevier Ltd A
terminal to the catalytic domain, the aC motion is con-

strained by conserved hydrophobic interactions linking

the two helices, making independent aC movements im-

possible (Lei et al., 2005). Nevertheless, we observed an

aC swinging motion independent of aA (Figure 4C) in
ll rights reserved
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Figure 3. Binding of the Purine Inhibitor

(A and B) Superimposition of PAK4 and PAK5

showing the (A) binding modes of the purine

inhibitor and (B) interaction with active site

residues in PAK4. A superimposition of the

C-terminal lobes was used to generate the

figure shown in (A). PAK4 is shown in yellow,

and PAK5 is shown in orange.
both PAK4 and PAK5. As a consequence of this motion,

the K478–E494 (PAK5 numbering) salt bridge is formed;

this is one of the hallmarks of active kinases (Nolen

et al., 2004). Moreover, a rotation of aC residues around

the helical axis, as described for PAK1, was not observed

in the six group II PAK structures, suggesting that the

mechanism of the transition of group II family members

from their catalytically nonproductive to their active

conformation is significantly different from that of group I

family members.

Rearrangement of aC Termini Locks aC

in a Catalytically Active Position and

Links Key Structural Elements

In a large number of kinase structures, the aC helix swings

in and out and positions the helix close to the catalytic

site in active kinases. The structures of the group II PAKs

revealed a new mechanism of aC positioning that involves

significant rearrangements of both helix termini (Figure 5A).

In the PAK5 inhibitor complex, the last turn of the aC helix

is distorted and becomes a loop region, thus adding

length to the aC–b4 loop. In contrast, the N terminus of

aC gains an additional turn with the rearrangement of

the bC–aC loop. This resulted in the ‘‘shifting’’ of the aC

lengthwise toward its N terminus, yet the spatial position

of the central residues remained unaltered along the

main axis of the helix. Similar rearrangements of helix aC

were also observed when the PAK4 inhibitor complex

was compared with PAK4Etgly, suggesting that this novel,

to our knowledge, mechanism is conserved in group II

PAKs (not shown).

A consequence of the shift in the aC is the formation of

new interactions that anchor this helix in its active confor-

mation and link aC with the glycine-rich loop and the

activation segment. Rearrangement of the aC C terminus

results in the formation of an anchor point that links aC

with the activation segment (Figure 5B). Disruption of the

aC C terminus moves Asn493 (PAK5) and Asn365

(PAK4) into position to form a hydrogen bond with the con-

served activation segment residue Cys590 (Cys462 in

PAK4) and with the DFG motive Gly588 (PAK5).

The shift in register of the aC helix toward the N terminus

results in the formation of hydrogen bonds that position

the glycine-rich loop in a closed conformation competent

for interactions with phosphate moieties of the ATP co-

factor. In the PAK5 purine complex, the aC N-terminal ex-

tension leads to the formation of two hydrogen bonds, be-
Structure 15, 201
tween the conserved aC Arg487 and main chain residues

of the glycine-rich loop residues Ser459 and Gly458, re-

spectively, as well as the formation of a salt bridge by

the carboxyl group of Glu457 (Figure 5C). In the catalyti-

cally nonproductive PAK5 apo structure, Arg487 is disor-

dered after the g carbon. However, the orientation of the

defined portion of that side chain shows that Arg487

moves toward the activation loop. We believe that the

endpoint of that movement has been captured in the

two closely related PAK4 structures. In the PAK4EtGly

structure, the corresponding arginine (Arg359) forms

hydrogen bonds with the phosphate moiety of the phos-

phorylated activation loop residue S474; in the PAK4 pu-

rine complex, Arg359 forms an indirect interaction with

that residue via a sulfate ion present in the crystallization

solution. In this state, a more open conformation of the

glycine-rich loop is stabilized by a hydrogen bond be-

tween the aC residue Gln357 and the main chain oxygen

of Thr332. It is interesting to note that at this stage the

‘‘growing’’ aC helix is already stabilized by the typical hy-

drogen bond connectivity between Gln357 and Asp353

main chain atoms in helices 1–4, whereas the backbone

is still in loop conformation.

Thus, structural comparison of the six high-resolution

crystal structures of group II PAKs identified structural re-

arrangements in the transition from a catalytically nonpro-

ductive, open state to an active, closed state that are sig-

nificantly different from motions described for the group I

member PAK1 (Lei et al., 2005), and, to our knowledge, it

identified structural rearrangements never reported be-

fore in protein kinases. The described structural changes

link key regulatory elements such as the glycine-rich

loop, aC, and the activation segment, giving structural in-

sight into how group II PAKs control catalysis and recruit-

ment of the cofactor ATP as well as the release of ADP.

