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Abstract 

Vast accumulations of methane hydrates have been found in suboceanic deposits and beneath the arctic permafrost.  Because of 

the large volumetric storage densities, clathrate hydrates on the deep ocean floor have been suggested as a sequestration option

for CO2.  Alternatively, CO2 hydrates can be formed in the geologic settings of naturally occurring accumulations of methane 

hydrates. This paper describes the design (via numerical simulation) of a pilot-scale demonstration test of the CO2 exchange 

production and sequestration technology for a geologic setting beneath the arctic permafrost, involving a gas-hydrate interval 

overlying a free-gas interval (i.e., Class 1 Hydrate Accumulation). 
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1. Introduction 

Gas hydrates are clathrate compounds in which water molecules encapsulate a guest molecule within a lattice 

structure.  The lattice structure of gas hydrates forms under low temperature, high pressure conditions via hydrogen 

bonding between water molecules.  Gas hydrates with methane (CH4) guest molecules are abundant as geologic 

accumulations in offshore and permafrost environments where sufficiently low temperature and high pressure 

conditions exist.  From an energy resource perspective, these geologic accumulations of natural gas hydrates 

represent a significant component of the world’s organic carbon sources.  Recent surveys by the United States 

Geological Survey (USGS) have estimated that reserves of methane in hydrate form exceed the all other fossil fuel 

forms of organic carbon [1].  Under geologic environmental conditions, the lattice structure of a gas hydrate depends 

primarily on the guest molecule [2,3].  Interestingly, the two most prevalent emitted greenhouse gases [4] carbon 

dioxide (CO2) and methane (CH4) both form sI hydrate structures under geologic temperature and pressure 
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conditions.  Whereas their clathrate structures are similar, CO2 hydrates form at higher temperatures and have a 

higher enthalpy of formation compared with CH4 hydrates [3]. 

Natural gas can be produced from geologic accumulations of natural gas hydrates either by dissociating the 

clathrate structure, yielding liquid water and gaseous methane, or by replacing the CH4 molecule with another guest.  

Conventional approaches to producing natural gas hydrate are through clathrate dissociation via: 1) thermal 

stimulation, 2) depressurization, and 3) inhibitor injection.  The thermal stimulation approach involves raising the 

hydrate temperature above the stability point, causing the hydrate to dissociate.  Thermal stimulation requires a 

continuous energy source to overcome the endothermic heat of dissociation.  Depressurization involves lowering the 

hydrate pressure below the stability point, causing the hydrate to dissociate.  Depressurization results in rapid 

hydrate dissociation, but with an associated drop in the hydrate temperature.  Without an external heat source, 

depressurization lowers the hydrate temperature to a new equilibrium condition, halting the depressurization 

process.  Inhibitor injection involves the injection of an organic or inorganic compound that shifts the hydrate 

equilibrium point to lower temperatures for isobaric conditions.  As with depressurization, inhibitor injection could 

require additional inhibitor or a heat source to compensate for the decrease in hydrate temperature with dissociation. 

Global assessments of natural gas resources have shown that gas hydrate resources exceed those of conventional 

resources, which is indicative of the potential for clathrate hydrate sequestration of CO2.  Recovery of natural gas 

from hydrate-bearing geologic deposits has the potential for being economically viable, but there remain significant 

technical challenges in converting these natural accumulations into a useable resource.  Although CO2 clathrates 

generally are not naturally as abundant as those of CH4, their occurrence forms the foundation of an unconventional 

approach for producing natural gas hydrates that involves the exchange of CO2 with CH4 in the hydrate structure.  

This unconventional concept has several potential benefits over the conventional methods: 1) reducing production 

costs, 2) maintaining mechanical stability of the geologic formation, and 3) sequestering CO2.  Whereas the 

exchange production technology would not be feasible without the favorable thermodynamics of CO2 hydrates over 

CH4 hydrates, this situation yields technical challenges for the technology in avoiding secondary hydrate formation 

and clogging of the geologic repository.  Laboratory-scale experiments have demonstrated the feasibility of 

producing natural gas and sequestering CO2 using the direct exchange technology in geologic media.  These results 

have been reproduced numerically using the STOMP-HYD simulator, which solves the nonisothermal multifluid 

flow and transport equations for mixed hydrate systems in geologic media. 

