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We consider the computational complexity of some problems dealing with
matrix rank. Let E, S be subsets of a commutative ring R. Let x1 , x2 , ..., xt

be variables. Given a matrix M=M(x1 , x2 , ..., xt) with entries chosen from
E _ [x1 , x2 , ..., xt], we want to determine maxrankS(M)=max(a1 , a2 , ..., at ) # St

rank M(a1 , a2 , ..., at) and minrankS(M) = min(a1 , a2 , ..., at ) # S t rank M(a1 ,
a2 , ..., at). There are also variants of these problems that specify more about
the structure of M, or instead of asking for the minimum or maximum rank,
they ask if there is some substitution of the variables that makes the matrix
invertible or noninvertible. Depending on E, S, and which variant is studied,
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the complexity of these problems can range from polynomial-time solvable to
random polynomial-time solvable to NP-complete to PSPACE-solvable to
unsolvable. An approximation version of the minrank problem is shown to
be MAXSNP-hard. � 1999 Academic Press

1. INTRODUCTION

We consider the computational complexity of some problems of linear algebra
��more specifically, problems dealing with matrix rank. Our mathematical frame-
work is as follows. If R is a commutative ring, then Mn(R) is the ring of n_n matrices
with entries in R. The rows :i of a matrix are linearly independent over R if �i ci:i=0
(with ci # R) implies ci=0 for all i, and similarly for the columns.

The determinant of M=(aij)1�i, j�n is defined as

det M= :
P=(i1 , i2 , ..., in )

(sgn P) a1, i1
a2, i2

} } } an, in
,

where

P=\1
i1

2
i2

} } }
} } }

n
in+

is a permutation of [1, 2, ..., n]. We know that a matrix is invertible over R if and
only if its determinant is invertible over R [13].

The rank of a matrix M is the maximum number of linearly independent rows.
Rank can also be defined as the maximum number of linearly independent columns,
and it is well known [13] that these two definitions coincide. We denote the rank
of M as rank M. An n_n matrix is invertible iff its rank is n.

A k_k submatrix of M is the array formed by the elements in k specified rows
and columns; the determinant of such a submatrix is called a k_k minor. The rank
of M can also be defined as the maximum size of an invertible minor.

The problems we consider are along the following lines: let E, S be two subsets
of R. We are given an n_n matrix M=M(x1 , x2 , ..., xt), with entries chosen from
E _ [x1 , x2 , ..., xt], where the xi are distinct variables. We want to compute

maxrankS (M)= max
(a1 , a2 , ..., at ) # S t

rank M(a1 , a2 , ..., at) (1)

and

minrankS (M) min
(a1 , a2 , ..., at ) # S t

rank M(a1 , a2 , ..., at). (2)

Evidently there is no need to distinguish between column rank and row rank in
this definition. Note also that we do not necessarily demand that we be able to
exhibit the actual t-tuple that achieves the maximum or minimum rank.

We will show that, depending on the arrangement of the variables in M and on
the sets E, S, the complexity of the minrank and maxrank problems ranges from
being in P to being unsolvable.
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There are several reasons for studying these problems. First, the problems seem
��to us, at least��natural questions in linear algebra. Second, a version of the
minrank problem is very closely related to determining the minimum rank rational
series that approximates a given formal power series to a given order; see [9, 19]
and Section 13 of the present paper. Third, the maxrank problem is related to the
problem of matrix rigidity which has recently received much attention [20, 6, 14]
and may help explain why good bounds on matrix rigidity are hard to obtain.

Fixed : R, a commutative ring.
E, S�R.

Input : M, an n_n matrix with entries from E _ [x1 , ..., xt].
k, a non-negative integer.

2. SUMMARY OF RESULTS

Most of our complexity results for the computation of minrank and maxrank are
naturally phrased in terms of the decision problems given in Table 1. We have
introduced two special problems, SING(ularity) and NONSING(ularity), which
could possibly be easier than the more general minrank�maxrank problems.

Table 2 summarizes our results on the complexity of the four decision problems.
We put the problems MAXRANK and NONSING together, since we have not been
able to separate their complexities, although we do not know whether they have the
same complexity in general. We have good evidence that the MINRANK and SING
problems do not, in general, have the same complexity: over C, MINRANK is NP-hard
(Section 8), but SING has a random polynomial time solution (Section 4).

The exact value of E is not important for our bounds. All our lower bounds are
valid for E=[0, 1] and all our upper bounds are valid for E being Q or a finite-
dimensional field extension of Q (respectively, E being GF(q) or a finite-dimen-
sional field extension of GF(q), when the characteristic is finite). For the upper
bounds, we assume the input size to be the total number of bits needed to specify
the matrix M, when using the standard binary representation of numbers, represent-
ing a finite-dimensional algebraic extension by arithmetic modulo an irreducible
polynomial, representing polynomials by coefficient vectors and listing the value of
each entry in M. The upper bounds are also robust in another sense. We may allow

TABLE 1

Decision Problems
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TABLE 2

Complexity Bounds for Decision Problems: The General Case

entire multivariate polynomials (with coefficients from E) in a single entry of the
matrix M and still preserve our upper bounds, provided such a multivariate poly-
nomial is specified by an arithmetic formula using binary multiplication and binary
addition, but no power symbol, so that the representation length of a multivariate
polynomial is at least as large as its degree.

S is significant for the complexity, as is apparent from Table 2. However, our
upper and lower bounds for S=C are valid for S being any algebraically closed
field (in the case of S having finite characteristic, so must E of course).

The results of Table 2 fall into three groups, according to the proof technique
used. The random polynomial time upper bounds use a result due to Schwartz
[18]. The undecidability result for Z uses a combination of Valiant's result that the
determinant is universal [21] and Matiyasevich's proof that Hilbert's Tenth
Problem is unsolvable [15]. All the remaining problems of the result table (those
that are not marked either RP or undecidable) are equivalent (under polynomial-
time transformations) to deciding the existential first-order theory over the field S.
The equivalence implies the NP-hardness of all these problems and lets us use
results by Egidi [4], Ierardi [11], and Canny [3] to obtain the doubly exponential
space upper bound for a p-adic field Qp and the PSPACE upper bounds for C and
R, respectively. Since it is presently an open problem whether the existential first-
order theory over Q is decidable or not, we suspect it will be difficult to determine
the decidability status of MINRANK and SING over Q. Koiran [12] has recently
shown that ETh(C) is contained in the second level of the polynomial hierarchy if
the generalized Riemann hypothesis is true. By our results the same conditional
bound is valid for the minrank problem over C.

