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Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear.
While it has been shown that the AHR is required for allmajormanifestations of toxicity, the specific downstream
changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13
genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two
rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the
TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluated doses ranging from 0 to 3000 μg/kg at 19 h after
TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13
genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain
differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did
not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1,
Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional
modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED50

equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at
least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both),
Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the
association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-
specific differences represent strong candidate mediators of Type-II toxicities.
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Introduction

The aryl hydrocarbon receptor (AHR) is a helix–loop–helix, ligand-
activated transcription factor of the Periodic, AHR nuclear translocator,
Single-minded (PAS) family. PAS proteins act in many metabolic and
developmental pathways, including regulation of circadian rhythm,
protection against hypoxia and regulation of neural development
(Gu et al., 2000). The classic pathway of AHR action begins with
its binding to a ligand, leading to heterodimerization with the aryl
hydrocarbon receptor nuclear translocator (ARNT) (Okey et al., 2005).
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This heterodimer enters the nucleus and interacts with regulatory
regions of target genes, alteringmRNA abundances of hundreds to thou-
sands of genes in a tissue and species-specific manner (Boutros et al.,
2008, 2011b; Boverhof et al., 2005, 2006; Fletcher et al., 2005; Franc
et al., 2008; Hayes et al., 2007; Ovando et al., 2006; Slatter et al., 2006;
Tijet et al., 2006; Vezina et al., 2004).

The AHR binds to and is activated by a wide variety of halogenated
and polycyclic aromatic hydrocarbons (Linden et al., 2010). Of
these, the most potent activator and most toxic congener is 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD). TCDD has been formed as an
undesirable product during the synthesis of fungicides and herbicides,
low temperature incineration, electronics recycling and paper making
(Ma et al., 2009; Ruokojarvi et al., 2000; Schecter et al., 2006; Wen
et al., 2009). Currently, the main source of production is low tem-
perature burning of organic compounds in the presence of chlorine-
containing compounds, such as waste-dump fires (Costopoulou et al.,
2010; Dyke et al., 1997). TCDD is extremely stable, remaining in the
environment for decades. This persistence, in combination with poor
metabolism due to its lipophilic nature, leads TCDD to bio-accumulate.
nse.
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It therefore represents an ongoing risk, particularly to animals at the top
of food-chains (US-EPA, 2012; Wan et al., 2010).

TCDD has myriad toxic effects in mammals and these vary among
species and even between strains within a species. Some outcomes
of TCDD-insult, such as teratogenicity, immune dysfunction, thymic
atrophy and carcinogenesis are essentially universal, although they
vary in severity across species or strains (Bock and Kohle, 2006).
Other outcomes may be species- or strain-specific. For example, one of
the most notable outcomes of TCDD exposure in humans is chloracne
whereas in laboratory animals, a rapid loss of body weight (called
wasting syndrome) and acute lethality are more pronounced (Sorg
et al., 2009; Sweeney and Mocarelli, 2000; Tuomisto et al., 1995,
1999a). The dose-sensitivity of TCDD-induced lethality in animals
varies dramatically even among rodents: hamsters have an LD50 of
1000–5000 μg/kg body weight, while guinea pigs are at least 1000-
fold more sensitive with an LD50 of 1–2 μg/kg (Pohjanvirta and
Tuomisto, 1994). Other common animal models include the L–E rat
(LD50 17.7 μg/kg), the C57BL/6 mouse (LD50 182 μg/kg) and the H/W
rat (LD50 N 9600 μg/kg) (Pohjanvirta and Tuomisto, 1994; Pohjanvirta
et al., 1999; Viluksela et al., 1996).

