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A b s t r a c t - - A n  approximate method is developed for solving singular integral equations of the first 
kind, over a finite interval. The singularity is assumed to be of the Cauchy type, and the four basically 
different cases of singular integral equations of practical occurrence are dealt with simultaneously. The 
presently obtained results are found to be in complete agreement with the known analytical solutions 
of simple equations. The methodology of the present work is expected to be useful for solving singular 
integral equations of the first kind, involving partly singular and partly regular kernels, as well as 
equations of the second kind involving similar kernels, with appropriate adjustments regarding the 
endpoint behaviours of the unknown function. ~) 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - I n t e g r a l  equations, Cauchy type, Singular kernels. 

1. I N T R O D U C T I O N  

Singular integral equations of the first kind, with a Cauchy type singular kernel, over a finite 
interval can be represented by the general equation 

f f _ l  f(t)[ko(t,x)+k(t,x)]dt = g(x),  - 1  < x  < 1, (1.1) 
1 

where 

ko(t, x) - x) t) 0) (1.2) 
t - - x '  

and k are  regular  square - in tegrab le  funct ions  of t he  two var iables  t and x, and  the  kernel  k0 

c lear ly  involves t he  s ingula r i ty  of  t he  Cauchy  type.  In tegra l  equa t ions  of  form (1.1) and o ther  

different  forms occur  in var ie t ies  of  mixed  b o u n d a r y  va lue  p rob lems  of  m a t h e m a t i c a l  physics 
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which include problems of two-dimensional deformations of isotropic elastic bodies involving 
cracks (see [1-3]) and scattering of two-dimensional surface water waves by vertical barriers 
(see [4-8]) and other related problems. 

The simplest integral equation of the form (1.1) is 

~ f( t)  dt = g(x), (1.3) 
1 $ - x  

for which k(t,x) = 1 and k(t,x) = 0 (see [1,3]), and there are four basically important and 
interesting cases of equation (1.1), even under such simplifying assumptions on the nature of the 
kernel (i.e., when k = 1 and k = 0), as given by the following. 

CASE (I). f(x)  is unbounded at both the endpoints x = +1. 

CASE ( I I ) .  f(x)  is unbounded at the end x = -1 ,  but bounded at the end x = +1. 

CASE (III). f(x)  is bounded at the end x = -1 ,  but unbounded at the end x =  +1. 

CASE (IV). f(x)  is bounded at both the endpoints x = +1. 

It is well known (see [1,3]) that the complete analytical solutions of the singular integral 
equation (1.3) in the above four cases can be determined by using the following formulae: 

Ao 1 f l  (1 - t 2) 1/2 g(t) 
Case (I): f(x)  = (1 - -  X2) 1/2 7r 2 (1 - x2) 1/2 ~-1 (t - x) dr, (1.4) 

where A0 is an arbitrary constant, 

Case (II): f(x) = -Tr'l dr, (1.5) 

Case (III): f(x) = -Tr zl dt, (1.6) 

Case (IV): (1 - x 2 )  g(t) dr, (i.7) 
1 (1 - t2) 1/2 (t - x) 

the solution existing in Case (IV), if and only if 

_1 g(t) (1.8) 
1 (1 -~-)1/2 dt=O. 

Guided by the analytical results available, as given by expressions (1.4)-(1.7), for the solution 
of the simple singular equation (1.3), as well as by utilizing the idea (see [9]) of replacing the 
integrand by an appropriate approximate function, we explain, in the next section, a numerical 
scheme that can be developed and implemented, for obtaining the approximate solutions of the 
general singular integral equation (1.1). The particular case of equation (1.3) follows quite easily 
and the known analytical solutions are recovered in the cases of simple forms of the forcing 
function g(x), being polynomials of low degree. 

2. T H E  A P P R O X I M A T E  S C H E M E  

We shall represent the unknown function f(x) in the form 

f(x)  = h,(x)A,(x) 
( 1  - x2) 1/2' (r = 1, 2, 3, 4), (2.1) 

where hr (x) is a well-behaved function of x in the interval - 1  < x < 1, and A1 (x) = 1, in Case (I), 
A2(x) = 1 - x, in Case (II), A3(x) -- 1 -t- x, in Case (III), and A4(x) -- 1 - x 2, in Case (IV). 
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Then we approximate the unknown function hr(x) by means of a polynomial of degree n, given 
by 

hr(x) ~ c r)xJ , (r = 1,2,3,4), (2.2) 

in the four cases as mentioned above, by using a "Chebyshev approximation", using the zeros 
xj (j = O, 1, 2 , . . . ,  n) of the Chebyshev polynomial Tn+l(x) = cos[(n + 1)arccos(x)] (see [10]) in 
[-1,1]. 