We also consider the special case when each variable in the matrix occurs exactly
once. None of our lower bound proofs are valid under this restriction, and we have
improved some of the upper bounds. See Table 3 for a summary. The improved
upper bounds all rely on the determinant polynomial being multi-affine when no
variable occurs twice. In such a case the RP-algorithm for singularity over C can
be generalized to work for singularity over any field.

For a very special kind of matrix, viz., row-partitionable matrices where each
variable occurs exactly once, we give in Section 13 a polynomial time algorithm for
computing the minimum possible rank. The algorithm works in the case where S
is any field.

Since minrank is at least NP-hard to compute over Z or a field, one might
consider the existence of an efficient approximation algorithm. Suppose, however,
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TABLE 3

Upper Bounds When Each Variable Occurs Exactly Once

that for some fixed S (S being Z or a field) and E=[0, 1], there is a polynomial-
time algorithm that when given matrix M=M(x1 , ..., xt) always returns a vector
(a1 , ..., at) # S t satisfying rank (M(a1 , ..., at))�(1+=) } minrankS(M). Then the
assumption P{NP implies =� 7

520r0.0134615, as we prove in Section 11. The
proof uses reduction from MAXEXACT3SAT; i.e., we use a known nonapproxima-
bility result for MAXEXACT3SAT [8], combined with a MAXSNP-hardness proof,
for the minrank approximation problem.

Note added in proof. We have recently learned that the MAXRANK have previously
been studied in the literature. Edmonds [25] posed the general MAXRANK problem,
and Lova� sz [30] stated our random polynomial-time results for MAXRANK.

The special case of MAXRANK, where each variable occurs exactly once, is known
in the linear algebra literature under the name maximum rank matrix completion
[27, 28, 31]. Murota [31] reduced the maximum rank matrix completion problem
to matroid intersection, which, when combined with an algorithm of Edmonds
[24], shows that all our RP results in Table 3 may be improved to P. In a recent
paper, Geelen [27] gave another deterministic polynomial-time algorithm for this
problem. We are very grateful to J. Geelen for providing this information.

Geelen also notes (personal communication) that it can be proved, using a
greedy algorithm, that the general problems MAXRANK and NONSING are polyno-
mially related.

The special case of MINRANK, where each variable occurs exactly once, is known
in the linear algebra literature under the name minimum rank matrix completion
[22, 23]. A recent survey of the work on both minimum and maximum rank matrix
completion may be found in [29].

In a recent paper [26], Egidi withdrew the EXPEXPSPACE upper bound on
deciding Qp that was claimed in [4]. As a consequence, our EXPEXSPACE upper
bound in Table 2 should be relaxed to a decidability upper bound [23].

3. COMPUTING MAXRANK OVER INFINITE FIELDS

In this section we show how to compute maxrank with a (Monte-Carlo) random
polynomial-time algorithm over any infinite field. We will also show that to solve
the problem for R=S=F, it suffices to consider the case R=S=Z, when F
contains Z. Our main tool is the following lemma, adapted from a paper of
Schwartz [18].
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Lemma 1. Let F be a field and let p # F[x1 , ..., xt] be a multivariate polynomial
that is not the zero polynomial. Let V be an arbitrary finite subset of F.

(i) Let di be the maximum degree of xi occurring in p. If di�|V | for all i then
p(a){0 for at least > t

i=1 ( |V |&di) tuples a out of all a # V t.

(ii) Let d be the total degree of p. If d�|V| then p(a){0 for at least
( |V|&d ) } |V| t&1 tuples a out of all a # V t.

We now prove

Theorem 2. Let M=M(x1 , x2 , ..., xt) be a n_n matrix with entries in F _

[x1 , x2 , ..., xt]. Let V�F be a set of at least 2n distinct elements. Choose a t-tuple
(a1 , a2 , ..., at) # V t at random. Then with probability at least 1�2, we have maxrankF (M)
=rank M(a1 , a2 , ..., at).

Proof. Suppose maxrankF (M)=k. Then there exists some t-tuple (a1 , a2 , ..., at)
# F t such that rank M(a1 , a2 , ..., at)=k. Hence, in particular, there must be some
k_k minor of M(a1 , a2 , ..., at) with nonzero determinant. Consider the corresponding
k_k submatrix M$ of M(x1 , x2 , ..., xt). Then the determinant of M$, considered as a
multivariate polynomial p in the indeterminates x1 , x2 , ..., xt , cannot be identically
zero (since it is nonzero when x1=a1 , ..., xt=at). It now follows from Lemma 1(ii)
that p is nonzero for at least half of all elements of V t. Thus for at least half of all
these t-tuples (a1 , a2 , ..., at), the corresponding k_k minor of M must be nonzero,
and hence, M(a1 , a2 , ..., at) has rank at least k. Since maxrankF (M)=k, it follows
that rank M(a1 , a2 , ..., at)=k for at least half of the choices (a1 , a2 , ..., at) # V t. K

The theorem justifies the following random polynomial-time algorithm to compute
maxrankF (M) over an infinite field F: choose r t-tuples of the form (a1 , a2 , ..., at)
independently at random and compute rank M(a1 , a2 , ..., at) for each of them,
obtaining ranks b1 , b2 , ..., br . Then with probability at least 1&2&r, we have
maxrankF (M)=max1�i�r bi .

It also follows from Theorem 2 that over an infinite field F, the quantity
maxrank(M) cannot change when we consider an extension field F $ with F�F $, or
when we consider an infinite subset S�F. In particular, the decision problem
MAXRANK is in the complexity class RP for E=Q and Z�S.

4. THE SINGULARITY PROBLEM OVER AN
ALGEBRAICALLY CLOSED FIELD

In this section we consider the complexity of the decision problem SING in the
case R=S=F, where F is an algebraically closed field. We will show that in this
case, SING # RP. The proof uses the following lemmas.

Lemma 3. Let P(x1 , x2 , ..., xt) be a multivariate polynomial over an infinite field F.
Then p is identically zero iff p is the zero polynomial.

Proof. This is implied by Lemma 1. K

Lemma 4. Let p(x1 , x2 , ..., xt) be a nonconstant multivariate polynomial over a
field F. If F is algebraically closed, then p takes on all values in F.

Proof. This may be proved by induction on t, the number of variables. We leave
the details to the reader. K
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Theorem 5. If R=S=F, and F is algebraically closed, then SING # RP.