The concept of exchanging CO2 with CH4 as guest molecules in geologic accumulations of natural gas hydrates 

as a production technology was first advanced by Ohgaki et al. [5].  This concept was then extended to ethane 

hydrates by Nakano et al. [6].  Their original concept involved injecting CO2 gas into an aqueous-gas-hydrate 

system and allowing the CO2 and CH4 to equilibrate.  The greater chemical affinity for CO2 over CH4 in the hydrate 

structure, as evidenced by the higher heat of formation and equilibrium temperature, yields a mixed CO2-CH4

hydrate.  Resulting equilibrium concentrations of CO2 are greater than CH4 in the hydrate phase and less than CH4 in 

the gas phase.  If this molecular exchange technology can be realized for field production of geologic accumulations 

of natural gas hydrates, it could offer two secondary benefits; mechanical stability and mitigating global warming.  

If the exchange process is conducted without significant hydrate dissociation the mechanical stability of the hydrate-

bearing formation could be maintained.  The exchange technology would additionally represent a nearly neutral 

carbon process, sequestering one molecule of CO2 for each produced molecule of CH4, which could then be burned 

to produce energy and CO2.

Accumulations of natural gas hydrates were originally divided into three main classes by Moridis and Collett [7].  

Class 1 accumulations comprise two permeable layers; a hydrate-bearing interval overlying a mobile-gas interval.  

For these accumulations the boundary between the hydrate-bearing and mobile-gas intervals coincides with the 

lower limit of the hydrate stability zone.  Class 2 accumulations, also comprise two permeable layers, but with a 

hydrate-bearing interval overlying a mobile-aqueous interval.  Class 3 accumulations comprise a single permeable 

layer of hydrate-bearing geologic media.  In Class 2 and 3 accumulations, the hydrate bearing interval will occur 

within the hydrate stability zone.  The mobile-aqueous interval of the Class 2 accumulation can occur within or 

outside the hydrate stability zone.  More recently, Moridis and Sloan [8] proposed a fourth accumulation type 
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(Class 4), characterized by disperse, low-saturation gas hydrate deposits, lacking a confining geologic strata.  

Suboceanic gas hydrate accumulations generally are characterized as being Class 4. 

This paper investigates, using numerical simulation, the production of natural gas hydrates from geologic 

deposits via the combined processes of depressurization, thermal stimulation and direct molecular exchange of CO2

and CH4.  Numerical simulations are conducted using a five-spot well configuration with the center well being an 

extraction or injection well and perimeter wells being strictly extraction wells.  During the injection stages CO2 is 

injected as either liquid, sub-critical gas, or supercritical gas.  Liquid-CO2 is assumed to form a separate phase from 

the aqueous and gas phases, having an intermediate wettability between the aqueous and gas phases.  Two 

implementations of the numerical simulator have been developed: 1) equilibrium and 2) kinetic.  In the equilibrium 

implementation the CO2 and CH4 components (i.e., hydrate forming components) in the mobile phases (i.e., 

aqueous, liquid-CO2, and gas) are assumed to be in equilibrium with their counterparts in the immobile phase (i.e., 

hydrate).  In the kinetic implementation the CO2 and CH4 components in the mobile and immobile phases are 

tracked separately, with a kinetic rate controlling the exchange of hydrate forming components between the mobile 

and immobile phases.  In both implementations the water component is assumed to be in equilibrium between the 

mobile and immobile phases.  During this study only the equilibrium model is applied.  The objective of these 

numerical investigations is to demonstrate the feasibility of directly injecting CO2 into a natural gas hydrate bearing 

reservoir to produce CH4, where the principal concerns are production rates and energy costs. 

2. Numerical Approach and Assumptions 

Numerical simulations executed for this paper were conducted with the STOMP-HYD simulator [9].  STOMP-

HYD solves conservation equations for water mass, CH4 mass, CO2 mass, water-soluble inhibitor (salts or alcohols) 

mass, and thermal energy.  The conservation equations for CO2 and inhibitor mass are optional. The simulator 

considers mass and energy transport over three mobile phases (i.e., aqueous, gas, and liquid CO2) and four immobile 

phases (i.e., hydrate, ice, precipitated salt, and geologic media).  Hydrate properties, including cage occupancies and 

equilibrium conditions are functions of the guest molecule concentrations (i.e., CH4 and CO2).  Hydrate 

dissociation/formation are assumed to be equilibrium processes, as is the exchange mechanism for gas hydrate guest 

molecules.  The STOMP-HYD simulator solves the governing conservation equations using integral volume 

differencing on structured orthogonal grids for spatial discretization and a fully implicit formulation for temporal 

discretization.   Nonlinearities in the discretized governing equations are resolved using Newton-Raphson iteration 

with continuous property  updating.  Phase transitions (i.e., appearances and disappearances) are handled using a 

primary variable switching scheme. 