Much of this variability in response originates from variations in
AHR structure. For example, the differential sensitivity of L–E and H/W
rat strains is largely caused by a single nucleotide polymorphism
in the H/W Ahr that leads to aberrant mRNA splicing that produces a
protein with a modified transactivation domain (TAD) (Pohjanvirta
et al., 1998; Tuomisto et al., 1999b). Although the AHR of H/W rats
binds TCDD and alters transcription of many genes, the modified TAD
allows H/W animals to tolerate enormous doses of TCDD (Boutros
et al., 2011b; Pohjanvirta et al., 1999), while avoiding most – but not
all – of the toxic outcomes observed in L–E rats (Okey et al., 2005;
Pohjanvirta et al., 1989). Some of the toxicities that are similar in
both strains (Type-I responses) include fetotoxicity, thymic atrophy
and decreases in circulating thyroxine, while some of those specific to
L–E include acute lethality, wasting syndrome and liver toxicity
(Pohjanvirta and Tuomisto, 1994; Pohjanvirta et al., 1989, 1993).
Phenotypic responses that are different between strains, including
lethality, are considered Type-II responses (Simanainen et al., 2002,
2003). The most definitive evidence linking the AHR to toxic outcomes
derives from studies of Ahr knockout mice (Birnbaum et al., 1990;
Bunger et al., 2003; Chapman and Schiller, 1985; Fernandez-Salguero
et al., 1996; Herlin et al., 2013; Mimura et al., 1997; Vorderstrasse
et al., 2001), which are essentially unaffected by TCDD exposure.
Similarly, mice engineered to produce AHR isoforms that cannot
translocate into the nucleus (Bunger et al., 2003) or are unable to bind
to aryl hydrocarbon response elements in DNA (Bunger et al., 2008)
are largely refractory to TCDD. Lastly, mice hypomorphic for ARNT
exhibited no measured phenotypic responses to TCDD (Walisser et al.,
2004). These studies demonstrate that DNA-binding of the AHR:ARNT:
TCDD complex is essential for toxicity, implicating AHR-regulated tran-
scription as essential for pathogenesis. There are some lines of evidence
implicating non-transcriptional activities of the AHR (Li et al., 2010;
Matsumura, 2009), but the toxicological significance of these remain
to be elucidated.

While AHR-regulated transcription is a requirement for toxicity,
it is unclear which of the hundreds to thousands of regulated genes
are responsible for the toxic phenotypes. It has been suggested that
species-specific gene expression profiles mediate species-specific
toxicities of TCDD (Forgacs et al., 2013). Conversely, genes which are
TCDD-regulated in many species and tissues may be responsible for
toxic outcomes common to many species, such as cancer and other
hepatic toxicities. To identify candidates for causation of common
toxicities, we focused on a group of genes that are regulated by TCDD
in a wide range of species, which we refer to as “AHR-core” genes.
These genes are members of the [ah] gene battery, AhR-Nrf2 gene
battery and other genes that have been shown to be TCDD regulated
in multiple species (Boutros et al., 2008; Forgacs et al., 2013; Nebert
et al., 2000; Tijet et al., 2006; Yeager et al., 2009). Here, we evaluate
whether these “AHR-core” genes play a role in Type-II liver toxicity by
comparing their RNA abundance changes in TCDD-sensitive L–E and
TCDD-resistant H/W rats, using both time course and dose–response
experiments.

Methods and materials

Animal handling. Male H/W and L–E rats, 10–12 weeks of age, were
grown in breeding colonies of the National Public Health Institute, Divi-
sion of Environmental Health, Kuopio, Finland. Rats were housed in
groups of four (an entire treatment group per cage) in suspended
stainless-steel wire-mesh cages with pelleted R36 feed (Lactamin,
Stockholm, Sweden) and tap water available ad libitum. The tempera-
ture in the animal roomwasmaintained at 21 ± 1 °C, relative humidity
50 ± 10% and a lighting cycle of 12/12 h light/dark. Study plans were
approved by the Animal Experiment Committee of the University of
Kuopio and the Kuopio Provincial Government.

For the dose–response study, liver was harvested between 8:30
and 11:00 from rats treated by gavage with a single dose of TCDD or
with corn oil vehicle for 19 h. Four experimental (TCDD-treated) rats
were used for each dosage (0.001, 0.01, 0.1, 1, 10, 50, 100, 1000 or
3000 μg/kg, Supplementary Fig. 1).

For the time course study, animals were treated with a single
dose of 100 μg/kg TCDD in corn oil and the liver was harvested at the
appropriate timepoints following treatment. This dose is approximately
five times the LD50 of L–E rats, but is non-lethal for H/W rats
(Pohjanvirta et al., 1993). L–E animals were harvested at 3, 6, 10, 19,
96 and 240 h post-TCDD treatment (n = 4, 4, 4, 4, 4, 5) and H/W
animals were harvested at 1.5, 3, 6, 10, 19, 96, 240 and 384 h after
TCDD treatment (n = 3, 4, 4, 4, 4, 5, 5, 4), Supplementary Fig. 1). All
experimental time points were prior to the onset of lethality and the
treated animals displayed weight loss consistent with TCDD exposure
(Supplementary Fig. 2, Tuomisto et al., 1999a). In all instances,
tissues were snap frozen in liquid nitrogen as quickly as possible and
stored at temperatures no higher than −80 °C. One vehicle control
animal (H/W 19 h) was excluded from the final analysis since it was
determined to be an outlier (Dixon Q test, 99% confidence level) with
high levels of Cyp1a1 and Aldh3a1. Fold change values were determined
by dividing the normalized counts for the specific gene/treatment by
the mean determined for the 19 hour corn oil treated animals, for that
gene/treatment (n = 4). The 19 hour corn oil time point was used
because it was the baseline for most of the treatments and statistical
analysis of the corn oil treated animals indicated that there was no
significant difference in fold change values regardless of the corn oil
treated animal group used to calculate fold change (Supplementary
Fig. 3).