Proof. Consider the following algorithm: Let V�F be a set of at least 2n
distinct elements. Choose r t-tuples a1 , a2 , ..., ar at random from V t, and evaluate
the determinant det M(ai) for 1�i�r. If at least two different values are obtained,
return ``yes.'' If all the values obtained are the same and all are nonzero, return
``no.'' If all the values are the same and all are zero, return ``yes.''

We claim that if there exists a t-tuple a such that det M(a)=0, then this algo-
rithm returns the correct result with probability at least 1&1�2r&1, while if there
is no such t-tuple, the algorithm always returns the correct result.

To prove the claim, define p(x1 , x2 , ..., xt)=det M(x1 , x2 , ..., xt), a multivariate
polynomial. If p is nonconstant, then by Lemma 4 it takes on all values in F,
including 0. If p is constant and nonzero, then it cannot take on the value 0.
Finally, if p is constant and zero, then it clearly takes on the value 0.

It now follows that our algorithm always returns the correct result, except
possibly when all the values obtained are the same and nonzero. In this case we
return ``no,'' whereas if we are unlucky the answer could possibly be ``yes.''
However, if the polynomial p is not the constant polynomial, then the polynomial
p& p(a1) is nonzero, and by Lemma 1(ii) we know p(ai){ p(a1) with probability
at least 1�2 for 2�i�r. It follows that the probability of making an error in this
case is bounded by 1�2r&1. K

5. UNIVERSALITY OF THE DETERMINANT

In this section, we prove a result that underlies all our lower bounds for the
singularity and minrank problems: any multivariate polynomial is the determinant
of a fairly small matrix. The result was first proven by Valiant [21], but since we
need a slightly modified construction and the result is fundamental to our lower bound
proofs, we make this paper self-contained and give the details of the construction.

To state the result, we need a few definitions. Let an arithmetic formula F be a
well-formed formula using constants, variables, the unary operator [&] and the
binary operators [+, } ]. The length of a formula F (denoted by |F | ) is defined as
the total number of occurrences of constants, variables, and operators. For example,

|3x( y&z)&3|=|3 } x } ( y+(&(z)))+(&(3))|=11.

(Note that our definition of formula length is not the same as Valiant's.)

Proposition 6. Let R be a commutative ring. Let F be an arithmetic formula
using constants from E�R and variables from [x1 , ..., xt]. For some n�|F |+2,
we may in time nO(1) construct an n_n matrix M with entries from E _ [0, 1] _

[x1 , ..., xt] such that pF=det M and minrankR(M)�n&1, where pF denotes the
polynomial described by formula F.

Proof. We use a modified version of Valiant's construction [21]. The main
difference is that we insist that the rank of the constructed n_n matrix cannot be
less than n&1 under any substitution for the variables. We also consider the nega-
tion operation explicitly, which allows us to avoid the use of negative constants
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in the formula, when wanted. Our construction is essentially a modification of Valiant's
construction to take care of these extra requirements, combined with a simplification
that leads to matrices of somewhat larger size than Valiant's original construction.

Let a formula F be given. The construction falls into two parts. In the first part,
we construct a series�parallel s&t-graph GF with edge weights from E _ [1] _

[x1 , ..., xt] by induction on the structure of F as sketched in Fig. 1. To such a
series�parallel s&t-graph GF , we associate the polynomial

p(GF)= :
? is s&t-path in GF

(&1)length(?) } `
e an edge of ?

weight(e).

By structural induction on F, one may verify that pF= p(GF).

FIG. 1. Inductive construction of GF .
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In the second part of the construction, we change GF into a cyclic graph G$F by
adding an edge from t to s of weight 1 and adding self-loops with weight 1 to all
vertices different from s. The matrix M=[mij] is simply the weight matrix for G$F ;
i.e., mij is the weight of the edge from vertex i to vertex j if it exists, and m ij=0
otherwise. The determinant of M is a sum of monomials, where each monomial is
the product of the weights in a specific cycle cover of G$F (with sign \1, depending
on the length of the cycles). But because of the special form of G$F each cycle cover
will consist of a number of self-loops (possibly zero) and a single cycle arising from
an s&t-path in GF , combined with the added edge from t to s. Hence, each s&t-
path in GF gives rise to one monomial in det M, and the sign of the monomial will
be &1 if and only if the path has odd length. Thus det M= p(GF)= pF .

To see the lower bound on minrank, consider the (n&1)_(n&1) submatrix M$
of M arising from erasing the column and row corresponding to the vertex s. The
determinant of M$ has one monomial for each cycle cover of G$F&[s]. However,
removing the vertex s breaks all cycles corresponding to paths from s to t in GF ,
but with s removed all the remaining vertices have a self loop, so there is precisely
one cycle cover and it consists of all the self-loops. Since all the self-loops have
weight 1, we find that det M$=1, so minrankR(M)�n&1.

The bound 2+| pF | on the size of GF arises because the graph GF has in addition
to the vertices s and t at most one vertex for each application of a rewrite rule from
Fig. 1.

6. THE SINGULARITY PROBLEM OVER THE INTEGERS

In this section we prove that the decision problem SING is unsolvable over Z.

Theorem 7. Given a matrix M=M(x1 , ..., xt) with entries from [0, 1] _ [x1 , ..., xt],
it is undecidable whether there exist a1 , ..., at # Z such that det M(a1 , ..., at)=0.

Proof. We reduce from Hilbert's Tenth Problem [15]. An instance of Hilbert's
Tenth Problem is a Diophantine equation p(x1 , ..., xt)=0, where p is a multivariate
polynomial with integer coefficients. We construct a formula for p using only
+, &, } , 0, 1 in addition to the indeterminates by replacing each integer constant
c�2 having binary representation c= � l

i=0 bi2
i with the formula

b0+(1+1) [b1+(1+1) [b2+(1+1) [b3+ } } } +(1+1) [bl] } } } ]]].

By the construction of Proposition 6, the resulting formula fp for the polynomial
p(x1 , ..., xt) is turned into a matrix M=M(x1 , ..., xt) such that det M(x1 , ..., xt)=
p(x1 , ..., xt). The assertion of the theorem follows from the undecidability of
Hilbert's Tenth Problem. K

7. EXISTENTIAL FIRST-ORDER THEORIES

In this section, we describe the syntax of existential first-order theories over fields
and state some complexity results for the corresponding decision problems. We will
apply this later to our rank problems.
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For any field F, we have arithmetic operations +, } , constants 0, 1, and equality
relation =. Adding the Boolean operations 7 , 6 , c and the existential quantifier
_, we get the first-order language specified by the following grammar. (Note that we
require all quantifiers to be collected in a prefix to the formula, thereby avoiding
implicit universal quantification and alternation of quantifiers.)

