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Abstract

Let F = (F1; F2; : : : ; Fn) be an n-tuple of formal power series in n variables of the form
F(z) = z + O(|z|2). It is known that there exists a unique formal di5erential operator A =∑n
i=1 ai(z)@=@zi such that F(z) = exp(A)z as formal series. In this article, we show the Jacobian

J(F) and the Jacobian matrix J (F) of F can also be given by some exponential formulas.
Namely, J(F)=exp(A+�A) ·1, where �A(z)=

∑n
i=1(@ai=@zi)(z), and J (F)=exp(A+RJa) ·In×n,

where In×n is the identity matrix and RJa is the multiplication operator by Ja for the right. As
an immediate consequence, we get an elementary proof for the known result that J(F) ≡ 1 if
and only if �A = 0. Some consequences and applications of the exponential formulas as well
as their relations with the well-known Jacobian Conjecture are also discussed. c© 2002 Elsevier
Science B.V. All rights reserved.

MSC: 32H02; 32A05; 14R15

1. Introduction

This research work mainly motivated by the well-known Jacobian Conjecture and
inspired by an exponential formula in Conformal Field theory. First let us recall:

Jacobian Conjecture. Let k be a 'eld of characteristic 0 and F :kn → kn be a poly-
nomial map. If Jacobian j(F) =Det(@Fi=@zj) = 1, then F is an automorphisms whose
inverse is also a polynomial map.

This conjecture was @rst proposed by Keller in 1939. For the history of this con-
jecture (see [2,7,4] and references there). Since then, it has been attracting enormous
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e5orts from mathematicians. But unfortunately, this conjecture remains widely open at
the present time. Nevertheless, many important results have been obtained in last six
decades from the e5orts of mathematicians trying to solve Jacobian Conjecture. Some
of these results are not only crucial to the Jacobian Conjecture, they also play very
important roles in other mathematical research areas.

One of the e5ective approaches to the Jacobian Conjecture is to develop nice for-
mulas for the formal inverse G of the polynomial map F and to see if it is also a
polynomial map. Several important formulas have been found and well studied, among
which the most well known are Abhyankar’s inversion formula (see [1]) and the tree
expansion formula for the formal inverse G of F (see [2,8]).

Interestingly, an exponential formula for the formal power series or holomorphic
functions in one variable, which plays a crucial role in two-dimensional Conformal
Field Theory, seems closely related with the Jacobian Conjecture. To be more precise,
let F(x) = x + O(x2) be a formal power series in one variable x. Then there exists a
unique formal di5erential operator A(x)=a(x)@=@x with o(a) ¿ 2 such that F(x)=eAx.
(Note that the exponential formula we quote here is a little di5erent from the one
used in [6]). The main reason that the exponential formula above is so important in
two-dimensional Conformal Field Theory is that it gives the Virasoro algebra structure,
which is the most fundamental algebraic structure to the whole theory. For more detail,
see [6,3,9].

One of the advantages of the exponential formula F(x) = eAx for the formal power
series F(x) is that eA is an automorphism of the algebra C[[x]] of formal power series
in one variable. This is because that A itself is a derivation fof the algebra C[[x]] and it
is well known in Lie algebra theory that the exponential of any derivation of an algebra
is an automorphism of the algebra. As an immediate consequence of this observation,
the formal inverse G of F is given by the exponential formula G(x)=e−Ax. Regarding
the Jacobian Conjecture, it is certainly very interesting to see that the formal inverse
G of F is given in such a simple way. Actually, for the formal power series in several
variables, we also have similar exponential formulas (see [5] and also Proposition 2.1).
Namely, let F = (F1; F2; : : : ; Fn) be an n-tuple of formal power series in n variables
of the form F(z) = z + O(|z|2). Let G = (G1; G2; : : : ; Gn) be the formal inverse of
F , i.e. F(G) = G(F) = z, where z = (z1; z2; : : : ; zn). Then there exists a unique formal
di5erential operator A=

∑n
i=1 ai(z)@=@zi with o(ai(z)) ¿ 2 such that Fi(z) = exp(A)zi

(i= 1; 2; : : : ; n). By the similar reason, eA is an automorphism of the algebra C[[z]] of
formal power series in z and Gi(z) = e−Azi for i = 1; 2; : : : ; n.