DISCUSSION

In this study, we used inhibitors and different crystal forms

to trap PAKs’ catalytic domains in a number of conforma-

tions. The body of structural information allowed us to de-

scribe structural rearrangements that occur during the

transition from catalytically nonproductive, open states

to an active, catalytically productive, closed state of group

II PAK enzymes.

PAKs and many other kinases are regulated by phos-

phorylation of key residues in their activation segment
–213, February 2007 ª2007 Elsevier Ltd All rights reserved 207
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Figure 4. PAK5 Domain Movements

(A–C) Structural rearrangements observed upon binding of the inhibitor

in PAK5 (apo, cyan; purine complex, orange). (A) Superimposition with

the C-terminal lobe. Hinges defined by DymDom (Hayward and Lee,

2002) are highlighted in magenta. (B) Close-up of the hinge region,

rotated 180� from the view shown in (A) with the PAK5 purine complex

(orange). Conserved residues forming the salt bridge linking the N- and

C-terminal lobes are shown. (C) Superimposition with the core b sheet

of the N-terminal lobes of apo-PAK5 (cyan) and the PAK5 purine com-
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(Nolen et al., 2004). Phosphorylation at these sites shifts

the equilibrium between the multiple catalytically nonpro-

ductive states to the active state of the enzyme. Our study,

like any crystallographic analysis, assumes that conforma-

tional changes identified by structural comparisons re-

semble conformational changes occurring in solution. In

this study, we confirmed domain movements and inter-

actions in a number of different crystal forms, and the

observed conservation of interactions within this closely

related family strongly suggests that the observed interac-

tions are not simply a consequence of crystallization or

crystal packing. Recently, an NMR study confirmed

a high degree of mobility in and around the ATP-binding

site of the kinase catalytic domain, suggesting large-scale

conformational changes even after binding of high-affinity

inhibitors (Vogtherr et al., 2006).

Unlike the group I PAKS, the group II enzymes lack ob-

vious autoinhibitiory domains. However, group II PAKs still

interact with GTPases; these interactions target the ki-

nases to certain cellular locations, but they have no influ-

ence on enzymatic activity (Abo et al., 1998; Dan et al.,

2001). The lack of IS domains suggests that group II

PAKs are constitutively active enzymes and rapidly au-

toactivate by activation segment phosphorylation (Cot-

teret and Chernoff, 2006). However, removal of the N ter-

minus also results in an increase in kinase activity for

PAK5, suggesting that enzymatic activity may be modu-

lated by interactions with the N terminus (Ching et al.,

2003). To our knowledge, the structures discussed here

represent the first active PAK kinase structures activated

by phosphorylation rather than by a phosphomimetic mu-

tant. However, a comparison of the PAK1 activation mu-

tant structure (Lei et al., 2005) with the phosphorylated

group II PAKs showed that the PAK1 glutamate carboxy

group mimics the phosphate moiety well.

Studies on cellular stress-response pathways sug-

gested that PAK5 and PAK6 are linked to this signaling

cascade by an activating phosphorylation on the consen-

sus MAP kinase kinase 6 (MKK6) site (Thr-Pro-Tyr) in the

activation loop (Kaur et al., 2005; Maroni et al., 2000).

The structures of group II PAKs showed that this consen-

sus motif is embedded in a deep cleft and is not accessi-

ble. Thus, phosphorylation at this site would require signif-

icant rearrangement of the neighboring residues

Comparison of the six high-resolution structures re-

vealed the domain movements conserved in this subfam-

ily, suggesting a model (Figure 6) for the transition of the

inactive states of the enzyme to a conformation compe-

tent for catalysis. The deconvolution of the allosteric

clamping of the two lobes into smaller movements was

critical to clarify the seemingly confusing range of confor-

mations adopted by the N-terminal lobe (Hayward, 2004;

Hayward and Lee, 2002). When we examined the clamp-

ing of the cofactor through the closure of the two lobes,

it was evident that residues involved in the hinging of the

lobes are not responsible for the binding of ATP. The

plex highlighting the decomposed movements of the glycine-rich loop

(flapping) and the aC helix (swinging).
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Figure 5. Rearrangement of Helix aC

(A) Superimposition of central residues in the PAK5 aC helices showing the remodeling of the aC termini. The central residues stay in position,

whereas conversion into an active state (PAK5 purine complex) results in the addition of an N-terminal a helix and disruption of the aC terminus.