V ::=x1 | x2 | x3 | } } } | xn | } } }

C ::=0 | 1

AT ::=V | C

T ::=AT | (T+T) | (T}T)

AF ::=T=T

BF ::=AF | (cBF) | (BF 7 BF) | (BF 6 BF)

F ::=BF | _V F

A sentence is a formula with no free variables (all variables are bound by quan-
tifiers). We say that sentence . is true in the field F (the field F is a model of the
sentence .), if the sentence evaluates to true, when quantifications are interpreted
over elements in F and arithmetic operations and constants are given the natural
interpretations, and we write

F < ..

For a more formal definition of the semantics see, for example, Enderton [5].
Note that we may allow the use of subtraction without increasing the descriptive

power, since the sentence _x _y. (1&x) y=1 is merely a shorthand for _x _y _x$.
(1+x$) y=1 7 x+x$=0.

For a field F, we define the existential theory of F:

ETh(F )=[.: F < .].

The decision problem for ETh(F ) is: on input ., decide whether F < ..

Proposition 8. For F being any fixed field, ETh(F ) is NP-hard.

Proof. We reduce from 3SAT. Let C be an instance of 3SAT; i.e.,

C#C1 7 C2 7 } } } 7 Ck ,

where Ci #(li1 6 li2 6 li3) and lij # [ y1 , y2 , ..., yt] _ [y1 , y2 , ..., yt ]. We modify C
to be an arithmetic formula fC by replacing each yi with the atomic formula xi=1
and replacing each yi with the atomic formula xi=0. Clearly,

C is satisfiable iff F < _x1 , _x2 } } } _xt } fC .

The NP-hardness follows from the NP-hardness of 3SAT. K
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TABLE 4

Upper Bounds on Deciding ETh(F)

F Upper bound on ETh(F ) Reference

GF(q) NP
Q Recursively enumerable
Qp EXPEXPSPACE Egidi, 1993 [4]
R PSPACE Canny, 1988 [3]; Renegar, 1992 [17]
C PSPACE Ierardi, 1989 [11]

The complexity of deciding ETh(F ) seems to depend on the field F. Table 4
summarizes the upper bounds that we are aware of.

ETh(GF(q)) is in NP for any fixed finite field (GF(q)), since one may replace the
variables with nondeterministically chosen field elements and evaluate the resulting
variable-free formula in polynomial time.

Similarly, ETh(Q) is recursively enumerable, but to the best of our knowledge it
is still an open problem whether ETh(Q) is in fact decidable.

The EXPEXPSPACE bound for the field of p-adic numbers, Qp (for some fixed
prime p) is proven for a more general theory than the one considered here. It is
quite conceivable that a better bound can be found for our existential sentences.

One may get a PSPACE bound for C as a corollary to the PSPACE bound
for R, since arithmetic in C can be represented by arithmetic on pairs of numbers
in R. However, the proof of Ierardi [11] uses a different technique and holds for
any algebraically closed field. Recently, Koiran [12] showed that in fact ETh(C) is
contained in the second level of the polynomial hierarchy��conditional upon the
generalized Riemann hypothesis being true.

8. LOWER BOUND FOR MINRANK OVER A FIELD

In this section, we prove that over a field that is not algebraically closed, the
decision problem SING is as hard as deciding the corresponding existential first-
order theory (although for some fields we use extra constants in addition to 0, 1 to
establish the correspondence). Only one step in the proof does not seem to
generalize to an arbitrary field��namely the reduction of a system (conjunction) of
equations to a single equation, which is necessary for encoding a general existential
sentence as a singularity problem. However, we observe that a system of equations
can be encoded as a single minrank problem. This allows us to show that over any
field the more general decision problem MINRANK is indeed as hard as the corre-
sponding existential first-order theory.

Lemma 9. Let F be a field. Given an existential sentence _x1 } } } _xt } .(x1 , ..., xt),
of length m, we can in time mO(1) construct an equivalent existential sentence _x1 } } } _xt$ }
�(x1 , ..., xt$) such that � contains no negations.
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TABLE 5

Construction for Elimination of c

Rewrite rules

Step 1 c(F1 7 F2) � (cF1) 6 (cF2)
c(F1 6 F2) � (cF1) 7 (cF2)

Step 2 ct(x)=0 � 1&z } t(x)=0

Proof. The formula � is constructed from . using the rewrite rules of Table 5.
In step 1, we use de Morgan's laws to move all negations down so that they are

applied directly to the atomic formulas.
In step 2, we replace each negated atomic formula by an unnegated formula. We

introduce a new variable z for each such atomic formula, which represents the
inverse of the term t(x). These new variables must be existentially quantified. K

Lemma 10. Let F be a field. Given an existential sentence _x1 } } } _xt } .(x1 , ..., xt)
of length m, that contains no negation, we can in time mO(1) construct an equivalent
existential sentence _x1 } } } _xt$ } �(x1 , ..., xt$) such that � contains neither negation
nor disjunction.

Proof. Let . have s subformulas f1 , ..., fs , each of which may be atomic or com-
posite. For each such subformula fi , we introduce a new (existentially quantified)
variable zi , and we construct a new formula f $i that is either atomic or the conjunc-
tion of two atomic formulas. The f $i s will be constructed such that

_x1 } } } _xt$ } ``fi is satisfied''

�-
(3)

_x1 } } } _xt _z1 } } } _zs ``zi=0 and f $j is satisfied

for all subformulas fj of fi (including fi ).''

If the subformula f1 corresponds to the entire formula ., this implies that

_x } .(x)

�-

_x, z . z1=0 7 f $1(x, z) 7 } } } 7 f $s(x, z).

For each original subformula fi the new formula f $i is constructed as described in
Table 6. By induction in the structure of fi , one may verify that this construction
does satisfy (3), from which the theorem follows. K
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TABLE 6

Construction for Elimination of 6

fi f $i

pi (x)=0 pi (x)=zi

fj 6 fk zj } zk=zi

fj 7 fk zj } zk=zi 7 zj+zk=zi

Lemma 11. Let F be a field. Given an existential sentence . of length m, we can
in time nO(1) construct an integer k and an n_n matrix with entries from [0, 1] _

[x1 , x2 , ..., xt], where n=O(m) such that minrankF (M)�k if and only if F < ..