Using the approximate form (2.2) of the function hr(x) along with the representation (2.1), in 
the original integral equation (1.1), we obtain 

j__~0 cj~ ) /~(t)k(t,  x)tJ 1 Xr(t)k(t, x)t j 
(1 - t . )  112 (t - x) . - 1  - ( 7 - ~  = 9(x), (2.3) 

(r = 1,2,3,4), ( - l < x  < 1). 

In the above equation (2.3), we next use the following "Chebyshev approximations" to the kernels 
k(t, x) and k(t, x), given by (for fixed x) 

~(t,x) ~ ~ ~p(~)t., 
,=0 (2.4) 
s 

k(t, z) ~ ~ kq(x)e, 
q=0 

with known expressions for kp(x) and kq(x), obtainable in terms of the points tp, tq, where 
- 1  < to < tl < " "  < t,~ < 1 and - 1  < to < tl < . . .  < ts < 1, to,t l , . . . , tm being the zeros of 
T,~+l(t) in [-1, 1]. We thus obtain the following functional relation to be solved for the unknown 
constants cj (j = 0, 1 , . . . ,  n): 

i; . ,,_ (2.~) j=0  q=0 1 

( -1  < x <  1). 

Now, using the notations 

i-~ " t p + j  ~r(t) dt-~ u~)j(x) (2.6) 

and 

i ;  tq+jX'(t) dr=- (2.7) (~) 
1 (1 - t2) 1/2 "Yq+J' 

(,-) 
where the up+j (x) can be determined to be certain polynomials by using standard contour in- 

tegration and where - (') is a constant, obtainable in terms of the J-functions, we obtain, from [q+j 
equation (2.5), 

EcJ r) kp(X)U j(x)-t- kq(x)'y~j =g(x ) ,  ( r = 1 , 2 , 3 , 4 ) ,  - - l < x < l .  (2.8) 
j=O q=0 

Setting x = xt, l = 0, 1, 2 , . . . ,  n in relation (2.8), we obtain the following system of ( n + l )  × ( n + l )  
linear equations for the determination of the unknown constants c~ ~), (j = 0, 1, 2 , . . . ,  n): 

n 

v'~ cj.(r)c~jj(r) = gt, (l = O, 1, 2. . . ,  n), (r = 1, 2, 3, 4), (2.9) 
j=O 
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where 

and 

gt = g(xz) (2.10) 

m 8 

~j,1 = + E kq(Xl)'Yq+j. (2.11) 
p=0 q=0 

Solving the system of equations (2.9) and utilizing relations (2.1) and (2.2), we determine the 
approximate solution of the singular integral equation (1.1) in the form 

(~) j 
c i z  

f(x) ~ ),,(x) - - - -  (r = 1,2,3,4). (2.12) 
j=0 (1 - X2) 1/2' 

We observe that if the functions kv(x), kq(x), and g(x) in relation (2.8) are replaced by their 

Chebyshev ~pproximants, then the unknown constants c~ ") can be determined, any desired accu- 
racy, by comparing coefficients of like power of x from both sides. This is illustrated in the next 
section through simple problems. 

3. P A R T I C U L A R  C A S E S  A N D  E X A M P L E S  

For the simple equation (1.3), we select in the first instance the forcing term g(x) to be a 
polynomial of degree one, i.e., 

g(x) = bo + blX, ( -1  < x < 1), (3.1) 

with b0 and bl known constants. We first observe that due to (1.8), we must have for Case (IV) 
that 

b0 = 0, (3.2) 

whereas b0 can be a nonzero constant in the other three Cases (I)-(III), for the existence of 
solutions. Then, using the facts that, for equation (1.3), 

/¢(t, x) = 1 and k(t, x) = 0, (3.3) 

along with relations (2.4)-(2.7) and (2.11), we obtain (by using a standard contour integral 
procedure, as explained in Gakhov's book [1, Problem 18, p. 81]) that 

( , )  A ( , )  , ( 3 . 4 )  ~j,l---~j (x t )=TrPP xJ-lA,(x) 1 - - ~ ]  

(PP[v(x)] representing the principal part of the expansion of v(x) for large x) and equation (2.8) 
reduces to the simple polynomial relation 

~ _(r)~ (~1 cj ~j (x) = bo + blx, (r = 1,2, 3, 4), (3.5) 
j=0 

so that we can determine the unknown constants c~Y ) directly, by just comparing the coefficients 
of various powers of x from both sides of equation (3.5). There is thus no need to solve the system 
of equations (2.9) in this simple situation. The following expressions are easily found: 

j = 0  j = l  

~1)  0 71" 

u~ 2) -7r 7r(1 - x) 

~(4) ( 1 )  
j --TrX 7r -- X 2 

j = 2  

7rx 

X 

j = 3  . . .  