3. Conceptual Model 

The production of Class 1 through 4 hydrates using depressurization and thermal stimulation have been 

numerically investigated by Moridis and Collett [7], Moridis et al. [10], Moridis [11], and Moridis and Sloan [8].  

The Class 1 gas hydrate reservoir considered for this paper is identical to the Class 1W, Reference Case, defined by 

Moridis et al. [10], which is representative of a permafrost accumulation.  This reservoir comprises three 30-m-thick 

strata; an impermeable shale layer, overlying a permeable sandstone, overlying an impermeable shale layer.  The 

upper half of the permeable sandstone layer is gas hydrate bearing without free gas, whereas the lower half is a 

variably saturated gas-aqueous system.  Initially the gas and gas-hydrate comprise only CH4.  To maintain stable 

initial conditions, preventing the downward migration of aqueous phase and upward migration of gas phase across 

the gas-hydrate lower boundary, gas hydrate saturation dependent entry pressure model was implemented, following 

Moridis et al. [10].  The Moridis model for capillary-pressure function used a variant of the Brooks-Corey function 

[12] which included an effective-aqueous saturation dependent smoothing function, based on the error function, and 

a gas-hydrate saturation dependent entry pressure function, based on the regularized incomplete beta function:

sl =
sl slr

1 slr

=
hgl H sh( ) F sl( )

; F sl( ) = erf 60 1 sl( ) ; H sh( ) = 1+9.28
B sh;2.1, 2.2( )
B 2.1, 2.2( )

 (1) 
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where, 
 
s
l
 is the effective aqueous saturation, 

 
s
l
 is the actual aqueous saturation, 

 
s
lr

 is the residual aqueous 

saturation, 
 
hgl is the gas-aqueous capillary head (m),  is the entry-pressure head (m),  is the Brooks-Corey 

function exponent, and 
 
s
h

is the hydrate saturation.  The capillary-pressure function used for this paper altered the 

Moridis model by eliminating the smoothing function and replacing the regularized incomplete beta function with a 

sinusoid function: 

   

sl =
sl slr

1 slr

=
hgl gl H sh( )

; H sh( ) = 1+9.28 5.6075+ 4.6567 sin 3.1275 sh 1.5166( )  (2) 

where, 
 gl is the gas-aqueous interfacial tension scaling factor.  Formation properties for the permeable (sandstone) 

and impermeable (shale) strata are provided in Table 1.   

 

Table 1.  Formation Properties 

 

Parameter Value Parameter Value 

Initial Pressure @ Hydrate Interface 10.67 MPa Porosity (sandstone) 0.3 

Initial Temperature @ Hydrate Interface 13.5 C Porosity (shale) 0.1 

Intrinsic Permeability kh and kv (sandstone) 1 Darcy Dry Thermal Cond. (shale and sandstone) 0.5 W/m K 

Intrinsic Permeability kh and kv (shale) 0 Darcy Wet Thermal Cond. (shale and sandstone) 3.1 W/m K 

Gas Effective Saturation 

  

s
g
=

s
g

s
gr

1 s
lr

 
Aqueous Relative Permeability Model 

(sandstone and shale)   
k

rl
= s

l
( )

3

 

Aqueous Effective Saturation 

  

s
l
=

s
l

s
lr

1 s
lr

 
Gas Relative Permeability Model 

(sandstone and shale)   
k

rg
= s

g
( )

3

 

Liquid CO2 Effective Saturation 

  

s
n
=

s
n

1 s
lr

 
Liquid CO2 Relative Permeability Model 

(sandstone and shale)   
k

rn
= s

n
( )

3

 

 Brooks-Corey  (sandstone and shale) 1.538 Brooks-Corey  (sandstone and shale) 1.5827 m 

slr (sandstone and shale) 0.25 sgr (sandstone and shale) 0.02 

gl (sandstone and shale) 0.9804 Geothermal Gradient 0.029 C/m 

gn (sandstone and shale) 1.485 nl (sandstone and shale) 2.885 

 

A five-spot well pattern produced CH4 and sequestered CO2, using the single center well for fluid injection and 

the four perimeter wells for gas extraction.  A 500-m spacing between the injection and production wells (i.e., 

25 ha/well) is envisioned for commerical production.  For the purposes of designing a pilot-scale production 

experiment a 50-m spacing (i.e., 2.5 ha/well) was investigated numerically.  The reservoir depth of 1150 m and 

pressure of 10.67 MPa creates a condition where the equilibrium temperature for pure CO2 hydrate is lower than that 

for pure CH4 hydrate, according to Figure 1.  The production/sequestration system was simulated with a 3-

dimensional Cartesian grid that modeled  of the five-spot well system, assuming homogeneous conditions in the 

horizontal direction.  The domain was discretized into 21 x 21 x 38 = 16,758 grid blocks, all of which were active.  