Proof. Let an existential sentence be given. First we remove all negations and
disjunctions using the constructions of Lemmas 9 and 10. Without loss of
generality, we may therefore assume that we are given the existential sentence

_x p1(x)=0 7 } } } 7 pr(x)=0

for some arithmetic formulas pi , i=1, ..., r.
By Proposition 6, we may for each pi (xi , ..., xt) find an ni_ni matrix Mi with entries

from [0, 1] _ [x1 , x2 , ..., xt] such that det Mi= pi (x1 , ..., xt) and minrankF (Mi)�
ni&1.

Let n= �r
i=1 ni , let k= � r

i=1 (n i&1), and construct the n_n matrix M by
placing M1 , ..., Mr consecutively on the main diagonal and zeroes elsewhere.
Clearly, minrankF (M)�k and rank M=k only when all the polynomials p i are
simultaneously zero; therefore, minrankF (M)�k iff F < .. K

Corollary 12. Let F be a field. The decision problem MINRANK for S=F and
E=[0, 1] is NP-hard.

Proof. Immediate from Lemma 11 and Proposition 8. K

It is possible to eliminate conjunction from formulas when the field is not
algebraically closed, allowing us to prove a SING-version of Lemma 11 for such
fields.

Lemma 13. Let F be a fixed field that is not algebraically closed. Then there
exists a finite set of constants E�F such that given arithmetic formulas p1(x), ..., pr(x)
of combined length m, we can in time mO(1) construct a single arithmetic formula p(x)
(using constants from E) such that

F < _x .p1(x)=07 } } } 7 pr(x)=0

�-

F < _x .p(x)=0.

The set of constants E=[0, 1] suffices for any of the fields Q, R, Qp , GF(q).
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Proof. Since F is not algebraically closed, there exists a univariate polynomial
f (x)=�d

i=0 aix i of degree d�1 with a0 , ..., ad # F such that f has no root in F.
Define a new polynomial in two variables by g( y, z)=zd } f ( y�z)= �d

i=0 aiyizd&i.
The polynomial g( y, z) is nonzero, except when y=z=0. To see this, observe that
g( y, 0)=adyd which is nonzero when y{0; for z{0 we have that g( y, z)=0
implies that f ( y�z)=0, which cannot occur since f has no roots in F. From g one
may construct a new polynomial of degree d 2 in four variables, namely h(x, y, z, w)
= g(g(x, y), g(z, w)). Clearly, h(x, y, z, w)=0 only if x= y=z=w=0. By induc-
tion one may construct a polynomial k(x1 , ..., xr) over any specified number of
variables such that k(x1 , ..., xr) has no nontrivial zeros. This is the idea behind our
construction of p(x). Using an arithmetic formula for g (of size O(d 2)) construct the
formula p(x) from p1(x), ..., pr(x) using the rewrite rule of Table 7 repeatedly log r
times. The size of p(x) will be O(d 2 log rm)=O(r2 log dm)=mO(1).

To see that E=[0, 1] suffices for some special fields as claimed in the lemma,
choose f (x)=x2+1 for F being Q or R. A monic polynomial in Z[x] whose
reduction modulo p is irreducible over the finite field GF( p) will also be irreducible
over the p-adic field Qp (see [7, Corollary 5.3.8, p. 139]). Therefore, choose
f (x)=x2+x+1 for F being Q2 or GF(2); choose f (x)=x2+( p&a) for some
quadratic nonresidue a modulo p when F is Qp or GF( p) and p{2 is a prime (and
use that p&a=1+1+ } } } +1) . Finally, a suitable irreducible polynomial exists
for any other specific finite field. K

Remark. The construction of the proceeding proof can be improved in the case
of specific fields. For example, over the fields Q and R, any number of equations
can be encoded into a single equation while only doubling the formula size, when
using that the multivariate polynomial x2

1+x2
2+ } } } +x2

r takes the value zero only
when x1=x2= } } } =xr=0. A similar property is satisfied by the arithmetic
formula 1&(1&xq&1

1 ) (1&xq&1
2 ) } } } (1&xq&1

r ) with respect to a fixed finite field
GF(q).

Lemma 14. Let F be a fixed field that is not algebraically closed. Then there
exists a finite set of constants E�F such that given an existential sentence , of
length m, then we can in time mO(1) construct an n_n matrix M with entries from
E _ [x1 , ..., xt] such that F < , iff _(a) # F t .det M(a)=0. The set of constants
E=[0, 1] suffices for any of the fields Q, R, Qp , GF(q).

Proof. Let an existential sentence be given. First we remove all negations,
disjunctions and conjunctions using the constructions of Lemmas 9, 10, and 13 to
obtain the single equation p(x1 , ..., xt)=0. By Proposition 6, we may find a matrix
M such that det M= p(x1 , ..., xt). K

TABLE 7

Construction for Elimination of 7

Rewrite rule

p1(x)=0 7 p2(x)=0 7 p3(x)=0 7 } } } 7p2k&1(x)=0 7p2k(x)=0
� g( p1(x), p2(x))=0 7 g( p3(x), p4(x))=0 7 } } } 7 g( p2k&1(x), p2k(x))=0
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Corollary 15. Let F be one of the fields Q, R, Qp , or GF(q). The decision
problem SING for S=F and E=[0, 1] is NP-hard. If F is any field that is not
algebraically closed, then there is a finite set E�F such that the decision problem
SING for S=F and E is NP-hard.

Proof. Immediate from Lemma 14 and Proposition 8. K

9. DECISION PROBLEMS OVER FINITE FIELDS

For finite fields, we have a stronger result.

Theorem 16. Let F be a fixed finite field GF(q). For S=F and [0, 1]�E�
GF(q), the decision problems MAXRANK, NONSING, MINRANK, and SING are all
NP-complete.

Proof. Clearly, these problems are in NP, since we may nondeterministically
guess an assignment to the variables and compute the rank of the resulting constant
matrix in polynomial time.

The NP-hardness of SING (and MINRANK) follows from Corollary 15.
To prove the NP-hardness of NONSING (and MAXRANK) we observe from

Lemmas 9, 10, 13 and Proposition 8 that it is NP-hard to decide whether GF(q) <
_x .p(x)=0 when given an arithmetic formula p(x).

For the finite field GF(q), it is well known that the function x [ xq&1 maps 0 to
0 and maps any nonzero number to 1. Therefore, it is also NP-hard to decide
whether GF(q) < _x .1& p(x)q&1{0, where p(x)q&1 is shorthand for the formula
p(x) } p(x) } } } p(x), whose length is only a constant factor larger than the length of
p(x) when q is fixed.

