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SUMMARY

At every cell cycle, faithful inheritance of metazoan
genomes requires the concerted activation of thou-
sands of DNA replication origins. However, the ge-
netic and chromatin features defining metazoan
replication start sites remain largely unknown. Here,
we delineate the origin repertoire of the Drosophila
genome at high resolution. We address the role of
origin-proximal G-quadruplexes and suggest that
they transiently stall replication forks in vivo. We
dissect the chromatin configuration of replication or-
igins and identify a rich spatial organization of chro-
matin features at initiation sites. DNA shape and
chromatin configurations, not strict sequencemotifs,
mark and predict origins in higher eukaryotes. We
further examine the link between transcription and
origin firing and reveal thatmodulation of origin activ-
ity across cell types is intimately linked to cell-type-
specific transcriptional programs. Our study un-
ravels conserved origin features and provides unique
insights into the relationship among DNA topology,
chromatin, transcription, and replication initiation
across metazoa.

INTRODUCTION

Maintenance of cellular identity critically relies on the faithful

transmission of the parental genome through DNA replication

and a reestablishment of the epigenome (Alabert and Groth,

2012). Perturbation of this finely orchestrated process poses a

major threat to genome stability, thus linking aberrant DNA repli-

cation to several human diseases (Zeman and Cimprich, 2014).

In the circular chromosome of bacteria and archea, DNA repli-

cation starts from a single locus termed replication origin (Mott

and Berger, 2007). In contrast, eukaryotic DNA replication re-

quires the concerted activation of thousands of replication ori-

gins (Leonard and Méchali, 2013). The firing of a eukaryotic

origin is preceded by the orderly recruitment of protein factors
to potential initiation sites. In G1 phase, the origin recognition

complex (ORC) binds replication origins and, along with the

help of Cdc6 and Cdt1, nucleates the pre-replication complex

(pre-RC) through the loading of an inactive form of the mini-

chromosome maintenance (MCM) helicase. At the onset of

S-phase, Dbf4-dependent kinase (DDK) and cyclin-dependent

kinases (CDKs) catalyze sequential phosphorylation events,

which recruit initiation factors. These in turn stimulate MCM ac-

tivity, complete replisome assembly, and trigger the initiation of

DNA synthesis, a process referred to as origin firing (Masai et al.,

2010). Whereas 60 years of genetic and biochemical dissection

have elucidated much of the activation cascade underlying

origin firing, the mechanisms that target replisomes to replica-

tion origins remain poorly understood, raising the question of

which sequence and chromatin features define origins in vivo.

A comprehensive answer to this question is missing, partly

because, prior to the genomic era, only a handful of origins

were precisely mapped (Leonard and Méchali, 2013), and partly

because isolation and characterization of transient replication

intermediates are experimentally challenging (reviewed in

Gilbert, 2010). The isolation of small nascent leading strands

(SNSs, Bielinsky and Gerbi, 1998) currently is considered the

most reliable method to map replication origins (Leonard and

Méchali, 2013).

Recent high-throughput approaches coupled SNS purification

with tiling arrays (SNS-ChIP) (Sequeira-Mendes et al., 2009;

Cayrou et al., 2011) or next-generation sequencing (NGS,

SNS-seq) (Besnard et al., 2012; Picard et al., 2014), enabling

systematic origin mapping genome-wide. Particularly, origin

profiling in four human cell types (Besnard et al., 2012) identified

thousands of active origins and suggested that cell-type-specific

origin-usage signatures are responsible for the observed plas-

ticity of replication programs. However, despite considerable ef-

forts, these works fell short in identifying a eukaryotic consensus

sequence and converged to associate G-rich elements and

G-quadruplexes (G4s) (Maizels andGray, 2013) to a variable frac-

tion of initiation sites, suggesting that features beyond nucleotide

sequence define metazoan replication origins. Cooperation be-

tweengenetic elements andepigenetic features is therefore likely

to be key for origin function, but chromatin configurations of repli-

cation start sites remain largely unexplored.
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In this study, we delineate the origin repertoire of the

Drosophila melanogaster genome at an unprecedented resolu-

tion. We examine the role of origin-proximal G4s and provide ev-

idence that these DNA secondary structures act as replication

fork barriers in vivo. We carefully dissect the chromatin configu-

ration of replication start sites, and demonstrate that specific

DNA shape and chromatin configurations, as opposed to strict

sequence specificity, mark and accurately predict replication

origins in higher eukaryotes. Finally, our study reveals that differ-

ential origin usage across cell types is tightly connected to cell-

type-specific transcriptional programs, thus providing a means

to couple chromatin processes crucial for the maintenance of

cellular identity.

RESULTS

High-Resolution Mapping of Drosophila Replication
Origins
Upon origin firing, two nascent leading strands extend from a

short RNA primer and emanate bidirectionally from the origin.

SNS-seq aims at selectively isolating these covalent RNA-DNA

hybrids, whose 50 ends define the site of replication initiation.

In the SNS purification protocol, origin-proximal SNSs are first

size-separated from Okazaki fragments and then enriched by

lambda-exonuclease (Lexo) digestion of non-RNA-primed

DNA. As this 50 to 30 processive nuclease exhibits very weak ac-

tivity on ribonucleotides, SNSs are protected from digestion

while contaminating DNA species are degraded. However,

even in rapidly dividing cells, SNSs account for only �0.002%

of total genomic DNA (Gilbert, 2012). Accuracy and resolution

of origin detection, therefore, critically depend on efficient

degradation of contaminant, unreplicated DNA. Moreover, in

the absence of other DNA species, the relative abundance of

SNSs from all origins firing throughout S-phase is expected to

reflect their firing efficiency within a cell population, thus allowing

estimates of aggregated firing probabilities (Gilbert, 2010). Treat-

ment with Lexo has proven essential in eliminating contamina-

tion and previous work enriched for SNS through two or three

rounds of Lexo digestion (Cayrou et al., 2011; Besnard et al.,

2012; Picard et al., 2014).