Since the formal power series F as well as its formal inverse G are completely
determined by a unique formal di5erential operator A, naturally one may ask: how
does the formal di5erential operator A determine the Jacobian J(F) and Jacobian
matrix J (F) of F? or in other words, are there any formulas via which the di5eren-
tial operator A also completely determines J(F) and J (F)? In this article, we show
that the answer to the question above is “yes”. In Section 2, we give two exponen-
tial formulas for the Jacobian J(F) and Jacobian matrix J (F) of F , respectively.
To be more precise, in Theorem 2.8, we show that J(F) = exp(A + �A) · 1, where
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�A(z) =
∑n
i=1(@ai=@zi)(z) is the divergence of the operator A. In Theorem 2.9, we

show that J (F) = exp(A + RJa) · In×n, where In×n is the identity matrix and RJa is
the multiplication operator by Ja for the right. As an immediate consequence, we also
give an elementary proof for the known result that J(F) ≡ 1 if and only if �A = 0.
(See Corollary 2.12.) Various interesting properties of the di5erential operator A and
the formal deformation Ft(z) = etAz are also derived in this section.

In Section 3, we @rst give some explanations about the exponential formulas derived
in Theorems 2.8 and 2.9 by relating them with some well-known formula in linear
algebra. Then, we study the consequences of these exponential formulas to the Jacobian
Conjecture, especially, we give a new proof to a theorem of Bass et al. in [2] (see
Theorem 3.5).

In Section 4, we discuss some open problems related with these exponential formulas
and the Jacobian Conjecture.

2. Exponential formulas

Notations. (1) Let z1; z2; : : : ; zn be n commutative variables and z= (z1; z2; : : : ; zn). Let
C[[z]] = C[z1; z2; : : : ; zn] be the algebra of polynomials in n variables, C[[z]] be the
algebra of formal power series. For any k ¿ 0, set Ck [[z]] =Ck [[z1; z2; : : : ; zn]] be the
subalgebra consisting of the elements of C[[z]] whose lowest degree is greater or equal
to k.

(2) For any F = (F1; F2; : : : ; Fn)∈C[[z]]n, set

JF(z) =
(
@Fi
@zj

)
16i;j6n

; (2.1)

JF(z) = Det
(
@Fi
@zj

)
16i;j6n

: (2.2)

We call JF the Jacobian matrix fand JF(z) the Jacobian of F .
Let F1 be the set of the elements F=(F1; F2; : : : ; Fn)∈C[[z]]n such that Fi(z)=zi+

high degree terms, for i = 1; 2; : : : ; n. Note that for any analytic map F : U → Cn with
Jacobian J(F)(0) �= 0 for the some open neighborhood U of 0∈Cn, composing with
some line isomorphism if necessary, the formal series of F will be in F1. Another
observation is that, any F ∈F1 gives an automorphism of the algebra C[[z]], which
sends zi to Fi. The inverse of this automorphism is the automorphism induced by the
formal inverse of F .

One remark is that all the proofs and results in this paper work equally well for any
@eld of characteristic 0, not necessarily algebraic closed. But for convenience, we will
always take C to be the ground @eld.

The following proposition is known. For example, see [5]. Here we give an elemen-
tary proof.
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Proposition 2.1. For any F = (F1; F2; : : : ; Fn)∈F1; there exists a unique a =
(a1; a2; : : : ; an)∈C2[[z]]n such that

Fi(z) = exp
(
a(z)

d
dz

)
zi = exp(A)zi; (2.3)

where

A(z) = a(z)
d
dz

=
n∑
i=1

ai(z)
@
@zi
; (2.4)

exp(A) = exp
(
a(z)

d
dz

)
=

∞∑
k=0

(a(z)d=dz)k

k!
: (2.5)

Proof. This can be checked directly by solving the formal equation (2.3) incursively
as follows.