To complete the NP-hardness proof, use Proposition 6. K

10. UPPER BOUNDS FOR MINRANK OVER A FIELD

In this section, we prove that the minrank problem over a field is no harder than
deciding the corresponding existential first-order theory. Combined with our earlier
results, this implies that the decision problem MINRANK is in fact equivalent (under
polynomial-time transformations) to deciding the corresponding existential first-
order theory. In addition, we inherit the upper bounds of Table 4.

We start by giving the reduction for matrices that use only constants 0 and 1,
and afterwards we extend the result to more general constants.

Lemma 17. Let F be a field. Given an n_n matrix M with entries from
[0, 1] _ [x1 , x2 , ..., xt] and some k�n, we may in time nO(1) construct an existential
sentence . such that minrankF (M)�k if and only if F < ..

Proof. Given (n_n) matrix M with variables x1 , x2 , ..., xt and constants from
[0, 1], we express (in a first-order existential sentence) the assertion that some k
columns of M span all columns of M when appropriate values are substituted for
x1 , x2 , ..., xt .
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We are going to use that a matrix C with entries from F has rank at most k
precisely when there is a nonsingular (n_n) matrix A such that the first (n&k)
columns of the matrix product CA are all identically zero. The nonsingularity of A
is ensured by demanding that A have an inverse, i.e., that there exists some (n_n)
matrix B such that AB=I. Using matrix notation our first-order sentence can be
expressed

minrankF (M)�k

�-

_x1 , ..., xt # F _A, B # F n2
.

(i) AB=I, and

(ii) the first (n&k) columns of MA are all zero.

Since matrix multiplication can be expressed by a formula of size O(n3), the
above sentence using matrix notation leads to a proper existential sentence of size
O(n3) that is equivalent to the minrank problem as stated in the theorem. K

The proof of Lemma 17 we have just presented uses an improvement, suggested
by von zur Gathen, of our original proof. It is based on an idea of Borodin, von
zur Gathen, and Hopcroft [2].

We restricted the constants in our existential sentences to 0 and 1 in order to
apply the upper bounds of Table 4. However, an analogue of Lemma 17 does actually
hold for the minrank problem over matrices containing algebraic constants, because
algebraic constants can be defined by short first-order sentences:

v Over any field, the constant 2 is defined by

.(x)#x=1+1.

v Over a field with characteristic different from 2, the constant &3�2 is
defined by

.(x)#x } (1+1)+1+1+1=0.

v Over R, the constant - 2 is defined by

.(x)#_y .x } x=1+17 y } y=x.

(The last part ensures that we get the positive of the two square roots.)

v Over any field, the constant 15 is defined by

.(x)#_y _z _w .x=1+ y+z+w 7 y=1+1 7 z= y+ y7 w=z+z.

(We use a repeated doubling strategy to make the defining formula have length
proportional to the usual binary representation of the integer 15.)
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v Over C, the constants i and &i are defined by

.(x, y)#x } x+1=0 7 y } y+1=0 7 x+ y=0.

(Note that i and &i cannot be defined separately, since i alone can only be defined
up to conjugation; the only nontrivial isomorphism on C.)

If F is a field, define its prime field to be the intersection of all subfields of F [10,
Section V.5]. Clearly, the prime field underlying C and R is Q, and GF(q) is a
finite-dimensional algebraic extension of its underlying prime field (which is GF( p)
for some prime p). For a field F let AF be the set of all numbers that are algebraic
over the prime field underlying F.

Proposition 18. Let P be a prime field. Let [e1 , ..., et]�Ap . Let F be the
smallest extension field containing all the constants [e1 , ..., et]. Let a standard
representation of F as a k-dimensional vector space over P (with vector arithmetic
defined using an irreducible polynomial ) be given. Let the representation of the
constants [e1 , ..., et] as vectors of binary numbers be given. It is possible to construct
an existential first-order formula .(x1 , ..., xt) defining [e1 , ..., et] in time polynomial
in the combined bit length of all the constant representations.

Proof. Left to the reader. K

The generalization of Lemma 17 is the following.

Lemma 19. Let F be a field. Let F $ be a finite-dimensional algebraic extension of
the prime field underlying F. Let E�F $(�AF). Given an n_n matrix M with entries
from E _ [x1 , x2 , ..., xt], and some k�n, we may in time (ns)O(1) construct an
existential sentence . such that

minrankF (M)�k iff F < .,

where s denotes the maximum bit length of the representation of an entry in M (using
binary numbers�quotients for prime field elements and vectors of these for algebraic
numbers).

Proof. Use the construction from the proof of Lemma 17 combined with the
construction of Proposition 18. K

Corollary 20. Let F be a field. Let F $ be a finite dimensional algebraic exten-
sion of the prime field underlying F. Let S=F and let [0, 1]�E�F $. The decision
problem MINRANK is equivalent (under polynomial-time transformations) to deciding
ETh(F).

If F is one of the fields Q, R, or a p-adic field Qp , then the decision problems SING
and MINRANK are equivalent by polynomial-time transformation.

If F is a fixed p-adic field Qp , then the decision problem MINRANK is solvable in
EXPEXPSPACE.

If F is one of the fields R and C then the decision problem MINRANK is in PSPACE.

Proof. Immediate from Lemmas 19, 11, 14, and the bounds cited in Table 4. K
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11. TIGHT APPROXIMATION OF MINRANK IS NP-HARD

In this section, we consider the approximation problem (parametrized with =>0)
associated with the minrank problem:

(1+=)-APXMINRANK

Let R be a commutative ring. Let E, S�R.

Input: a matrix M=M(x1 , ..., xt) with entries in E _ [x1 , ..., xr].

Output: some a1 , ..., at # S such that

rank M(a1 , ..., at)�(1+=) } minrankS(M).

We prove that (1+=)-APXMINRANK is NP-hard for = sufficiently small, when R
is Z or a field. The tool will be a reduction from the approximation version of
EXACT3SAT. Consider the problem:

(1&=)-MAXEXACT3SAT

Input: a conjunction of clauses C=C1 7 } } } 7 Ck , where each clause contains
exactly three distinct literals Ci=(li1 6 li2 6 li3), and each literal is one of the
Boolean variables [ y1 , ..., yr] or its negation.

For (b1 , ..., br) # [0, 1]r, let numb (C, b1 , ..., br) be the number of clauses in C
that are satisfied under the assignment yi [ b i , and let

maxnumb(C)= max
(b1 , ..., br ) # [0, 1]r

numb(C, b1 , ..., br).