The top and bottom of the domain (adjacent to the impermeable rock) were treated as constant temperature, no fluid-

flow boundaries.  The sides of the domain were treated as adiabatic, no fluid-flow boundaries. 
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Figure 1.  Equilibrium temperature as a function of pressure for pure and mixed CH4 and CO2 hydrates and formation 

temperature as a function of depth. 

4. Initial Conditions 

The initial conditions, developed by Moridis et al. [10], involved an aqueous-hydrate region overlying an 

aqueous-gas region, with a system pressure of 10.67 MPa and temperature of 13.5 C at the interface between the 

aqueous-hydrate and aqueous-gas regions (interface), with a geothermal temperature gradient of 0.029 C/m.  To 

establish hydraulic, thermal, and thermodynamic equilibrium conditions, which would be used as initial conditions  

for the production simulations, initial simulations were conducted from near-equilibrium conditions through a false 

transient to an equilibrium state.  For these simulations the domain boundaries were closed to fluid flow.  The upper 

and lower boundaries were assigned temperatures of 11.65 and 15.42 C, respectively, establishing a temperature 

gradient of 0.029 C/m with a temperature of 13.5 C at the interface.  Aqueous pressure for the near-equilibrium 

conditions was specified via the interface pressure of 10.67 MPa and an estimate of the hydrostatic gradient (-9.85 

kPa/m).  Hydrate saturation for the near-equilibrium conditions was specified as being 0.7 above the interface within 

the permeable rock and zero elsewhere.  The gas pressure for the near-equilibrium conditions was assigned a 

constant value within the aqueous-gas region of permeable rock at the maximum value (10.60 MPa) that would not 

allow gas to enter the overlying aqueous-hydrate region.  Without the capillary pressure barrier to drainage 

modification, described by Equation (2), liquid-unsaturated conditions could not be maintained under equilibrium 

conditions.  The impermeable rock was specified to be aqueous saturated, without hydrate or gas.  The aqueous 

phase was specified to be saturated with dissolved CH4 throughout the entire domain, including both the permeable 

and impermeable rocks.  The resulting equilibrium conditions included a hydrostatic pressure gradient in gas 

pressure within the aqueous-gas region of the permeable rock; a sharply decreasing gas saturation (i.e., from a 

maximum of 0.873 immediately below interface, with depth within the aqueous-gas region of the permeable rock; 

and a slightly increasing hydrate saturation and dissolved aqueous mass fraction of CH4 with depth within the 

aqueous-hydrate region of the permeable rock. 

5. Production Simulations 

The theoretical advantages of producing natural gas hydrate accumulations via CO2 injection versus 

depressurization are reduced pumped water, shorter production periods, mechanical stability of the formation, and 
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sequestration of injected CO2.  Potential disadvantage of the CO2 production/sequestration technology are 

incomplete production of CH4, from hydrate bypass or mixed hydrate formation; and pore clogging, from secondary 

hydrate formation.  To investigate the application of the CO2 injection production/sequestration technology to Class 

1 hydrate accumulations at series of numerical simulations were conducted.  A number of options exist for injecting 

CO2 into a hydrate bearing formation: 1) pure CO2 (i.e., sub-critical gas, sub-critical liquid, supercritical gas), 2) 

saturated aqueous solution, or 3) micro-emulsion.  The underlying free gas layer of a Class 1 hydrate accumulation 

makes natural gas production via CO2 injection challenging, because of the potential for hydrate bypass and 

appearance of CO2 in the effluent stream (i.e., production wells).  To avoid hydrate bypass of the injected CO2 all 

injection and production wells were screened only over the initial hydrate interval.  Fracing pressure for the hydrate 

bearing formation was estimated as 18.21 MPa using a pressure gradient of 15.83 kPa/m (0.7 psi/ft) for an injection 

depth of 1150 m.  To maintain injection pressures below the fracing pressure level an injection pressure of 15 MPa 

was assigned.  To maintain production pressures above the critical pressure of CO2 an extraction pressure of 8 MPa 

was assigned. 