Here we adopted an enhanced sensitivity SNS purification

protocol (Cayrou et al., 2011; see Experimental Procedures) to

map active replication origins genome-wide in two Drosophila

cell lines, the late embryo-derived S2 and the neuronal-derived

Bg3 cells, whose epigenomes have been profiled extensively

by the modENCODE project (Celniker et al., 2009). For each

cell type, we obtained highly pure SNS preparations from two

biological replicates by subjecting size-selected genomic DNA

to up to five rounds of Lexo digestion (Figure S1B, inset). High-

coverage, saturating deep sequencing of these SNSs yielded a

total of 119 and 251 million reads aligning to the Drosophila

genome for S2 and Bg3 cells, respectively (Figure S1A). This

led us to identify 7,268 and 8,212 high-confidence replication or-

igins in S2 and Bg3 cells (Figure 1A), respectively, whose replica-

tion start sites (RSSs) were defined as the summit of highly

resolved origin peaks (Figures S1G–S1I). Furthermore, position

and firing efficiency of a subset of origins were confirmed by

qPCR (Figure S1B; Table S1).
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Notably, 73%–81% and 69%–75% of origin peaks were inde-

pendently detected within S2 and Bg3 biological replicates,

respectively (Figures S1D and S1E). These values not only

compare favorably to previous studies, but also exceed the tech-

nical reproducibility of recently published SNS-seq data in hu-

man K562 cells (Picard et al., 2014). Moreover, SNS-seq signals

exhibited a nearly perfect correlation (r = 0.98) across biological

replicates when computed in the union of all origin peaks from a

given cell type (Figure S1F). To verify the accuracy of our origin

mapping, we compared our results with previously published da-

tasets. S2 and Bg3 origins covered a total of 6.9 and 6.4 Mb,

respectively, a considerably smaller fraction of the Drosophila

genome than the 27.3 Mb spanned by 6,184 origins previously

identified in Drosophila Kc cells (Cayrou et al., 2011; Figures

1A, 1E, and S1G). In addition, <14% of S2 and Bg3 origin peaks

sufficed to recall >72% of modENCODE early-origin regions

(EORs) (Eaton et al., 2011; Figure 1B), which were mapped by

BrdU immunoprecipitation fromG1/S-synchronized cells and re-

sulted in broad initiation zones. Our data finely resolved the

composition of initiation zones exhibiting significantly higher

origin scores than regions exclusively identified bymodENCODE

(Figures 1C and 1E for an example), suggesting that the remain-

ing low-confidence events contain dormant origins that do not

fire in an unperturbed S-phase (Zeman and Cimprich, 2014).

Taken together, these results demonstrate the high quality and

unmatched resolution of our origin mapping, whichmarkedly ex-

pands the origin repertoire of the Drosophila genome to 14,005

distinct genomic loci.

Modulation ofOrigin Activity, Not Site Selection, Defines
Cell-Type-Specific Replication Programs
Next, we analyzed the overlap among S2, Bg3, and Kc origins.

We found 16%–20% of origin peaks common to all three cell

types (constitutive origins) and 35%–45% of origin sites acti-

vated by at least two cell types. This overlap is significantly larger

than expected by chance (p < 0.001, Figure 1A) and indicates a

preferred origin localization across cell types. Previous work re-

ported that cell-type-specific origins were on average poorly

used (Besnard et al., 2012). However, whether firing of these

sites was restricted to the cell type of detection or whether these

origins are also marginally used in other cell types remained un-

clear. To address this question, we estimated firing efficiencies

by integrating SNS-seq signals within all detected origin peaks

and in ten matched background sets (see Experimental Proce-

dures). In line with previous reports (Besnard et al., 2012), we

found that constitutive origins exhibited on average the highest

efficiency values across the entire origin repertoire (Figure 1D).

However, cell-type-specific origin peaks were not only charac-

terized by low efficiency in the cell type of detection, but they

also yielded SNS-seq signals well above background in other

cell types (Figure 1D). This result indicates that virtually all origins

we identified fire in each Drosophila cell type but with character-

istic frequencies. Cell-type-specific origins, therefore, could

rather be termed cell-type-preferred origins, thus reflecting

cell-type-specific preferences for low-efficiency origins. Our re-

sults strongly suggest that modulation of origin activity, not the

selection of origin sites, is likely to define cell-type-specific repli-

cation programs in Drosophila.



Figure 1. High-Resolution Mapping of the Drosophila Origin Repertoire

(A) Percentage overlaps of origin peaks identified in S2, Bg3, and Kc (Cayrou et al., 2011) Drosophila cells and comparison of observed pairwise overlaps (lines)

with random expectations (boxplots) are shown (n, total number of origin peaks).

(B) Percentage overlaps of S2 and Bg3 origin peaks and modENCODE EORs are shown.

(C) Origin scores of EORs overlapping with S2 and Bg3 origins (common) or solely identified by modENCODE (specific) are shown.

(D) Efficiency of S2 and Bg3 origins partitioned and color-coded according to (A). Background estimates are shown.

(E) A representative snapshot shows the SNS-seq coverage in S2 and Bg3 cells from two biological replicates and detected origin peaks. A single EOR (green)

spans most of this 175-kb genomic region. Kc (gray) and constitutive (black) origins are also shown (p values are from Wilcoxon rank-sum test). See also

Figure S1.
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Figure 2. A G4 Signature at S2 Replication Origins

(A) Spatial distribution of G4 motifs within ±2 kb of S2 RSSs is shown.