Output: some truth assignment b1 , b2 , ..., br # [0, 1] such that

numb(C, b1 , ..., br)�(1&=) } maxnumb(C).

Proposition 21. For =< 1
8 there is no polynomial-time algorithm for (1&=)-

MAXEXACT3SAT unless P=NP.

Proof. See Ha# stad [8]. K

To prove the nonapproximability of minrank, we need a special type of reduction
first defined by Papadimitriou and Yannakakis [16]. Since we only use the reduc-
tion in a single case, we specialize the definition to the concrete application.

Given E, S�R, MAXEXACT3SAT is said to L-reduce to APXMINRANK with
parameters :, ;, if there exist two polynomial time computable functions f and g
such that, for a given instance C of MAXEXACT3SAT,

1. Algorithm f produces matrix M with entries in E _ [x1 , ..., xt] such that

minrankS(M)�: } maxnumb(C);
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2. Given any substitution (a1 , a2 , ..., at) # S t for the variables in M, g
produces a truth assignment (b1 , b2 , ..., br) # [0, 1]r such that

|maxnumb(C)&numb(C, b1 , b2 , ..., br)|

�; } |minrankS(M)&rank M(a1 , a2 , ..., , at)|.

L-reduction preserves approximability.

Proposition 22. Let E, S�R be given. If MAXEXACT3SAT L-reduces to
APXMINRANK with parameters :, ;�0 and (1+=)-APXMINRANK has a polynomial
time solution then (1&:;=)-MAXEXACT3SAT has a polynomial time solution.

Proof. The polynomial time solution for (1&:;=)-MAXEXACT3SAT works as
follows: Given an instance C( y1 , ..., yr) of MAXEXACT3SAT, compute an instance
M(x1 , ..., xt) of APXMINRANK using the function f. Find a substitution (a1 , ..., at)
for (x1 , ..., xt) using the polynomial time solution for (1+=)-APXMINRANK and
transform this substitution into a truth assignment (b1 , ..., br) for ( y1 , ..., yr) using
the function g. We verify the (1&:;=) bound by a computation.

|maxnumb(C)&numb(C, b1 , ..., br)|�; } |minrankS(M)&rank M(a1 , ..., at)|

�;= } minrankSM

�:;= } maxnumb(C). K

Lemma 23. Let R be a commutative ring without zero divisors, and let [0, 1]�S
�R and E=[0, 1]. MAXEXACT3SAT L-reduces to APXMINRANK with parameters
:= 65

7 and ;=1.

Proof. First, we describe the function f. Assume we have an instance of
MAXEXACT3SAT, viz. a conjunction of clauses C=C1 7 } } } 7 Ck , where each
clause contains three distinct literals Ci=(li1 6 li2 6 li3) and each literal is one of
the Boolean variables [ y1 , ..., yr] or its negation.

For each clause Ci , there will be a 12_12 matrix Mi , containing four smaller
3_3 matrices down the diagonal and zeros elsewhere. The four smaller matrices are
one for each of the three variables occurring in the clause and one for the clause
itself.

Each Boolean variable yj is represented by two arithmetic variables x j1 and xj2 .
The variable xj1 being zero represents yj being true, and x j2 being zero represents
yj being false. We can ensure that not both of xj1 and xj2 are zero by requiring

xj1+xj2=1. (4)

We allow the case that neither xj1 nor xj2 is zero.
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For each of the three variables occurring in a clause, there will be a matrix ensur-
ing (4); i.e., for s=1, 2, 3, if lis= yj or lis=yj then

1 xj1 xj2

Ais=_1 1 0 & .

1 0 1

The matrix Ais always has rank at least 2 and has rank exactly 2 when (4) is
satisfied, since det Ais=1&xj1&x j2 .

If Ci=( yj1 6 yj2 6 yj3), the fourth matrix will be

xj11 1 0

Bi=_ 0 xj21 1 & .

0 0 xj31

(If yj occurs in Ci instead of yj , then replace xj1 with xj2 in matrix Bi .)
The matrix Bi always has rank at least 2 and has rank exactly 2 when xj1 1=0

or xj21=0 or x j3 1=0.
If we let diag(M1 , ..., Mk) denote the large matrix having the smaller matrices

M1 , ..., Mk consecutively down the main diagonal and zeros elsewhere, then the
function f returns the matrix

M=diag(M1 , ..., Mk), where Mi=diag(Ai1 , A i2 , Ai3 , Bi).

Clearly, f can be computed in polynomial time.
Clearly, minrankS(M)�k } (4 } 2)+(k&maxnumb(C))=9k&maxnumb(C). We

know that maxnumb(C)�7k�8, since the expected fraction of true clauses using a
random truth assignment is at least 7

8 . Combining, we get that

minrankS(M)�9k&maxnumb(C)

�9 } 8
7 maxnumb(C)&maxnumb(C)

� 65
7 maxnumb(C),

which proves the assertion about :.
We still need to describe the function g. Let a substitution a11 , a12 , ..., ar1 , ar2 #

S2r for the arithmetic variables in M be given. Construct a truth assignment
b1 , ..., br for the Boolean variables in C as follows. If aj1=0 then let bj=1; other-
wise if aj2=0 then let b j=0. But if both aj1 {0 and aj2 {0 then let bj take an
arbitrary value. Clearly, g can be computed in polynomial time.

If clause Ci is not satisfied under the truth assignment b1 , ..., br , then matrix Mi

will have rank at least 9 under the substitution a11 , a12 , ..., ar1 , ar2 , because either
aj1=aj2=0 for some variable yj occurring in Ci , and then one of A is will have rank
3, or matrix Bi will have rank 3.

591COMPUTATIONAL COMPLEXITY OF LINEAR ALGEBRA



Therefore, k&numb(C, b1 , ..., br)�rank M(a11 , a12 , ..., ar1 , ar2)&8k which,
combined with our earlier inequality, minrankS(M)�9k&maxnumb(C), implies

maxnumb(C)&numb(C, b1 , ..., br)

�9k&minrankS(M)+rank M(a11 , a12 , ..., ar1 , ar2)&k&8k

=rank M(a11 , a12 , ..., ar1 , ar2)&minrankS(M),

which proves the assertion about ;. K

Theorem 24. Let R be a commutative ring without zero divisors, and let [0, 1]�
S�R and E=[0, 1]. For =< 7

520r0.0134615 there is no polynomial time solution for
(1+=)-APXMINRANK unless P=NP.