RNA isolation. RNAwas extracted from rat liver using an RNeasyMini kit
(Qiagen, Mississauga, Canada) following the manufacturer's recom-
mended protocol. RNA was quantified using a NanoDrop spectropho-
tometer. Integrity of the RNA was verified by electrophoresis on an
Agilent 2100 Bioanalyzer, using an RNA Nano 6000 total RNA assay.
All samples had an RNA integrity number greater than 8.5, indicating
minimal or no sample degradation (Supplementary File 1).

RNA analysis. RNA abundance was measured using the NanoString
nCounter system,which provides direct counts of mRNAwithin a single
100 ng aliquot of total RNA. It was selected because it provides a direct
count of the transcripts of interest, avoids bias that may be introduced
during cDNA synthesis or PCR amplifications, and requires simple sam-
ple preparation reducing the likelihood of technical errors (Prokopec
et al., 2013; Waggott et al., 2011).

RNA was diluted to a concentration of 50 ng/μL and 50 μL of each
sample was loaded into one well of a 96-well plate and sent to the
University Health Network Microarray Centre (Toronto, ON) on dry
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ice for analysis on a NanoString nCounter. Desired mRNA targets
were submitted in advance and the required CodeSet (color-coded
probes) was designed and synthesized by NanoString prior to RNA
analysis. Probe sequences were verified by BLAST analysis (Johnson
et al., 2008) against the Rattus norvegicus nr/nt database to ensure
each probe identified a single gene (June, 2010). The CodeSet and all
raw and pre-processed data have been deposited in the NCBI's Gene
Expression Omnibus (Edgar et al., 2002) as GSE43251. The resulting
data consists of direct counts for each specific molecule of interest
present in the sample. These data were compiled in Microsoft Excel
using NanoString's Raw Code Count Collector Tool for the initial
data normalization for experimental variability according to the
manufacturer's recommendations. Positive spike-in RNA control counts
were summed for each lane and the average across all lanes was taken
to produce a normalization reference. A normalization factor was
calculated for each lane using the sum of the positive spike-in RNA
control counts divided by the normalization reference. The remaining
experimental and control code counts were multiplied by this factor
to account for hybridization efficiency (NanoString Technologies,
Seattle, WA). Normalized data were then loaded into the R statistical
environment (v2.15.2) and counts were further normalized to account
for variation in the concentration of RNA in the initial sample following
the manufacturer's data analysis guidelines. The geometric mean of
the code counts for the reference genes Eef1a1, Gapdh, Hprt1, Ppia and
Sdha (Pohjanvirta et al., 2006) for each lane was calculated and the
average of these across all lanes was used as the normalization
reference. A normalization factor was then calculated and applied as
above. All pre-processing methods are available within the
NanoStringNorm (v0.9.4) package for the R statistical environment
(Waggott et al., 2011).

Statistical analysis. Data were analyzed in the R statistical environment
(v3.0.1) (Ihaka, 1996). ED50 values with 90% confidence intervals
were determined using the drc package (v2.3-7). Response curves were
fit using a four-parameter log-logistic model f xð Þ ¼ cþ d−cf g=1þ½ð exp
bð log xð Þ−eeð ÞÞ�Þ ; where b = slope at the inflection point, c = lower
limit, d = upper limit and ee ¼ log ED50ð Þ. Differences in ED10 and ED50

parameter valueswere determined between strains and p-values gener-
ated by means of approximate t-tests (Ritz and Streibig, 2012). Inter-
and intra-strain differences in mRNA abundance at each time point or
TCDD dose were determined using unpaired Student's t-tests. Calculat-
ed p-values were corrected for multiple testing using the false-
discovery rate adjustment (Storey and Tibshirani, 2003). Differences
(between strains or from basal levels) were considered significant if
two consecutive points in the time course (normalized expression
levels, not fold change) were statistically significant at p b 0.10,
resulting in a joint-probability of p b 0.01. ED10 and ED50 differences
were considered significant for p b 0.05. To determine if any genes
had an ED50 value that was statistically equivalent to Cyp1a1, the
ED50s were compared using inferential confidence intervals with
Δ = 2 × ED50 90% confidence range for Cyp1a1 (Beckstead, 2008;
Tryon and Lewis, 2008). Supplementary Files 2–9 contain the values
used for and the results of the statistical tests used for data analysis.

Visualization. The data were visualized in the R statistical environment
(v3.0.1) with the lattice (v0.20-15) and latticeExtra (v0.6-24) packages.
Error bars on all plots represent standard error of the mean.