(B) Structural changes at the aC C terminus brings Asn493 (Asn365, PAK4) into position to hydrogen bond with the DFG glycine (Gly588) and a con-

served activation segment cysteine (Cys590 and Cys462 in PAK5 and PAK4, respectively), resulting in the formation of the aC anchor point with the

activation segment. In the PAK4 structures, this movement is not completed, and only one hydrogen bond is formed with Cys462.

(C) Swinging movement of the conserved aC Arg487 (Arg359 in PAK4) between the glycine-rich loop and the phosphoserine activation loop residue.

Upon extension of the aC helix by one turn at the N –terminus, Arg487 forms three hydrogen bonds with the glycine-rich loop, stabilizing an extremely

closed conformation (PAK5 purine complex, orange). In the short aC conformation, the corresponding arginine in PAK4 interacts with the phospho-

serine residue in the activation segment. This conformation also results in a partially open conformation of the glycine-rich loop stabilized by a hydro-

gen bond formed by the conserved Gln357. When aC swings away (as observed in apo-PAK5, cyan, or PAK6 [not shown]), the N- and C-terminal

anchor points break, resulting in an open glycine-rich loop conformation. During the swinging movement, Arg487 in the PAK5 apo structure was ob-

served in a disordered state beyond the g carbon (indicated by white balls and sticks).
distinction of the residues binding the cofactor from resi-

dues involved in the hinge movement can be rationalized

as a necessity to maintain the cofactor bound during the

movement without compromising the geometry and inter-

actions provided by the cofactor-binding site. The salt

bridging of the N-terminal lobe through Glu524–Lys583

(PAK5 numbering) located on the C-terminal lobe sug-

gests an anchoring role for theses residues during the

hinge movement (Figure 6A).

The second movement involving the glycine-rich loop

seems to serve for further adaptation of the N-terminal

lobe to the bound cofactor or ATP-mimetic inhibitor

(Figure 6B). A possible biological function for this loop
Structure 15, 201–2
might be to act as a molecular sensor. Accordingly, super-

imposition of the active conformation of PAK5 with the

TAO2 kinase structure (Zhou et al., 2004) bound to ATP

showed that the position occupied by the tip of the

glycine-rich loop is in close proximity to the g-phosphate

position of ATP (i.e., the phosphate that is transferred to

the substrate), whereas the bulk of the glycine-rich loop

is within hydrogen-bonding distances to b- and a-phos-

phates (Figure S1, see the Supplemental Data available

with this article online). This arrangement allows the gly-

cine-rich loop to either be employed as a steric constraint

to force the g-phosphate into a position favorable for ca-

talysis or to serve in the trapping of ADP after hydrolysis,
13, February 2007 ª2007 Elsevier Ltd All rights reserved 209
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controlling the initiation of the next catalytic cycle. This hy-

pothesis agrees with previous reports on enzyme kinetic

studies on protein kinase A (PKA) that suggest that the fi-

nal step of ADP release is rate limiting (Adams, 2003;

Aimes et al., 2000; Grant et al., 1996). We speculate that

the conformation of the glycine-rich loop and the ob-

served interactions play a role in regulating the release

of ADP and the rebinding of ATP, which marks the begin-

ning of a new catalytic cycle (Lu et al., 2005). The shifting

of the aC helix links this important structural element to the

glycine-rich loop. It is therefore likely that the formed hy-

drogen bond network as well as steric constraints created

by the additional helix turn regulate kinase activity.

Figure 6. Model Showing Conformational Changes in Group II

PAKs

(A and B) The N-terminal lobe is represented as red wire-frame (apo)

and white surface (closed conformation). Secondary-structure ele-

ments involved in the domain movements are shown and colored in

cyan (apo) and orange (closed conformation). Red sticks indicate po-

sitions of the three anchor points (see main text), and magenta CPK

spheres depict the purine inhibitor. The clamping (movement 1) is

shown in the (A) overview, while the detailed view in (B) depicts the clo-

sure of the cofactor binding site (movement 2) and the repositioning of

aC (movement 3).
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Our structural analysis suggests that the correct posi-

tioning of aC helix is the most critical of the precatalytic

events. The six structures compared identified three an-

chor points that lock helix aC in the fully active conforma-

tion. Two of the anchor points form after the shifting of he-

lix aC, adding a new turn at its N terminus. This shifting

movement is not likely to be present in group I PAKs

that contain a proline residue N-terminal to aC, not allow-

ing further N-terminal extension. As a consequence,

group I PAKs rotate aC around the helical axis rather

than shifting it (Lei et al., 2005).