For i = 1; 2; : : : ; n, we write

Fi(z) = zi + b
(2)
i (z) + b(3)

i (z) + · · · + b(k)
i (z) + · · · ; (2.6)

ai(z) = a(2)
i (z) + a(3)

i (z)+; : : :+ a(k)
i (z) + · · · ; (2.7)

where a(k)
i (z) and b(k)

i (z), for any k ∈N, fare homogeneous polynomials of degree k.
We also write F (k) =(F (k)

1 ; F
(k)
2 ; : : : ; F

(k)
n ); a(k) =(a(k)

1 ; a
(k)
2 ; : : : ; a

(k)
n ) and A(k) =a(k)@=@z=∑n

i=1 a
(k)
i @=@zi. Notice that the operator A(k) increase degree by k − 1.

From Eqs. (2.3), we get

zi +
∞∑
k=1

(a(z)d=dz)k

k!
zi = zi + b

(2)
i (z) + b(3)

i (z) + · · · + b(k)
i (z) + · · · : (2.8)

Comparing the homogeneous parts of both sides of (2.8), we get

a(2)
i = b(2)

i ;

a(3)
i = b(3)

i −
n∑
k=1

a(2)
k
@a(2)
i

@zk
;

· · ·
a(m)
i = b(m)

i −
∑

16r¡m

∑
k1+k2+···kr=m+r
k1 ; k2 ;:::; kr¿2

A(k1)A(k2) · · ·A(kr)

k1!k2! · · · kr! zi: (2.9)

Hence a(z) is completely determined by the equations above.

One easy corollary of the calculation above is the following:

Corollary 2.2. F is odd if and only if a(z) is odd.

This can also be proved by the similar arguments for Proposition 3.3.
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De�nition 2.3. We call the formal di5erential operator A in Proposition 2:1 the asso-
ciated di5erential operator of F . We also de@ne

(�A) = (�a)(z) =
n∑
i=1

@ai
@zi

(z) (2.10)

and call it the divergence of the di5erential operator A.

One of the advantages of formula (2.3) is that the operator exp(A) or exp(a(z)@=@z)
is an automorphism of the C-algebra C[[z]] which maps zi to Fi. This follows from
the well-known fact that the exponential of any derivative of any algebra, when it is
well de@ned, is an automorphism of that algebra. It is because this remarkable property
that formula (2.3) in the case of one variable plays a very important role in conformal
@eld theory see [3] and [6]. (The formula used in [6] is a little di5erent from (2.3).)
The following are some immediate consequences of the property above.

Lemma 2.4. (a) Let F−1 = (F−1
1 ; F−1

2 ; : : : ; F−1
n ) be the formal inverse of F; i.e. the

composition F ◦ F−1 = F−1 ◦ F is identity map of C[[z]]. Then

F−1(z) = exp(−A(z))z = exp
(
−a(z) @

@z

)
z: (2.11)

(b) For any element g(z)∈C[[z]]; we have

g(F(z)) = exp
(
a(z)

@
@z

)
g(z): (2.12)

In particular; for any k ¿ 0; we have

F [k](z) = exp(kA(z))z = exp
(
ka(z)

@
@z

)
z; (2.13)

where

F [k](z) = F ◦ F ◦ · · ·F︸ ︷︷ ︸
k copies

(2.14)

is the kth-power of the automorphism of C[[z]] de'ned by F which sends zi to Fi.

Another advantage of formula (2.3) is that it allows us to deform the formal power
series F in a very natural way. Introduce another variable t which commutes with zi
and de@ne

Ft(z) = F(z; t) = (F1(z; t); F2(z; t); : : : ; Fn(z; t))

by setting

Fi(z; t) = exp(tA(z))zi = exp
(
ta(z)

@
@z

)
zi: (2.15)

Note that Fi(z; t)∈C[t][[z]], i.e. it is a formal power series in {zi} with coeOcients
in C[t]. In particular, for any t0 ∈C, F(z; t0)∈F1 and when t = k ∈N, F(z; k) is just
the kth-power F [k] of the isomorphism F . This deformation will play the key role in
our later arguments.
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Lemma 2.5. For any g(z; t)∈C[t][[z]],

@
@t
g(z; t) = Ag(z; t) (2.16)

if and only if g(z; t) = u(F(z; t)) = exp(tA)u(z) for some u∈C[[z]].