Results

We focused on 13 “AHR-core” genes that change mRNA abundance
in response to TCDD exposure in most species and tissues (Table 1).
We profiled the hepatic mRNA abundances of these genes following
TCDD treatment in TCDD-sensitive L–E and TCDD-resistant H/W rat
strains. Both dose–response (at 19 h) and time course (at 100 μg/kg)
studies were performed (Supplementary Fig. 1).
We first compared the broad trends between sensitive and resistant
rats at both time course (Fig. 1A) and dose–response levels (Fig. 1B).
Twelve of the 13 genes responded to TCDD treatment in at least one
strain, while Cyp2s1 did not respond (did not have two consecutive
times significantly different from corn oil treated animals, p b 0.1) to
the 100 μg/kg dose of TCDD used for the time course series (Fig. 1, Sup-
plementary Fig. 4). Similar resultswere observed for the dose–response,
with Cyp2s1 being nonresponsive to all TCDD doses administered. Fmo1
was responsive to the various doses of TCDD, however the range of
responses for the dose curve was lower than that observed for later
times in the time course (Supplementary Fig. 5). This suggests that the
ED50 for Fmo1 may be better determined using a later time when the
response is maximal. Summary information for each gene is given in
Table 1; detailed per-gene abundance dose–response and time course
profiles are given in Supplementary Figs. 4–16.

Genes unchanged between sensitive and resistant rats

We defined a gene as being significantly altered between strains if
there were at least 2 consecutive time points that differed significantly
(p b 0.1, see Methods and materials) or if the inter-strain ED50s were
significantly different (p b 0.05). Of the 13 genes examined, five did
not differ significantly between the strains: Ahrr, Cyp2s1, Inmt, Tiparp
and Ugt1a1 (Supplementary Figs. 4, 6–9). There have been reports
of large intra-strain variability in mRNA abundance in basal levels;
however, our results show remarkably little variability in basal levels
and in the TCDD responsiveness of the “AHR-core” genes (i.e. small
error bars, Supplementary Fig. 17, Fig. 1). These small error bars suggest
that the basal levels and the TCDD-responsiveness of genes analyzed in
this study are essentially identical from animal to animal (Boutros et al.,
2011a).

Strain-specific differences in abundance

Several genes display clear differences in abundance when the
normalized mRNA counts are compared; however, when converted to
fold-change from basal levels, the differences are often masked or lost.
This is evident when considering Cyp1b1, where abundance differences
of very small magnitude in untreated animals leads to complete loss
of the statistically significant differences identified when considering
normalized counts (Fig. 2A compared to Fig. 2B, Supplementary Fig. 10
panel A compared to B). Since it has not been clearly shown that fold-
change values are more physiologically relevant than absolute changes
inmRNA abundance, and since that eachmay yield unique information,
it may be informative to consider both. Other studies have suggested
that absolute mRNA abundance measurement may be more relevant
than fold-change for mRNA species with widely varying basal levels
(Ruiz-Laguna et al., 2006). As a reference, fold-change for each gene
following TCDD treatment is shown in Supplementary Fig. 18.

Four genes differed significantly in absolute abundance, beginning at
very early time points and, in most cases, continued throughout the
time course (Cyp1b1, Cyp2a1, Cyp1a2 and Nqo1, Fig. 3, Supplementary
Figs. 10–13). Cyp1a2 has statistically significant inter-strain abundance
differences at the earliest time points. However, later time points and
the dose–response curve essentially overlap between the strains,
except for the abundance at the 240 hour time point, which is much
lower in L–E animals.

Three genes were observed to deviate in abundance between
strains at 10 h or later (Aldh3a1, Fmo1, Nfe2l2; Fig. 3, Supplementary
Figs. 5,14,15). Genes with later responses may be changing due to
toxicity, rather than as a direct effect of TCDD. Cyp1a1 and Cyp1b1
(Fig. 4, Table 1, Supplementary Fig. 19) displayed statistically significant
inter-strain differences in their ED50 values, indicating inter-strain
differences in sensitivity to TCDD. However, when ED10was considered,
therewere no significant inter-strain differences (p b 0.05, Supplemen-
tary File 7, Supplementary Fig. 20).

ncbi-geo:GSE43251)


Table 1
Response of “AHR-core” genes to TCDD treatment.