(B) Same as (A) for strand-specific annotation of G4 L1–15 motifs. Arrows

indicate peak distances (base pairs) from the RSS.

(C) S2 SNS-seq signals within ±2.5 kb of origin-associated G4 L1–15 motifs

occurring on the plus (left) and minus (right) strands, ranked by coefficient of

variation. Bottom shows the average of the signals above (Ori+) and at origin-

negative (Ori�) G4 motifs. Arrows indicate the direction of the leading strand

facing the G4.
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Origin-Proximal G4s Act as Transient Replication Fork
Barriers In Vivo
Recent work investigated the role of G4s in DNA replication (Val-

ton et al., 2014; Castillo Bosch et al., 2014), yet the potential

contribution of G4 structures to replication initiation remained

controversial. Here we examined the association between G4s

and origins genome-wide.

We predicted G4 occurrences in the Drosophila genome and

used the loop size (L) to define nested classes of G4 motifs. We

found a significant association between origins and predicted

G4s as compared to random expectation (p < 0.001, Fig-

ure S2A), with 9% and 22% of S2 origins overlapping 7% and

5% of L1–7 and L1–15 G4 motifs, respectively. G4-associated

origins were more efficient than G4-negative origins (Fig-

ure S2B). This result is not mediated by colocalization with

transcription start sites (TSSs, Figure S2C), which do not signif-

icantly associate with origins inDrosophila (p = 0.81, Figure S2D;

Cayrou et al., 2011). We then examined the position and

orientation of G4 motifs with respect to S2 origins. The align-

ment of G4-associated origins relative to their RSSs revealed

a strong positional preference (Figure 2A), with strand-specific

occurrences of G4s peaking at 240–300 bp from RSSs and

largely restricted to their flanking regions (Figures 2B, S2E,

and S2F).

Next, we quantified the spatial distribution of SNS-seq signals

within a 5-kb region centered on each G4 L1–15 motif and

partitioned G4 occurrences by strand and association with S2

origins. We observed a skewed distribution of SNSs at origin-

proximal G4s, with most of the signal contributed by RSSs

located downstream and upstream of G4 motifs mapping to

the plus and the minus strands, respectively (Figure 2C). How-

ever, we noted that the SNS signal was not only asymmetrically

distributed at these G4 sites, but it also sharply dropped exactly

at the G4 position (Figure 2C). Thus, we reasoned that our data

might capture G4-proximal replication fork-stalling events and

that, if this is the case, only synthesis of the leading strand repli-

cating the G4 template should be affected.

To test this hypothesis, we set out to indirectly monitor the

progression of replication forks emanating from origin-associ-

ated G4s by purifying, barcoding, and deep sequencing

SNSs of increasingly larger sizes (Figure 3A). Two sequencing

libraries were prepared for each of three gradient fractions,

for a total of 298 million reads aligning to the Drosophila

genome (Figure S3A). Fractions 4 (shortest DNA molecules), 5

(intermediate), and 6 (largest) independently identified 4,505,

6,448, and 5,814 origin peaks, respectively, most of which

(>81%) overlapped in two or more fractions (Figures S3B and

3B). The SNS enrichment of a subset of origin peaks was

further confirmed by qPCR and negatively correlated with

SNS sizes (Figure S1C; Table S1). SNS-seq signals in the union

of origin peaks were highly correlated across fractions (r =

0.94–0.98, Figure S3C). Moreover, >70% of origins detected

by all fractions (n = 3246) overlapped S2 origins previously
(D) Model describes how origin-proximal G4 motifs could orient (black arrows)

replication forks. Leading strands (long arrows) and Okazaki fragments (short)

replicating the plus (red) and minus (blue) strands are indicated. See also

Figure S2.



Figure 3. Origin-Proximal G4s Stall Replica-

tion Forks In Vivo

(A) An outline of the experimental strategy used

to indirectly monitor replication fork progression

at origin-associated G4s. Fractions 4–6, corre-

sponding to marker lanes 4–6, were individually

purified and subjected to two sequential rounds of

T4 PNK phosphorylation and Lexo digestion. Two

sequencing libraries were prepared for each sam-

ple and origin peaks were called on their union.

(B) A representative snapshot of the single-fraction

SNS-seq coverage. Origin peaks identified in each

fraction and S2 origin peaks from standard SNS-

seq experiments are shown.

(C) Average single-fraction SNS-seq signal within

±2.5 kb of origin-associated G4 L1–15 motifs

occurring on the plus (left) and minus (right) strands

is shown.

(D) Two representative G4 motifs occurring on

opposite strands are shown.

(E) Model describes how origin-proximal G4 motifs

could act as replication fork barriers. Origin-prox-

imal G4s pause the synthesis of the nascent lead-

ing strands replicating the G4 template. See also

Figure S3.
identified in separate biological replicates (Figure S1D), thus

demonstrating the high sensitivity of our approach. These

data allowed us to quantify the relative contribution of individual

fractions to the SNS profile previously observed at G4 motifs

(Figure 2C). Strikingly, we found that, while leading strands

traveling away from the G4 motif extend normally, DNA synthe-

sis on the strand replicating the G4 template is blocked at the

G4 site (Figures 3C and 3D for an example). This finding sug-

gests that most origin-proximal G4s are folded at the time of

origin activation and function as replication fork barriers in vivo

(Figure 3E).
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ADNAShape Signature ofMetazoan
Replication Origins
With the high resolution of our data, it