5.1. Pure-CO2 Injection 

Pure CO2 injection involves the injection of only CO2 into the formation through the screened interval.  The 

advantage of injecting pure CO2 is that water pumping costs are reduced.  Two production simulations were 

conducted that involved injecting pure CO2, using injectant temperatures of 15 and 45 C.  At an injection pressure of 

15 MPa at either temperature,  CO2 enters the formation as a supercritical gas.  The applied implementation of 

STOMP-HYD simulator assumes thermodynamic equilibrium conditions, which ignores the kinetic effects of 

hydrate dissociation and hydrate guest molecular exchange.  Simulation results indicate that injecting pure CO2

produces secondary hydrate around the well, greatly reducing the permeability of the formation for injectant.  At 

either injectant temperature the region around the injection well becomes clogged with secondary mixed CH4-CO2

hydrate, which halts the further injection of CO2.  A 50:50 mass ratio of hydrate formers for mixed CH4-CO2

hydrates would be within the stability range for conditions of 15 MPa and 15 C, but would be outside the stability 

range for conditions of 15 MPa and 45 C, as shown in Figure 1.  Secondary hydrate formation was anticipated for 

the 15 C injectant.  For the 45 C injectant, secondary hydrate and formation clogging occurred, because insufficient 

CO2 fluid enters the formation prior to clogging to elevate the formation temperature above the stability point. 

5.2. Saturated-Aqueous-Solution Injection 

At an injection pressure of 15 MPa, a saturated aqueous solution has mass fractions of CO2 of 8.44% (15 C) and 

5.98% (45 C), which are significantly lower than the mass fraction of CO2 in sI hydrates of 28.45% (15 C).  The 

concept for using a dilute solution of CO2 is that the injectant water would be recycled.  Water produced at the 

extraction well would be separated from the produced CH4 and then saturated with CO2 before being reinjected into 

the hydrate-bearing formation.  As the injectant moves through the formation dissolved CO2 is exchanged with 

clathrated CH4, because the exchange is thermodynamically favored.  Injecting a CO2-saturated aqueous solution at 

15 C into the hydrate-bearing reservoir also resulted in secondary hydrate formation and formation clogging as seen 

with the injection of the pure CO2 at 15 C, shown in Figures 2 and 3.  Simulation results for the injection of a 

saturated aqueous solution at 45 C were not available for this submission of the paper, but will be available on the 

poster and the published version of this paper. 

5.3. Micro-Emulsion Injection 

 Injecting CO2 into a natural-gas-hydrate-bearing formation as an aqueous micro-emulsion is a production 

concept first proposed by McGrail et al. (13).  The original concept involved forming a microemulsion of liquid CO2

within the well casing, using a proprietary method, yielding a ratio of CO2 to water that matched the hydration 

number of sI hydrates formed with CO2.  The microemulsion is then injected into the formation at a temperature 

above the stability point of the formation CH4 hydrate, causing dissociation of the clathrate structure and gaseous 

release of the CH4.  Released gas is then displaced ahead of the emulsion injection front toward the extraction well. 
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Figure 2. Injected CO2 and water mass and produced CH4 mass as a function of time for the dissolved CO2 and  

micro-emulsion injection simulations at 15 C injectant. 

Figure 3. Hydrate saturation and CO2 hydrate mass fraction of formers at the bottom and top of the injection well  

as a function of time for the dissolved CO2 and micro-emulsion injection simulations at 15 C injectant. 
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After the formation had been produced, the injection would be stopped, and the formation would eventually cool via 

heat transfer to its ambient state, reforming CO2 hydrate in the formation.  Two simulations were conducted that 

injected a 50% volume ratio of water and supercritical CO2, using an injection pressure of 15 MPa and injectant 

temperatures of 15 and 45 C.  As with the other simulations the extraction well was maintained at 8 MPa.  The 

micro-emulsion injection option allows for CO2 to water injection ratios that span between a saturated aqueous 

solution and pure CO2 injection.  Using an injectant temperature of 15 C does not follow the protocol originally 

envisioned for the technology.  As with the other injection schemes at 15 C, the micro-emulsion injection at a 50:50 

volume ratio of water and supercritical CO2 resulted in secondary hydrate growth and formation clogging around the 

injection well, as shown in Figures 2 and 3.  Simulation results for the injection of a saturated aqueous solution at 

45 C were not available for this submission of the paper, but will be available on the poster and the published 

version of this paper. 

6. Conclusions 

Producing Class 1 hydrate accumulations using CO2 injection has the potential benefits of sequestering CO2,

shortening production time, and reducing the quantity of produced water, but also has the potential detrimental 

effect of injectant bypassing the hydrate-bearing region.  This paper investigated using CO2 and water injectants that 

ranged from pure CO2 to saturated aqueous solutions.  Simulations conducted using a 15 C injectant, resulted in 

formation of mixed secondary hydrates with formation clogging around the injectant well.  To prevent the formation 

of secondary hydrate around the well a higher temperature injectant is required, which will necessitate heat addition 

to the injectant.  Simulations conducted using a 45 C injectant will be available on the presented poster and 

published version of this paper. 
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