Gene
symbol

TCDD
response

H/WaED50

(μg/kg)
L–EaED50

(μg/kg)
Strain-specific
difference

c,jPercent
difference

d,jAbsolute
difference

Change to/from
near zero

Entrez
Gene ID

eRat-mouse

Ahrr Induced biphasicj 0.093
0.008h/1.08i

0.56f 0.15h/2.06i Nonej 39.9 64 Yes 498999 No

Aldh3a1 Induced biphasicj 0.48j 0.17h/1.33i 1.13f 0.73h/1.75i L–E higherj 59.3 28567 Yes 25375 No
Cyp1a1 Inducedj 0.013

0.008h/0.021i
0.035b 0.024h/0.051i ED50

j 12.1 14429 Yes 24296 Yes

Cyp1a2 Inducedj 0.088f 0.058h/0.132i 0.16i 0.115h/0.216i Variable/ED50
j 48.0 334367 No 24297 Yes

Cyp1b1 Induced biphasicj 7.77j 4.14h/14.60i 1.55i,b 0.86h/2.78i L–E higher/ED50
j 61.5 19296 Yes 25426 Yes

Cyp2a1 Inducedj NDf 6.20f 2.40h/16.04i L–E higherj 82.5 45985 No 24894 No
Cyp2s1 Nonej NDg NDg Nonej 58.1 19 No 308445 No
Fmo1 Repressedj NDg NDg L–E lowerj 39.6 526 No 25256 Yes
Inmt Repressedj 6.80f 3.28h/14.10i 12.48i 5.13h/30.35i Nonej 48.2 267 Yes 368066 Yes
Nfe2l2 Induced biphasicj 2.35

0.20h/27.12i
0.73i 0.21h/2.59i L–E higherj 50.3 4371 No 83619 Yes

Nqo1 Induced biphasicj 0.12
0.02h/0.71i

0.60e 0.14h/2.54i L–E higherj 76.3 18896 Yes 24314 Yes

Tiparp Inducedj 1.44f 0.33h/6.32i 5.54f 1.65h/18.60i Nonej 60.5 1260 Yes 310467 Yes
Ugt1a1 Repressedj 5.61

0.06h/476.20i
0.39 0.03h/5.57i Nonej 37.4 1046 No 24861 No

a ED50 values calculated with a 4-parameter logistic model.
b Statistically significant difference between H/W and L–E, p b 0.05.
c Absolute difference value as a percentage of the maximum normalized counts for either strain during time course.
d Difference between strains in normalized counts for time-point with the maximal difference.
e Whether gene was identified as differentially expressed in both H/W and L–E (Boutros et al., 2008).
f Significantly lower sensitivity (ED50) than Cyp1a1 (p b 0.05).
g Not determined or 90% confidence interval is very broad.
h 90% confidence interval lower limit.
i 90% confidence interval upper limit.
j Determined using normalized expression values.
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Unexpected time course profiles

Time course profiles for five of the genes had an unexpectedly
different shape than the prototypic AHR-regulated gene, Cyp1a1.
These genes had an inflection point 10 h after TCDD treatment or
later, representing an exaggeration of the original response (Table 1,
denoted by “biphasic” in the response column). Most of these genes
(Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1, Fig. 1, Supplementary Figs. 10,
13–15) also had hepatic inter-strain abundance differences in H/W
and L–E rats (Table 1, Strain Specific Difference column). Ahrr was the
only gene in this study that had a biphasic abundance pattern but was
not differentially abundant between the time courses of the two rat
strains (Fig. 1, Supplementary Fig. 6).

Genes changed from/to near undetectable levels and genes with differential
TCDD sensitivity

Following TCDD exposure, seven genes (Fig. 1A) displayed rapid-
ly changed mRNA counts from very low (b500 counts) to high
(Ahrr, Aldh3a1, Cyp1a1, Cyp1b1, Nqo1 and Tiparp, Supplementary
Figs. 6,8,10,13,14,16) or from high to very low (Inmt, Supplementary
Fig. 7). Interestingly Cyp1b1 is markedly less sensitive to TCDD
treatment than the other two Cyp1 genes studied, i.e. the dose–response
curve for Cyp1b1 is shifted to the right and the ED50 value is at least an
order of magnitude higher than that for Cyp1a1 or Cyp1a2, and is more
similar to Cyp2a1 (Table 1). When compared with our most sensitive
gene, Cyp1a1, no genes were equivalently sensitive (Supplementary
File 7), while nine genes were significantly less sensitive to TCDD in at
least one strain including Ahrr, Aldh3a1, Cyp1a2, Cyp2a1, Cyp1b1, Inmt,
Nfe2l2, Nqo1 and Tiparp (Table 1, significantly less sensitive ED50

indicated with e, Supplementary File 8).