was possible to revisit the sequence

characteristics of replication origins that

have been elusive in lower resolution

studies. We started by examining the

local DNA sequence composition at

RSSs. Interestingly, nucleosome-repel-

ling AAAA polynucleotides and AA dinu-

cleotides (Kaplan et al., 2009; Tillo and

Hughes, 2009) were symmetrically

distributed around RSSs, with depletion

of these elements marking both the

RSS and two proximal sites localized

within 50 bp (Figure 4A). Moreover,

depletion of poly(A) stretches at flanking

regions was accompanied by features

characteristic of nucleosome container

sites, such as a central core of GC-rich

sequences and a moderate decrease in

AT content (Figure 4B; Tillo and Hughes,
2009). In contrast, RSSs reside at the global minimum in GC

content and at a local maximum in AT content (Figure 4B),

suggesting an enrichment of TpA base-pair steps, which are

characterized by the weakest base-stacking interactions

among all possible dinucleotides (Rohs et al., 2009). Interest-

ingly, nucleosome containers similarly marked RSSs of human

HeLa replication origins (Figures S4A and S4B), thus indi-

cating that this feature is conserved across higher eukaryotes.

Taken together, these results strongly suggest an increase in

conformational flexibility of RSSs and immediately adjacent

regions.
–834, May 5, 2015 ª2015 The Authors 825



Figure 4. Specific DNA Shape Features

Mark Metazoan Replication Origins

(A) Relative frequency of AAAA polynucleotides

and AA dinucleotides within ±250 bp of S2 RSSs is

shown.

(B) Same as (A) is shown for AT and GC

dinucleotides.

(C–F) Average of DNA shape features within ±1 kb

of RSSs for constitutive Drosophila origins, back-

ground regions, and TSSs. The latter were

extended while preserving orientation. Solid lines

are Loess fitted curves from single-nucleotide

resolution shape predictions (dots). Boxplots of

average feature values within 500-bp windows

(thick black lines) are shown (bottom) (p values are

from Wilcoxon rank-sum test). See also Figure S4.
To further test this hypothesis, we generated high-throughput

predictions of DNA shape features at origins (Zhou et al., 2013).

Strikingly, a specific DNA shape signature common to

Drosophila (Figures 4C–4F) and human (Figures S4C–S4F) ori-

gins emerged, characterized by reduced helix twist and

increased propeller twist, minor groove width, and roll. A

decrease in helix twist (Figure 4C) indicates helical unwinding,

which renders bending and other DNA deformations energeti-

cally more favorable (Chen et al., 2013). The increase in propeller
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twist (Figure 4D) suggests a reduction in

inter-base pair hydrogen bonds in thema-

jor groove, which is the main stabilizing

force for the formation of rigid poly(A) ele-

ments (Rohs et al., 2009). This, in turn, has

been correlated previously with widening

of the minor groove at the corresponding

positions (Figure 4E; Hancock et al.,

2013). Moreover, the local increase in

roll (Figure 4F) suggests an enrichment

in pyrimidine-purine base-pair steps,

such as TpA dinucleotides, thus gener-

ating weak stacking interactions that

enhance local flexibility of RSSs (Rohs

et al., 2010). Together, these data provide

compelling evidence that degenerate

sequence features dictate a conserved

DNA structure that is likely to play a key

role in origin function.

The Chromatin Composition of
Drosophila Replication Origins
Previous studies noted increased chro-

matin accessibility at sites of early replica-

tion inDrosophila (Bell et al., 2010;MacAl-

pine et al., 2010) and identified DNase

I-hypersensitive sites (DHSs) as a deter-

minant of replication initiation in human

cells (Gindin et al., 2014). In line with these

studies, S2 origins were significantly

associated with DHSs (p < 0.001, Fig-

ure 5A), and their firing efficiency posi-
tively correlated with local chromatin accessibility (Figure 5B).

Moreover, averaging of DNase-seq signals across 5-kbwindows

centered on RSSs revealed a strong enrichment for DNase I-di-

gested fragments at origins as compared to randomized

genomic regions (Figure 5C). At first glance, these results are

incompatible with a nucleosome container signature at initiation

sites, and this apparent contradiction prompted us to examine

the spatial distribution of DNase-seq signals across RSSs. To

our surprise, we found a striking difference between chromatin



Figure 5. The Chromatin Composition of

Drosophila Replication Origins

(A) Percentage overlap of S2 origin peaks with

DHSs and random expectation are shown.

(B) Efficiency of S2 origins localizing within (+) or

outside (�) DHSs is shown.

(C) Average DNase-seq enrichment within ±2.5 kb

of S2 RSSs and within ten sets of randomized

genomic regions (Rand). The thick gray line traces

average background values.

(D) Spatial distribution of SNS-seq signal within

±2.5 kb of S2 RSSs (top), metaprofiles comparing

origins with ten sets of randomized genomic re-

gions (middle), and further partitioning of the signal

above in four timing classes (L, late S-phase; M,

mid; E, early) based on replication timing quartiles

(bottom) are shown.

(E) Same as (D) is shown for MNase-seq.

(F and G) Same as (C) is shown for the indicated

features (p values are from Wilcoxon rank-sum

test). See also Figure S5.
accessibility of RSSs and their flanking regions. Indeed, while the

latter exhibit clear features of open chromatin, a sharp reduction

in DNase I-digested fragments was seen at the RSS (Figure 5C).

These results reconcile our observations and led us to posit that

a rich, spatially organized chromatin configurationmarks eukary-

otic origins.
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To test this hypothesis, we set out to

survey the chromatin landscape of repli-

cation origins at an unprecedented reso-

lution. First, we compiled a comprehen-

sive representation of the chromatin

landscape of S2 cells comprising 85

chromatin features profiled by the

modENCODE project (Celniker et al.,

2009) or independent studies (Table S2).