Proof. Combine Propositions 21 and 22 with Lemma 23. K

12. THE CASE WHEN EACH VARIABLE OCCURS EXACTLY ONCE

In previous sections we have been considering matrices M=M(x1 , x2 , ..., xt)
with entries in E _ [x1 , x2 , ..., xt], and each variable can occur arbitrarily often
in M. In this section and the next, we restrict our attention to matrices where
each variable occurs exactly once, and we call such matrices eveo.

Definition. A polynomial p(x1 , x2 , ..., xt) is said to be multi-affine over a field
F if every variable occurs with degree 0 or 1 in every term.

For example, 2xyz+3z+4x+5 is multi-affine over Q. Note that the determinant
of an eveo matrix is multi-affine. The following lemmas will prove useful.

Lemma 25. Let p be a multi-affine polynomial over a field F. Then p is identically
zero over F iff p is the zero polynomial.

Proof. This is implied by Lemma 1(i), when using V=[0, 1] in the statement
of that Lemma. K

Note that Theorem 25 is not necessarily true for polynomials in which variables
occur with higher degree; for example, the polynomial x2&x is not the zero poly-
nomial, but it is identically zero over GF(2).

Corollary 26. A multi-affine polynomial is identically zero over a field F iff it
is identically zero over some extension field F $$F.

Lemma 27. A multi-affine function over a field is either constant or takes all
values in the field.

Proof. This may be proved by induction in the number of variables. We omit
the details. K

Theorem 28. For all fields F, and all eveo matrices M, we can compute
maxrankF (M) in random polynomial time.
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Proof. We mimic the proof of Theorem 2. Let M be an n_n eveo matrix. If the
field F has at least 2n elements, then the proof goes through essentially unchanged,
with V any subset of F of cardinality 2n. Otherwise, choose an appropriate field
extension F $ with at least 2n elements. By Corollary 26 a minor is not identically
zero over F $ iff it is not identically zero over F, so we may compute maxrank over
F $ instead of over F. K

Now recall the singularity problem.

Theorem 29. If F is a field and M is an eveo matrix, then the decision problem
SING is in the complexity class RP.

Proof. By Lemmas 25 and 27, it is enough to ensure that the determinant det M
is not a nonzero constant polynomial. Mimic the proof of Theorem 5, using
Corollary 26, if necessary, to extend the base field. K

13. THE MINRANK PROBLEM FOR ROW-PARTITIONABLE MATRICES

In this section we show that the minrank problem is solvable in deterministic
polynomial time if the matrix has a certain special form, in which each variable
appears only once and there is a division between the variable and nonvariable
entries.

More formally, let M be an m_n matrix with entries chosen from E _ [x1 ,
x2 , ..., x1]. We say that M is row-partitionable if

(a) each variable xi occurs exactly once in M; and

(b) for each row i there exists an index ki such that aij # E if 1� j�ki , and
aij � E if ki� j�n.

As an example, the matrix is row-partitionable:

3 7 &2 x1 x2

M=_ 2 4 x3 x4 x5& .
&3 5 6 2 x6

7 2 9 1 4

The main motivation for this subproblem comes from the theory of rational
series; for an introduction to this area see [1]. Let f be a formal power series in
noncommuting variables over a field F. Then f is said to be rational if it can be
expressed using the operations sum, product, and quasi-inverse (the map sending
x [ 1�(1&x)). The series f is said to be recognizable if the coefficient of the term
corresponding to w (which is written as ( f, w)) can be computed as follows: there
is a matrix-valued homomorphism +, a row matrix *, and a column matrix # such
that ( f, w)=*+(w) #. A well-known theorem due to Schu� tzenberger (e.g., [1,
Theorem 6.1]) proves that a formal power series is rational iff it is recognizable. In
this case the dimension of the smallest possible matrix representation (the dimen-
sion of the square matrix #*) is an invariant called the rank of the rational series.
The following problem now arises [9, 19]: given a (not necessarily rational) formal
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power series f, compute the smallest possible rank Rf (n) of any rational series
agreeing with f on all terms of total degree at most n.

It can be shown that this number Rf (n) is equal to the minrank of an associated
Hankel-like matrix M( f, n). More specifically, we have Rf (n)=minrankF (M( f, n)),
where the rows of M( f, n) are labeled with words w of length �n, the columns are
labeled with words x of length �n, and the entry in the row corresponding to w
and the column corresponding to x is ( f, wx) if |wx|�n, and it is a unique indeter-
minate otherwise. It is easy to see that this particular M( f, n) is row-partitionable.

Consider the algorithm:

MR(M=(aij)1�i�m, 1� j�n).

(1) rearrange rows so that k1�k2� } } } �km ;

(2) if there exists u, 1�u�k1 , such that a1u {0,

set r � 1; T � [1]

else

set r � 0; T � <

(3) for s=2 to m do

if the vector (as1 , as2 , ..., as, ks
) is not linearly dependent on

(aij) i # T, 1� j �ks

set r � r+1; T � T _ [s]

(4) return (r)

Theorem 30. Let F be a field. Then algorithm MR correctly computes minrankF (M)
and uses O(m3n) field operations.

To prove correctness, we first observe that the reordering in step (1) cannot
change minrankF (M). Next, we observe that the following invariants hold before
the loop step corresponding to s is performed:

(a) for all possible assignments to the variables, the rows in the set T are
linearly independent;

(b) for each assignment to the variables in the rows of T, there exists an
assignment to the variables in the rows T� =[1, 2, ..., s&1]&T such that each of
the rows in T� is dependent on a row of T.

These invariants clearly hold after step (2). We now prove by induction on s that
they hold throughout the algorithm.

Suppose the invariants hold up to step s&1. At step s, we consider row s of M.
If (as1 , ..., as, ks

) is not dependent on (a ij)i # T, 1� j�ks
, then for any assignment of the

variables row s of M is not dependent on the rows in T, so by adding s to T we
preserve part (a) of the invariant and part (b) is unaffected. If, on the other hand,
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a=(as1 , ..., as, ks
) is dependent on M$=(aij) i # T, 1� j�ks

, then write a as a linear
combination of the rows of M$. We can then assign the variables in row s of M
appropriately so that the entire row s is a linear combination of the rows of T. Then
part (b) of the invariant is preserved and part (a) is unaffected. This completes the
proof of correctness.

To complete the proof of the theorem, it suffices to observe that we can test to
see if row s is dependent on the rows of T in at most O(m2n) field operations, and
this step is performed at most m times. K
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