Discussion

We hypothesize that genes responsible for L–E specific TCDD-
induced toxicities will show differential responses between the TCDD-
sensitive L–E rat and the TCDD-resistant H/W rat. To identify
genes that may be involved in toxicities common to many species we
examined a panel of “AHR-core” genes, which are TCDD-regulated in
a wide variety of species. The proteins produced by these genes
and their reported functions are outlined in Supplementary Table 1.
We considered an extensive range of TCDD doses and time points to
comprehensively profile mRNA abundances both in terms of fold-
changes relative to vehicle control and, exploiting the NanoString
platform, of absolute abundances. Genes which display similar TCDD-
induced alterations in sensitive rats and mice (Boutros et al., 2008),
but divergent ones in resistant rats (Type-II responses) represent strong
candidates tomediatemajor forms of Type-II TCDD toxicity, particularly
hepatotoxicities. Previous studies have examined AHR regulation of
many of these genes in a variety of species (Boutros et al., 2008,
2011b; Boverhof et al., 2005, 2006; Dere et al., 2011; Forgacs et al.,
2013; Franc et al., 2008; Moffat et al., 2010; Yao et al., 2012), however
this is the first comprehensive dose–response and time course study
to compare the absolute amount of liver mRNA for “AHR-core” genes
from resistant and sensitive strains.

Abundance of Cyp2s1 mRNA, a cytochrome P450 enzyme reported
to be AHR regulated in human, rat and mouse did not change following
TCDD insult; therefore, Cyp2s1 should not be considered an “AHR-core”
gene (Rivera et al., 2007; Saarikoski et al., 2005). This was unexpected
since Cyp2s1 had previously been shown to be TCDD responsive
in Sprague Dawley rat liver (Deb and Bandiera, 2010). Interestingly,
Cyp2s1 was nonresponsive to the AHR agonists 3,3′,4,4′,5-pentachloro-
biphenyl and Β-naphthoflavone in Sprague Dawley rats (Wang et al.,
2011). Similarly, it was surprising that TCDD treatment of both H/W
and L–E animals led to reduced levels of Ugt1a1 mRNA in the liver, as
validated by qPCR (Supplementary Fig. 21). Other studies examining
the abundance of Ugt1a1 in rat liver after TCDD-insult observed
increased abundance (Munzel et al., 1994; Okey et al., 2005).

Several genes displayed what we term “biphasic” time course
profiles, with a modest initial early response to TCDD treatment,
followed by an inflection point and a second phase of exaggerated
response. This pattern may indicate a different mechanism for regula-
tion or delayed recruitment of additional transcription factors to the
promoter, resulting in an altered transcription rate (Hankinson, 2005)
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Fig. 1. Summary of “AHR-core” gene mRNA abundance changes as a percent of maximal normalized expression level following TCDD treatment. Increasing dot size indicates the
magnitude of change as a percent of the maximal normalized expression level for that gene in either H/W or L–E (whichever strain has the highest expression level for that mRNA).
The left panels (A) are data from the time course and right panels (B) are data from the dose–response experiments with the species being displayed indicated by the panel title. Shading
of individual squares represents the FDR adjusted p-value for an unpaired Student's t-test comparing TCDD induced expression to the 19 hour vehicle control. Differences frombasal levels
were considered significant if two consecutive points in the time course (normalized expression levels, not fold change) were statistically significant at p b 0.10, resulting in a joint-
probability of p b 0.01.
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or by altered mRNA stability. Since this biphasic pattern occurs in both
H/W and L–E animals, it may not be directly AHR-regulated, or may
involve AHR regions conserved between the strains.

Several genes displayed a time-dependent, rapidly changing mRNA
abundance, altered from extremely low levels in untreated animals to
significantly increased levels or alternatively, from detectable mRNA
abundances to background levels following TCDD-treatment (Table 1).
Cyp1a1 and Inmt are prototypical examples of this behavior: Inmt
mRNA decreased at least 64-fold in L–E rats following TCDD exposure,
representing a decrease from about 0.22 molecules per cell to almost
zero. In rodents not exposed to AHR-agonists, Cyp1a1 and Cyp1b1 are
usually expressed in the liver at very low levels or not at all. Upon treat-
ment with TCDD, the mRNA for both of these genes becomes highly
expressed in rodent liver. This rapid and prolonged alteration in the
tissue specific transcriptional program may indirectly play a role in
the onset of toxic outcomes. Since these changes represent a drastic
shift in the hepatic metabolic program, they could sensitize the liver
to the toxic effects of TCDD-responsive genes essential for toxicity.
Indeed male Cyp1a1−/− mice have attenuated responses to TCDD
(Uno et al., 2004).