Second, we analyzed the spatial distribu-

tion of each feature within 5-kb windows

centered on inferred RSSs or in ten sets

of matched control regions at 50-bp reso-

lution. The potentially confounding con-

tribution of TSS-associated chromatin

features was limited by excluding origin-

TSSs from the analysis. Third, as chro-

matin features do not uniformly distribute

across replication-timing compartments,

we partitioned origins and control regions

in four timing classes (from early to late

replicating) based on replication-timing

quartiles. This allowed us to probe for ev-

idence of timing-specific chromatin sig-

natures by directly comparing matched

timing classes.

As expected, origins were strongly en-

riched for SNS compared to control re-

gions, with SNS-seq signals sharply

peaking at the inferred RSS positions

(Figure 5D). However, nearly no difference
in the average SNS-seq signal was observed across timing clas-

ses, indicating that firing efficiency does not correlate with repli-

cation timing at the single origin level. Next, we focused on direct

and indirect measurements of nucleosome occupancy. Interest-

ingly, while the genomic regions flanking the RSSs exhibit back-

ground MNase-seq signals (Figure 5E) and histone H3/H4
–834, May 5, 2015 ª2015 The Authors 827
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enrichments (Figures 5F and S5A), RSSs correspond to posi-

tions of high nucleosome occupancy, a feature that is shared

across timing classes. Moreover, we found that nucleosomes

at RSSs are decorated by histone modifications, such as lysine

mono-methylation and acetylation. H3K9me1, H3K23me1, and

H4K20me1, a PR-Set7-dependent histonemodification that pro-

motes loading of the pre-RC at origins (Tardat et al., 2010),

sharply peaked at RSSs (Figures 5F and S5B). Intriguingly,

enrichment of thesemarks was not limited to early replicating re-

gions (Figure S5B), suggesting that initiation sites could be

invariably bookmarked by these modifications. In contrast,

pre-RC binding was restricted to the accessible chromatin re-

gions flanking RSSs (Figures 5F and S5C), in line with the

concept that ORC-mediated pre-RC nucleation requires direct

contact with the DNA template (Masai et al., 2010) and occurs

adjacent to RSSs (Lombraña et al., 2013).

Rapid nucleosome turnover has emerged as a distinguishing

feature of both promoters and origins (Deal et al., 2010), and

binding of chromatin remodelers was previously correlated

with early replication timing in Drosophila (Eaton et al., 2011; Co-

moglio and Paro, 2014). In agreement, members of different re-

modeling complexes and the histone chaperone Spt16, a core

component of the facilitates chromatin transcription (FACT)

complex, were markedly enriched at origins (Figures 5F and

S5D), with the highest values throughout early replicating, active

chromatin. However, while the overall enrichment of these pro-

teins largely varied across timing classes, RSSs were invariably

marked by the highest occupancy and exhibited similar enrich-

ments relative to flanking regions in each timing class (Fig-

ure S5E). Finally, as the correlation between transcription and

origin firing remains elusive, we leveraged our high-resolution

data to examine local transcriptional outputs at origins. Strik-

ingly, analysis of the spatial distribution of both total and poly(A)+

RNA-seq signals at origins revealed conspicuous transcription at

RSSs, once again, irrespective of their replication timing (Figures

5G and S5F).

Chromatin Landscape and Transcriptional Output
Predict Origin Activity of CG-Rich Regions
Several CpG islands (CGIs) in mammals and CG-rich regions

(CGRs) in Drosophila share the potential to initiate DNA replica-

tion (Cayrou et al., 2012a; Besnard et al., 2012). Indeed, 18% of

S2 and 22% of Bg3 origin peaks were significantly associated

with CGRs (p < 0.001, Figure 6A). However, only 6%–37% of

origin CGRs are highly efficient, constitutive origins (Figures 6A
Figure 6. Origin Activity of CGRs Is Predicted by Chromatin Landscap

(A) Percentage overlaps of origin peaks associated with CGRs in S2, Bg3, and Kc

and Bg3 origin peaks and CGRs (lines) with random expectation (boxplots) are s

(B) Two representative snapshots of the S2 SNS-seq coverage from two biologica

Constitutive origins (black) are also shown.

(C) Spatial distribution of SNS-seq signal within ±2.5 kb of S2 origin CGR midpo

negative CGRs (Ori�) are shown.

(D) Same as (C) is shown for MNase-seq.

(E) Same as bottom of (C) is shown for the indicated features.

(F) An outline of the modeling strategy used to classify CGRs is shown.

(G) ROC curves and AUC values for lasso models trained on the indicated sets

selected by bootstrap-lasso. Bars are color-coded according to coefficient sign

(H) S2/Bg3 RNA-seq fold changes for the indicated classes of origin CGRs are s
and 6B), raising the question of which features might favor or

prevent replication initiation at these sites. Here we asked

whether the local chromatin context at CGRs correlates with

their firing potential.

We started by contrasting the chromatin landscape of origin

CGRs active in S2 cells (Figure 6C) with that of origin-negative

CGRs. Intriguingly, contrary to our expectation, we found that

chromatin was overall similarly configured across CGRs, irre-

spective of origin activity (Figures 6D, 6E, and S6A). A few note-

worthy features, therefore, likely render the chromatin configura-

tion of origin CGRs compatible with efficient origin firing:

(1) higher chromatin accessibility and higher pre-RC loading

proximal to the CGR center (a proxy for the RSS), (2) higher

nucleosome occupancy, and (3) markedly higher levels of

Spt16 throughout the entire origin region that sharply peaked

at the CGR center (Figure 6E). Moreover, while origin-negative

CGRs were on average poorly transcribed, origin CGRs were

strongly enriched for RNA-seq reads (Figure 6E).