7r - - ~ - ~ - x 2 - x  3 . . .  

7r + ~ + x 2 + x  3 . . .  

~2 

(3.6) 
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The constants c~ ~) can then be determined easily and the final forms of the unknown function f(x) 
agree with the known results obtainable from relations (1.4)-(1.7). 

Let us illustrate this for the case r = 4. We get from equation (3.5) 

,~(4)U(4) r,~'~ = 

or 
C~4)(--TFX)"}-C~ 4) [--71" (292--~)]  2¢-C~4)[--Tr (X3-- 2 ) ]  q- . . . .  bo.drbl x. 

By equating similar powers of x from both  sides of the equation, and taking into account (1.8), 
one obtains 

C(4) 71" : b0 = 0, 
1 2 

c(04)[--7r] '~ C~4)[2] = bl, 

c~4) = 0, j = 2, 3 . . . .  

giving as a result C(o 4) = -bl /% @.4) : 0, j : 1, 2 , . . . .  The result for f(x) follows from (2.1),(2.2) 
and ),4(x) = 1 - x  2, i.e., 

s(x) = -b l  (1 - ~2)~/~, 

which is also the exact value obtained by (1.7) for g(x) given by (3.1). 
As a second simple example, we consider the equation 

fl[  ] 
-1 ~ - x  + ( t + x )  f(t) dt=g(t),  - 1  < x < 1, (3.7) 

which corresponds with k(t, x) = 1 and k(t, x) = t + x. So, one gets 

k0(x) = 1, 

k0(z) = z, 

o (r) f ~r(t)¢ u(°OJ(x)-~Y : ~-1 ( 1 -  t2-~i-~; - x) 

rjr) f/ tJa (t) 
= l(1-t- .et, 

/2 (r) tJ+ltr( t )  
"l+j"(r) ~ l j+ l  = 1 ~ - _  t---~)l/2 dr, 

~l(x)=~2(x) . . . . .  0, 

k l ( x ) = l ,  k2(x)=k3(x)  . . . . .  0, 

dr, 

where j = 0, 1, 2, . . . .  Let us consider in detail the case r = 1. This results in 

f 1 (1 - t---2) 1/2 dt. 

In particular, we find 

8 '  

(3.8) 
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(1) = 0 
uo 7 

(1) = n 
Ul 7 

u2 (l) = nx, 0) = u3 

Thus, using (2.11), one gets for r = 1, 

“Al (l) = U?)(Xl) + Xl^i,(l) + -yj:‘l, 3 (j,Z=O,1,2,3 ,... ), 

which for j = 0, 1,2,3, reads as 

or by introducing (3.8), 
(1) _ 

QO,l - rx1, 

(1) _ 37r 
Q’l,E - 5’ 

(1) _ E 
% - SXl’ 

(3.9) 

(3.10) 

Finally, by choosing n = 3, we have to solve system (2.9) for Case (I), T = 1, i.e., 

2 
(1) (1) _ cj aj,z - a, (I = O,l, 2,3). (3.11) 

j=o 

Now in the special situation when g(x) = 1, equation (3.7) can be expressed as 

with 

I -~~=o+Po)+p~x, 
1 1 

PO = - s tf(t) & 111 = - 
-1 I 

f(t) dt. 
-1 

(3.12) 

(3.13) 

We can easily solve equation (3.12), along with special conditions (3.13), by utilizing relation (1.4), 
in Case (I), and we find that f(x) is given by 

f(x) = B” (1 - xy2 + g [x - Bonx2] ) (3.14) 

where Bo is an arbitrary constant. 
Also, by utilizing the system of equations (3.11), with gl = 1, for 1 = 0, 1,2,3, we obtain that, 

for any four chosen values of ~1 (-1 2 ~1 5 l), 

co (l) = Bo, (1) = J- 
Cl 

(1) = -2 
c2 jBO 

and ~2) = f 

, 
(3.15) 

where Bo is an arbitrary constant. 
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Finally, by using constants (3.15) in relation (1.2) in Case (I), i.e., for r = 1, we obtain the 
same expression (3.14), which is the exact solution for equation (3.7), in the special situation 
when g = 1. 

The reason behind the matching of our approximate solutions with the exact ones of the special 
problems considered here as examples is that  the forcing function is a polynomial and that we 
have taken a sufficiently large enough value for n, in our method. 

Numerical solution of system (2.9) has not been pursued in the present paper. 
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