The three Cyp1 family members examined here each have been
identified as similarly abundant in two TCDD sensitive species
(Boutros et al., 2008). Cyp1a1 and Cyp1a2 are separated by approxi-
mately 14 kbp and are in a head-to-head orientation on chromosome 8
in the rat genome,whereas Cyp1b1 is on chromosome6. The abundance
of mRNA from all three Cyp1 genes was rapidly increased, consistent
with primary TCDD-induced transcriptional up-regulation via the AHR
(Harrigan et al., 2006). There were some differences, however. Cyp1a1
was similarly abundant in L–E and H/W rat across all time points
studied; a statistically significant inter-strain difference in the ED50

was observed, however, with H/W rats responding to lower doses of
TCDD. This is opposite to the response observed for CYP1A1/2 activity
(Sand et al., 2010), where L–E rats were slightly more sensitive. This
may indicate that the difference in ED50 observed between H/W and
L–E rat is not physiologically relevant. Cyp1a2was significantly different
in abundance between L–E and H/W rats at three non-consecutive
time points; the most physiologically relevant of these likely being the
difference at the 240 hour time point, which displayed a decreased
abundance in L–E (Fig. 3). This very large late decrease probably reflects
a response to overt toxicity, but is notably absent in Cyp1a1 and Cyp1b1.
In contrast Cyp1b1 displayed inter-strain differences at all time-points
(Fig. 3). It is interesting that while the L–E rats had approximately
three times more Cyp1b1 mRNA counts than H/W rats at the 240-
hour time point, there was no difference observed between the two
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Fig. 2. Summary of “AHR-core” gene inter-strainmRNAdifferences following TCDD treatment. The upper panels (A) are L–E percent change–H/Wpercent change values. The lower panels
(B) are inter-strain differences displayed as fold-change from the level of corn oil-treated control animals (19 h) in log2 space (fold-change L–E–fold-changeH/W, Supplementary Fig. 11).
Shading of individual squares represents the FDR adjusted p-value for an unpaired Student's t-test comparing the inter-strain differences. None of the inter-strain fold-change values had a
p-value b 0.1.
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rat strains when considering the data as fold-change from basal
levels (Supplementary Fig. 10, panel B). The higher number of mRNA
molecules may lead to considerably higher absolute amounts of
CYP1B1 protein in the liver. It has been reported that TCDD treatment
increases CYP1B1 and CYP1A1 protein levels in Sprague Dawley rat
liver (Walker et al., 1998) and the magnitude of increased protein has
been reported to correlate with increasing levels of mRNA in other
mammalian species (Hirakawa et al., 2007). Cyp1b1 expression has
been correlated with increased cancer risk (Sissung et al., 2006) and
reducing Cyp1b1 expression may be protective (Hayes et al., 1996;
Shimada et al., 1996).

Aldh3a1 has higher abundance in the TCDD-treated L–E liver at time
points after 19 h post treatment. ALDH3A1 can play a cyto-protective
role, detoxifying aldehydes such as the products of lipid peroxidation.
Elevated Aldh3a1 levels in L–E rats may be a response to TCDD-
induced oxidative stress and lipid peroxidation (Canuto et al., 1994;
Korkalainen et al., 1995; Pohjanvirta et al., 1990), and Aldh3a1 may be
regulated by mechanisms distinct from canonical AHR signaling
(Dunn et al., 1988; Korkalainen et al., 1995). Metabolism of compounds
such as 4-hydroxyl-2-nonenal by ALDH3A1 promotes cell proliferation
by removal of these toxic inhibitory compounds (Canuto et al., 1994;
Muzio et al., 2012). ALDH3A1 regulates proliferation, development
and maintenance of stem cells and cancer stem cells (Ma and Allan,
2011), and its activity is increased in cancer cells (Canuto et al., 1994;
Patel et al., 2008). In addition, ALDH3A1 inhibition reduces cancer cell
proliferation (Moreb et al., 2008). Taken together, dysregulation of
Aldh3a1 by TCDD exposure may promote liver carcinogenesis.
Nfe2l2, also known as NRF2, is a transcription factor which regulates
genes whose products work to protect against damage from reactive
oxygen species. The abundance profile for Nfe2l2 is essentially identical
between the two strains until the 19 time-point, when L–E animals
display a strong secondary induction of Nfe2l2, which is substantially
attenuated in H/W animals. As a result the mRNA abundance of Nfe2l2
in L–E rats increases approximately two-fold more than in H/W rats.
This higher mRNA level may reflect a higher level of oxidative damage
caused by TCDD treatment (Pohjanvirta et al., 1990). This biphasic
response was observed for several genes that displayed strain-
dependent differences in regulation (Table 1). In addition to its essential
dimerization partner, ARNT, the activated AHR may recruit additional
transcription factors to genes that exhibit biphasic responses, subse-
quent to the initial activation. NRF2 is required to achieve complete
activation of several AHR-regulated genes, including Nqo1 (Yeager
et al., 2009), and may be involved in some of the secondary biphasic
responses. While mRNA levels are up-regulated by AHR activation,
NRF2 abundance is tightly regulated: it is only activated in the presence
of ROS (Kohle and Bock, 2007). Since Nqo1mRNA abundance increases
only in the presence of active NRF2, increased mRNA counts in L–E rats
may reflect increased ROS formation in the sensitive L–E rat. Nqo1
mRNA abundance also increased in H/W rat, peaking in 10 h at
much lower absolute amounts than for L–E. This is surprising, as ROS
have not been detected in H/W rat at time-points as early as 10 h
(Pohjanvirta et al., 1990).