These findings led us to test whether chromatin configurations

and transcriptional outputs could predict the firing potential of

CGRs. To this purpose, we trained binary classifiers based on

lasso logistic regression (Tibshirani, 1996), using DNA sequence

content (k-mers, k % 4), chromatin feature enrichments, and

RNA-seq signal at CGRs as predictors. A test set of CGRs that

was not previously seen by themodels was used to evaluate per-

formances (Figure 6F, see Experimental Procedures). Interest-

ingly, while the DNA sequence content of CGRs was a poor pre-

dictor of origin activity (area under the receiver operating

characteristic curve, AUC = 0.59), chromatin features and tran-

scription were able to accurately classify CGRs (AUC = 0.78).

Moreover, amore-complexmodel combining genetic and epige-

netic features did not perform better than epigenetic features

alone (AUC = 0.78), indicating that these two sets of features

are highly redundant. Next, we unbiasedly assessed the impor-

tance of individual predictors by estimating feature selection

probabilities with bootstrap-lasso (Comoglio and Paro, 2014).

Intuitively, the more a feature is required for accurate predic-

tions, the higher its selection probability. Our analysis identified

RNA-seq, H3K36me1, and RNA polymerase II (Pol II) as top-

ranked, positive predictors of origin firing at CGRs. In contrast,

local GC content and H4K16ac were stably selected, negative

predictors of origin activity (Figure 6G, inset). Further analysis

of the H4K16ac distribution at CGRs revealed a striking contrast

between early- and late-replicating origin CGRs, which were

depleted and enriched for this mark, respectively (Figure S6B).
e and Transcriptional Output

(Cayrou et al., 2011) cells, and comparison of the observed overlap between S2

hown (n, total number of CGRs).

l replicates, origin peaks, and poly(A)+ RNA-seq coverage across several CGRs.

ints (top) and metaprofiles (bottom) comparing origin CGRs (Ori+) with origin-

of features. The inset shows selection probabilities of the top-ranked features

s (positive, red; negative, blue) and absolute value of coefficient Z scores.

hown (p values are from Wilcoxon rank-sum test). See also Figure S6.

Cell Reports 11, 821–834, May 5, 2015 ª2015 The Authors 829



Figure 7. Differential Origin Activity Mirrors Differences in Cell-Type-Specific Transcriptional Programs

(A) Spatial distribution of S2 SNS-seq signal within ±2.5 kb of RSSs of origin peaks solely identified in Bg3 cells (top) and metaprofiles (bottom) comparing all S2

origin peaks with these sites are shown.

(B) Same as (A) is shown for MNase-seq.

(C and D) Same as bottom of (A) is shown for the indicated features.

(E) Scatter plot shows S2 and Bg3 RNA-seq signals at DAOs that were more efficiently used by S2 (DAO+) or Bg3 (DAO�) cells (triangles, constitutive origins;

circles, origin peaks solely detected in one cell type). Opacity reflects the statistical significance of differential origin activity and is proportional to -log10-

transformed adjusted p values.

(F) S2/Bg3 RNA-seq fold changes of equally activated origins (unchanged) and of differentially activated ones are shown (p values are from Wilcoxon rank-sum

test).

(legend continued on next page)

830 Cell Reports 11, 821–834, May 5, 2015 ª2015 The Authors



As the RNA-seq signal was stably selected by all models, we

investigated whether differential expression of origin CGRs

could explain differential usage of these sites across cell types.

To this end, we computed the S2/Bg3 RNA-seq fold change of

origin CGRs that efficiently fired in both cell types or that were

efficiently activated only in one of the two. Intriguingly, while

the former were on average similarly transcribed in S2 and Bg3

cells, transcription of the latter was significantly upregulated in

the cell type of efficient activation (Figure 6H). Taken together,

these results establish a tight coupling between transcription

and origin firing at origin CGRs.

Differential Origin Activity Mirrors Differences in Cell-
Type-Specific Transcriptional Programs
Bg3-preferred origins exhibited poor, yet highly significant, firing

efficiency in S2 cells (Figure 1D). Indeed, analysis of S2 SNS-seq

signals at these sites indicated that virtually all Bg3-preferred or-

igins also fire in S2 cells (Figure 7A). Therefore, we reasoned that

a systematic comparison between these low-efficiency sites and

S2 origin peaks could shed light on poorly understood epigenetic

determinants of origin firing.