The most striking consequence of the described inter-

actions is that all key regulatory elements in group II

PAKs are linked. The N-terminal helix aC expansion brings

the conserved group II Arg487 (PAK5) into position for

tight interaction with the glycine-rich loop, stabilizing clo-

sure; however, in the inactive state, this residue interacts

with the phosphate moiety of the activation loop phospho-

serine, which links ATP and substrate binding. Coupling of

activation segment phosphorylation and positioning of aC

has also been observed in the tyrosine kinase IRK, where

the conformation of the unphosphorylated activation loop

is also correlated with inactive orientations of helix aC

(Hubbard et al., 1994).

Understanding the plasticity of the enzymes is also a

prerequisite for structure-based inhibitor design. Target-

ing inactive conformations of kinases led to the develop-

ment of highly selective inhibitors. The anticancer drug

Gleevec, for instance, selectively binds to an inactive con-

formation of Abl kinase (Schindler et al., 2000). In their inac-

tive states, the closely related Src family members differ in

their activation loop conformation. Consequently, Src ki-

nases do not bind Gleevec despite close sequence similar-

ity. As demonstrated in this study, the mechanism of aC

positioning in the active conformation of group II PAKs dif-

fers significantly from that of group I family members. This

activation process also influences the conformation of the

glycine-rich loop, which has been shown to regulate bind-

ing of ATP inhibitors and may even block access to the

active site completely in some kinases (Shewchuk et al.,

2000). Thus, the structural information presented here de-

scribing the plasticity of group II PAKs and the differences

to group I family members could be exploited to develop

inhibitors that are selective for this subfamily of enzymes.

In this study, we also identified several inhibitor scaf-

folds by using a fluorescence-based temperature-shift

screening assay. The 2, 6, 9-trisubstituted purine inhibitor

(CGP74514A) has been described as a potent and cell-

permeable inhibitor of Cdk1/cyclin B (Giocanti et al.,

1999; Wang et al., 2003). It has been shown to cause mi-

tochondrial damage and apoptosis in several human leu-

kemia cell lines and, as expected, leads to G2M cell cycle

arrest at lower concentrations (Aleem et al., 2005; Dai

et al., 2002; Yu et al., 2003). The identified inhibitor scaf-

folds, which inhibit PAK kinases, provide valuable starting

points for further development of more potent and selec-

tive inhibitors.

The group II PAKs have been linked to many cellular pro-

cesses important for tumorigenesis (Bokoch, 2003; Kumar
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et al., 2006; Vadlamudi and Kumar, 2003), including cell

transformation, anchorage-independent cell growth, and

apoptosis, and PAK4 is overexpressed in many cancer

types (Callow et al., 2002). In addition, PAK6 has been

reported to be responsible for regulation of androgen re-

ceptor signaling in prostate cancer (Schrantz et al.,

2004; Wang et al., 2005). The described high-resolution

structures can be utilized to optimize these compounds

further to develop selective and more potent inhibitors of

these kinases for the treatment of human diseases.

EXPERIMENTAL PROCEDURES

Cloning

Catalytic domain residues were amplified from cDNA provided by the

mammalian gene collection (MGC). PAK4 (residues 300–591) was

cloned into the SmaI site of pGEX-6P2; PAK5 (residues 425–715)

and PAK6 (383–674) were cloned into the vector pNIC28-Bsa4 by liga-

tion-independent cloning (Stols et al., 2002). The vector includes a

TEV-cleavable (*), N-terminal His6 tag (MHHHHHHSSGVDLGTEN

LYFQ*SM).

Expression and Purification

Transformed BL21(DE3) cells were grown in Luria-Bertani medium

containing 100 mg/ml ampicillin (PAK4) or kanamycin (PAK5, PAK6).

Protein expression was induced at an OD600 of 0.8 by using 1 mM iso-

propyl-thio-galactopyranoside (IPTG) at 18�C for 12 hr. Cells express-

ing His6-tagged PAKs were lysed in 50 mM HEPES (pH 7.5), 500 mM

NaCl, 1 mM PMSF, and 0.5 mM TCEP by using an EmulsiFlex high-

pressure homogenizer. After centrifugation, the supernatant was

loaded onto a Nickel-Sepharose column equilibrated in 30 ml binding

buffer (50 mM HEPES [pH 7.5], 500 mM NaCl, 5 mM imidazole, 0.5 mM

TCEP, 5% glycerol). The column was washed three times with 10 ml

wash buffer (loading buffer with 30 mM imidazole). Proteins were

eluted by an imidazole step gradient and were applied to a Superdex

200 16/60 gel-filtration column equilibrated in 50 mM Tris (pH 8),

150 mM NaCl, 5 mM DTT.