The Fmo1 gene product is a flavin containing monoxygenase that
is involved in the metabolism of any soft nucleophile which can gain
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access to the enzyme's active center. FMO1 is found in the endoplasmic
reticulum as an activated enzyme containing a highly reactive C(4a)
hydroperoxide derivative of FAD. Fmo1 is a member of a family of flavin
monoxygenases in vertebrate species (Shephard and Phillips, 2010).
FMO1 is not expressed in adult human liver; however, it is present in
adult kidney and fetal liver, which may be involved in the outcomes of
prenatal exposure. Fmo1 is present in the adult liver of mice and rats
(Shephard et al., 2007). In mice, TCDD treatment leads to increased
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hepatic Fmo1 mRNA in males but not in females (Boutros et al., 2008;
Celius et al., 2008). In rat, treatment with TCDD leads to a decrease
in hepatic abundance, occurring more rapidly in L–E animals, with
statistically significant inter-strain differences in abundance at 96 h
and later. While it is uncertain if the reduced levels of Fmo1 have
physiological relevance in the context of TCDD toxicity, Fmo1−/− mice
develop and behave normally, although with defects in imipramine
metabolism by N-oxidation (Hernandez et al., 2009).

Of the 13 genes considered in this study, five (Ahrr, Cyp2s1, Inmt,
Tiparp and Ugt1a1) were similarly abundant in H/W and L–E rats
in liver samples from both time course and dose–response analyses
following TCDD treatment (Fig. 1, Supplementary Figs. 4, 6–9). We
expect that genes with an essential role in L–E specific toxicity would
have a different abundance profile between these strains, and thus the
5 similarly-abundant genes are not likely to play a direct role in the
onset of L–E-specific pathological liver changes resulting from TCDD
exposure. Five genes (Ahrr, Aldh3a1, Cyp1b1,Nfe2l2 andNqo1) displayed
unexpected changes in abundance we considered to be biphasic
responses, displaying a response to TCDD at early time points which is
subsequently enhanced (Supplementary Figs. 6, 10, 13–15). In most
cases this secondary response was greater in the L–E animals, suggest-
ing mechanistic differences in regulation or effects of toxicity. In
addition, some genes displayed switch-like changes, indicating radical
alterations in the hepatic transcriptional program (Ahrr, Aldh3a1,
Cyp1a1, Cyp1b1, Inmt, Nqo1 and Tiparp, Supplementary Figs. 6–8, 10,
13, 14, 16). None of these “AHR-core” genes had an ED50 value signifi-
cantly equivalent to or lower than that of Cyp1a1. Nine genes had
lower sensitivity to TCDD treatment in at least one strain, responding
to TCDD at doses significantly higher than those required to stimulate
the most sensitive gene in this study, the prototypic AHR-regulated
gene, Cyp1a1 (Table 1, Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both),
Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E)
and Tiparp (both). ED50 values for these geneswere 10–100 folds higher
than for Cyp1a1, suggesting differential mechanisms of AHR regulation.

While the goal of this paper was to identify genes which are candi-
dates for Type-II toxicity in L–E rat liver, candidate genes identified herein
may play a role in common TCDD toxicities in many species and organs.
For instance, several cytochrome P450s have been implicated in TCDD-
induced increases in eicosanoid levels in mice. It is probable that our
panel of genes plays a role in this effect (Bui et al., 2012). It will be inter-
esting to determine whether our candidate genes play a role in the varia-
tions observed in developmental toxicities (Huuskonen et al., 1994),
including those for cardiovascular development (Wang et al., 2013).

In summary, we identify 7 genes that display strain-specific, time-
dependent changes in response to TCDD (Fig. 3, Aldh3a1, Cyp1a2,
Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Two genes show significant
inter-strain differences in dose–response (Fig. 4, Cyp1a1 and Cyp1b1).
These genes form a complex, interconnected web, involved in metabo-
lism of xenobiotic compounds and steroid hormones, responses to
reactive oxygen stress and proliferative pathways. Each of these has
previously been shown to be altered by TCDD exposure; however, the
specific genes mechanistically involved in the observed metabolic
dysregulation leading to toxicity are unknown. By identifying genes
differentially abundant in TCDD-sensitive and -resistant rats, this
study takes a step toward identification of specific genes underlying
toxic outcomes in laboratory species. Future work will determine if
these mRNA abundance changes lead to altered protein abundance,
enzyme activity and sub-cellular localization. It will also be interesting
to explore the possibility that these genes may be involved in TCDD-
related toxicities in other organs and during other developmental
stages.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.taap.2013.12.004.
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