Dissection of the chromatin configuration of these two origin

sets revealed an enrichment of H3K9me3, Su(var)3-9, and

increased binding of insulator proteins (Figure S7A) at Bg3-

preferred origins in S2 cells compared to S2 origin peaks, sug-

gesting that these sites are preferentially embedded within

constitutive heterochromatin in S2 cells. However, despite their

heterochromatic localization, the distinctive chromatin signa-

ture previously identified at S2 origin peaks invariably marked

Bg3-preferred origins in the S2 epigenome (Figures 7B and

7C). In fact, Bg3-preferred origins shared several features

with efficient origins, including accessible flanking regions as

well as high H4K20me1, Spt16, and chromatin remodeler levels

(Figures 7C and S7B). Conversely, a markedly lower transcrip-

tional output distinguished Bg3-preferred origins from S2 origin

peaks (Figure 7D), suggesting that a chromatin environment

less permissive to transcription might suffice to prevent effi-

cient origin firing irrespective of local chromatin cues. These re-

sults, along with convergence of transcription and replication

programs at CGRs, prompted us to test whether differential

origin activity across cell types could similarly mirror differ-

ences in the cell-type-specific transcriptional outputs

genome-wide. To this end, we identified 5,917 differentially

activated origins (DAOs, see Experimental Procedures) be-

tween S2 and Bg3 cells. Notably, DAOs encompassed 38%

of constitutive origins and >49% of origins efficiently firing

only in one cell type at a very stringent significance threshold

(adjusted p value % 1e-5). When S2 and Bg3 RNA-seq signals

were compared at DAOs, a clear-cut correlation emerged be-

tween differential origin activity and transcriptional output (Fig-

ure 7E). Indeed, while equally activated origins were similarly

transcribed in S2 and Bg3 cells (Figures 7F and S7C), DAOs

that were more efficiently used by S2 cells were, in turn, signif-
(G) ROC curves and AUC values for origin classifiers trained on the indicated se

ranked features selected by bootstrap-lasso and used to train the simplified mod

blue) and absolute values of coefficient z-scores.

(H) Same as (G) is shown for constitutive and HeLa-specific human origins. See
icantly more transcribed in this cell type than in Bg3, with the

opposite trend being observed at DAOs more efficiently used

by Bg3 cells (Figure 7F).

DNA Shape and Epigenetic Features Accurately Predict
Active Origins in the Drosophila and Human Genomes
Next, we asked whether the identified genetic and epigenetic

characteristics of replication origins could discriminate active

replication initiation sites from the rest of theDrosophila genome.

To this end, we trained lasso origin classifiers on DNA k-mers

and shape features, chromatin feature enrichments, and tran-

scriptional output, using the same learning scheme of CGR clas-

sifiers (Figure 6F).

Intriguingly, DNA shape features alone not only exhibited a

moderately high predictive power (AUC = 0.71), but they also

outperformed DNA sequence content (AUC = 0.66) in classifying

constitutive origins (Figure 7G). Moreover, chromatin feature en-

richments and transcription were able to generate accurate

origin predictions (AUC = 0.83). Further inclusion of k-mers

onlymarginally improvedmodel performances (AUC= 0.84) (Fig-

ure 7G). Indeed, no k-mer was consistently selected in this more-

complex model. Conversely, a simplified origin classifier solely

based on the nine most stably selected features (selection prob-

ability R 0.8), including RNA-seq signal, six chromatin features,

and two DNA shape features (Figure 7G, inset), generated

remarkably accurate predictions (AUC = 0.80, Figure 7G). These

results led us to examine whether local DNA shape and tran-

scription at origins could similarly predict active origins in the hu-

man genome. Strikingly, a classifier solely based on helix twist,

propeller twist, and RNA-seq signal was not only able to discrim-

inate active origins from the rest of the human genome, but it also

outperformed the Drosophila origin classifier at both constitutive

(AUC = 0.93) and HeLa-specific (AUC = 0.87) origin peaks (Fig-

ure 7H). Interestingly, model performances correlated with the

DNA shape profiles observedwithin these origin sets, with poorly

efficient origins exhibiting a less-pronounced DNA shape signa-

ture at RSSs (Figure S4).

DISCUSSION

Origin specification in higher eukaryotes involves mechanisms

other than simple replicator-initiator interactions (Leonard and

Méchali, 2013), yet the genetic and epigenetic features that

specify replication origins in vivo remain enigmatic. ORC is the

first replication factor to bind origins but it lacks a sequence-spe-

cific bindingmotif (Gilbert, 2010). Interestingly, studies have sug-

gested that DNA topology rather than sequence motifs might

mediate nucleation of the pre-RC at origins. Mainly, Drosophila

ORC exhibits much higher affinity for negatively supercoiled

DNA than for linear or relaxed DNA in vitro (Remus et al.,

2004), and human ORC binds preferentially to G4-forming RNA

and single-stranded DNA (Hoshina et al., 2013). Moreover, these

findings are reminiscent of observations in bacteria where
t of features in Drosophila. The inset shows selection probabilities of the top-

el. Bars are color-coded according to coefficient signs (positive, red; negative,

also Figure S7.
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negatively supercoiled DNA coordinates replication initiation

(Mott and Berger, 2007).

By high-throughput predictions of DNA shape, our study dem-

onstrates that a specific DNA topology, characterized by

increased conformational flexibility of RSSs, marks both

Drosophila and human replication origins. This relaxed DNA

conformation likely serves two important functions. First, posi-

tioning of nucleosomes at the RSS, previously observed at effi-

cient mammalian origin CGIs (Lombraña et al., 2013), is likely

to be weaker in this region, thus favoring nucleosome displace-

ment. Formation of atypical nucleosomes at RSSs could also

contribute to this process. Second, melting of the double helix

at the RSS is energetically assisted, further facilitating initiation.

Interestingly, while enhanced DNA flexibility similarly marks

Drosophila (Figure 4) and human (Figure S4) origins, the

sequence composition of RSSs is remarkably different between

these two organisms. Indeed, while Drosophila RSSs are locally

AT-rich, high GC content is found at human RSSs (Figure S4B).

Intriguingly, the increased GC content of human RSSs might

reflect a role for cytosine methylation of CpG dinucleotides,

which is widespread in mammals but not Drosophila (Takayama

et al., 2014), in granting conformational flexibility to human origin

sequences, thus functionally replacing TpA base-pair steps

(Lazarovici et al., 2013). Together, these findings indicate that

by integrating over degenerate sequence features, DNA shape

appears to represent a universally conserved origin bookmark.