Cells expressing GST-PAK4 were lysed in 50 mM Tris-HCl (pH 8),

150 mM NaCl, 5 mM DTT. The supernatant was bound to glutathione

Sepharose, and the resin was washed with loading buffer and incu-

bated with GST-tagged PreScission protease (�50 mg per mg) for

12 hr. PAK4 protein was eluted and further purified by gel filtration.

The purified proteins were homogeneous, as assessed by SDS-PAGE

and electrospray mass spectrometry.

Crystallization

Crystallization was performed by using sitting drops, which mixed pro-

tein (8–10 mg/ml) and well solutions in 2:1, 1:1, and 1:2 ratios. PAK4

hexagonal apo crystals (2BVA) were obtained with a well solution con-

taining 1.5 M NaCl and 10% (v/v) ethanol. Tetragonal crystals of PAK4

were obtained with 0.20 M tripotassium citrate, 0.1M BTProp (pH 6.5),

20.0% PEG 3350, 10.0% EtGly. PAK6 was crystallized by using 1.60 M

magnesium sulfate, 0.1 M MES (pH 6.5). The PAK4 inhibitor complex

crystals were obtained by using 1.2 M ammonium sulfate, 15% PEG

200, and 100 mM Tris (pH 8.0). PAK5 protein apo and complex were

crystallized by using 0.20 M Na/KPO4, 0.1 M Bis Tris propane

(pH 7.5), 20.0% PEG 3350, and 10.0% etylene glycole.

Data Collection and Processing

The data were collected at the Swiss Light Source (SLS). Data collec-

tion was performed on flash-frozen crystals at 100K, and 15% glycerol

was used as cryoprotectant. Images were indexed and integrated by

using MOSFLM and were scaled with SCALA (Evans, 1993), part of

the CCP4 suite of programs. Data collection statistics and cell param-

eters are listed in Table 1.
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PAK4 and PAK6 structures were solved with molecular replacement by

using Phaser (Storoni et al., 2004) and the human PAK1 (PDB ID: 1F3M)

as a search model, whereas PAK6 was used as a model to solve PAK5.

Iterative rounds of rigid-body refinement and restrained refinement

with TLS, against maximum likelihood targets, were interspersed by

manual rebuilding of the model by using Coot (Emsley and Cowtan,

2004) and Xfit/XtalView (McRee, 1999).

Thermal Stability Measurements

Thermal melting experiments were carried out with an Mx3005p real-

time PCR machine (Stratagene). Proteins were buffered in 10 mM

HEPES (pH 7.5), 150 mM NaCl and were assayed in a 96-well plate

at a final concentration of 2 mM in a 20 ml volume. Inhibitors were added

at a final concentration of 10 mM. SYPRO-Orange (Molecular Probes)

was added as a fluorescence probe at a dilution of 1 in 1000. Excitation

and emission filters were set to 465 nm and 590 nm, respectively. The

temperature was raised with a step of 1�C per minute, and fluores-

cence readings were taken at each interval. The temperature depen-

dence of the fluorescence was approximated by the equation

yðTÞ= yF +
yU � yF

1 + eDuGðTÞ=RT
; (1)

where DuG is the difference in unfolding free energy between the

folded and unfolded state, R is the gas constant, and yF and yU are

the fluorescence intensity of the probe in the presence of completely

folded and unfolded protein, respectively (Matulis et al., 2005). The

baselines of the denatured and native state were approximated by a

linear fit. The observed temperature shifts, DTm
obs, for each inhibitor

were recorded as the difference between the transition midpoints of

sample and reference wells containing protein without inhibitor and

were determined by nonliner least-squares fit.

Enzymatic Assays

In vitro kinase assays were carried out by using 100 nM PAK and 8 mM

substrate (MBP) in phospho-buffer (50 mM HEPES [pH 7.5], 12.5 mM

NaCl, 0.625 mM MgCl, 0.625 mM MnCl). This mixture was added to di-

lute compounds such that the final inhibitor concentration was 10 mM

at 1% DMSO. Reactions were started by the addition of 20 mM ATP

mixed with 32P-ATP, carried out for 10 min at 30�C, and they were

stopped by boiling at 95�C. Samples were spotted onto P81 paper

(Whatman), washed on 0.1% phosphoric acid, and analyzed by scin-

tillation counting. PAK activity was expressed as the percent activity

compared to control (1% DMSO) reactions.

Compounds

Staurosporine was purchased from LC laboratories. All other com-

pounds were purchased from EMD Biosciences.

Supplemental Data

Supplemental Data include a comparison of group II PAK conforma-

tions and a description of the glycine-rich loop as a potential sensor

for the presence of cofactor ATP g-phosphate and are available at

http://www.structure.org/cgi/content/full/15/2/201/DC1/.
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