A confounding feature of metazoan origins, however, is that

mechanisms of origin specification are likely not sufficient in

defining origin activity. Origin firing is intrinsically stochastic at

the single-cell level (Bechhoefer and Rhind, 2012; Cayrou

et al., 2011), yet aggregated firing probabilities within a replicon

could be modulated by extrinsic factors. A major question in the

field is which cis- and trans-acting factors influence these prob-

abilities. G4s and noncoding RNAs (Ge and Lin, 2014) are likely

candidates. G4s have been proposed to orient replication forks

and enhance the efficiency of origin firing at the chicken bA pro-

moter (Valton et al., 2014), but they are not sufficient for origin

activation. Our data suggest that origin-associated G4s deter-

mine the precise position of replication initiation at a subset of or-

igins (Figure 2D). However, single-fraction SNS-seq experiments

indicated that synthesis of the leading strand pauses at origin-

associated G4 motifs in vivo (Figure 3), despite the presence of

Pif1 and other G4-unwinding helicases (Maizels and Gray,

2013). Replication fork stalling therefore might be responsible

for the observed accumulation of SNSs at G4-associated origins

(Valton et al., 2014). Moreover, it provides an alternative explana-

tion to the repeatedly observed, yet enigmatic, higher firing effi-

ciency of these sites (Figure S2B; Besnard et al., 2012; Valton

et al., 2014). Our finding is unlikely to be a technical artifact. First,

SNS purifications underwent up to five rounds of Lexo digestion.

Second, SNSs were absent from non-dividing cells and

degraded upon RNase or alkali treatment (Cayrou et al., 2011,

2012b). Third, recent work based on independent assays re-

vealed transient replication fork stalling at exogenous G4 se-

quences in vitro (Castillo Bosch et al., 2014).

Whereas most studies have focused on the relation between

chromatin features and replication timing (Bell et al., 2010; Eaton

et al., 2011; Gindin et al., 2014), little is known about the chro-
832 Cell Reports 11, 821–834, May 5, 2015 ª2015 The Authors
matin configuration of metazoan origins. Moreover, conflicting

evidence has been reported on the role of transcription in origin

firing (Sequeira-Mendes et al., 2009;Martin et al., 2011; Lubelsky

et al., 2014). An answer to this question likely depends on the

genomic scale at which conclusions are drawn. Here we show

that a specific chromatin configuration similarly marks efficient

and poorly used origins, irrespective of replication timing (Fig-

ures 5, 6, and 7). However, differential transcription at RSSs dis-

criminates active from inactive origin CGRs, explaining differen-

tial usage of these sites (Figure 6), and reflects differential origin

activity across cell types (Figure 7). These findings reinforce the

convergence of transcriptional and replication programs at repli-

cation origins, and they support amodel in whichDNA shape and

chromatin features primarily define origin localization. Transcrip-

tional output at RSSs, in contrast, likely contributes to modulate

aggregated firing probabilities, which could be directly reflected

in the number of MCM molecules recruited at the origin site

(Bechhoefer and Rhind, 2012).

While our study does not establish a causal link between tran-

scription and origin firing, we anticipate that the genome-wide

datasets reported here will facilitate mechanistic studies of the

interplay between transcription and origin function in higher

eukaryotes.

EXPERIMENTAL PROCEDURES

Cells and Cell Culture

Drosophila S2-DRSC cells and ML-DmBG3-c2 cells were cultured at 25�C in

145-mmplates (Greiner) at a density of 1.53 106 cells/ml in Schneider’s Insect

Cell Medium (Sigma S0146) and Shields and Sang M3 insect medium (Sigma

S3652) with 10 mg/ml insulin (Sigma), respectively, both supplemented with

10% fetal bovine serum (FBS, Pansera ES).

SNS Purification

SNS fragments were isolated essentially as described in Cayrou et al.

(2011), with the following modifications. Adjustments were made according

to SW-41 Ti rotor specifications (Beckman Coulter) and centrifugation was

carried out at 4�C and 26,700 rpm for 21 hr. DNA fragments of 0.5–2.5 kb

were collected, purified, and subjected to four/five rounds of T4 PNK (Fer-

mentas) phosphorylation and lambda Exonuclease (Fermentas) digestion.

SNSs were then prepared for sequencing by digesting the RNA-primer,

second-strand synthesis (NEBNext mRNA Second Strand Synthesis) and

purified with AMPure XP beads (Beckman Coulter). This procedure ensures

that RNA species do not contribute to SNS-seq signals. For a complete

description of the experimental procedures, see the Supplemental Experi-

mental Procedures.

Data Analysis and Statistical Learning

S2 and Bg3 SNS-seq reads were aligned to the dm3 Drosophila reference

genome using Bowtie2 (Langmead and Salzberg, 2012). Human SNS-seq

data (Besnard et al., 2012) were mapped to the hg19 human reference

genome. Origin peaks were called using MACS (Zhang et al., 2008). The

coverage functionwas used to define the position of the RSSwithin each origin

peak, and read counts normalized to the peak length in kilobases were used as

a proxy for origin efficiency. G4 motif occurrences in the Drosophila genome

were predicted with QuadParser (Huppert and Balasubramanian, 2005).

DNA shape features were obtained from high-throughput predictions (Zhou

et al., 2013). CGRs were predicted according to Gardiner-Garden and From-

mer (1987). Feature scoring was performed essentially as described previously

(Comoglio and Paro, 2014). Lasso logistic regressionmodels were trained with

10-fold cross-validation. Feature selection probabilities were computed with

bootstrap-lasso (Comoglio and Paro, 2014). Differential origin activity analysis

was carried out using DESeq2 (Love et al., 2014). For a complete description of



the algorithms and analysis procedures, see the Supplemental Experimental

Procedures.
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