Proof. First let g(z; t) = exp(tA)u(z), then

@
@t
g(z; t) =

@
@t

exp(tA)u(z) = A exp(tA)u(z)

= Ag(z; t):

Conversely, suppose that g(z; t) satis@es (2.16). Set u = exp(−tA)g(z; t)∈C[t]
[[z]], then by chain rule,

@
@t

exp(−tA)g(z; t) = −A exp(−tA)g(z; t) + exp(−tA)
@
@t
g(z; t)

= −A exp(−tA)g(z; t) + A exp(−tA)g(z; t)

= 0:

So u = exp(−tA)g(z; t) does not depend on t, therefore u(z)∈C[[z]] and
g(z; t) = exp(tA)u(z).

The following property is a little bit strange.

Proposition 2.6.

J (F)(z; t)



a1(z)
a2(z)

...
an(z)


 =



a1(F(z; t))
a2(F(z; t))

...
an(F(z; t))


 (2.17)

or in short notations

AF(z; t) = J (F)(z; t)a(z) = a(F(z; t)): (2.18)

Proof. This follows from the following straightforward calculations. Consider

@
@t
Fi(z; t) =

@
@t

exp
(
ta(z)

@
@z

)
zi

=
n∑
k=1

ak(z)
@
@zk

exp
(
ta(z)

@
@z

)
zi

=
n∑
k=1

ak(z)
@
@zk
Fi(z; t)

=
n∑
k=1

@Fi(z; t)
@zk

ak(z): (2.19)
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On the other hand, note that the operators a(z)@=@z and exp(a(z)@=@z) commute with
each other, so we also have

@
@t
Fi(z; t) = exp

(
ta(z)

@
@z

)(
n∑
k=1

ak(z)
@
@zk

)
zi

= exp
(
ta(z)

@
@z

)
ai(z)

= ai

(
exp

(
ta(z)

@
@z

)
z
)

= ai(F(z; t)): (2.20)

Comparing (2.19) and (2.20), we get (2.17).

Unfortunately, Eq. (2.17) does not completely determine the operator A(z)=a(z)@=@z.
Instead we have the following explicit formulas for a(z) and the inverse G =
(G1; G2; : : : ; Gn) of F .

Proposition 2.7.

(a) a(z) = −
∞∑
k=1

1
k

(1 − eA)kz = −
∞∑
k=1

1
k


 k∑
j=0

(−1)j
(
k
j

)
F [ j](z)


 : (2.21)

(b) G(z) = z +
∞∑
k=1

(1 − eA)kz = z +
∞∑
k=1


 k∑
j=0

(−1) j
(
k
j

)
F [ j](z)


 : (2.22)

Notice that the operator 1− eA strictly increases the degree, so the in@nite sums that
appear in the lemma above all make sense.

Proof. (a) follows from the following formal identity:

A= log eA = log(1 − (1 − eA)) = −
∞∑
k=1

1
k

(1 − eA)k : (2.23)

(b) Since the formal inverse of F exists and is unique, it is enough to check that
the formal series G given by (2.22) is the inverse of F .

Consider

(G ◦ F)(z) = eAG(z)

= eAz +
∞∑
k=1

(1 − eA)keAz

= eAz +
∞∑
k=1

(1 − eA)kz −
∞∑
k=1

(1 − eA)k+1z
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= eAz + (1 − eA)z

= z:

Now we begin to prove our exponential formula for the Jacobian J(Ft).

Theorem 2.8. (a) In the notations above; we have

J(Ft)(z) = exp
(
ta(z)

d
dz

+ t�a(z)
)
· 1; (2.24)

where Ft(z) = F(z; t) = (F1(z; t); F2(z; t); : : : ; Fn(z; t)) as before.
(b) For any u∈C[[z]]; we have

exp(tA+ t�a(z))u= u(F(t; z))JF(t; z): (2.25)

It is easy to see that (a) is an immediate consequence of (b), but here we need
prove (a) @rst.

Proof. To keep notations simple, here we only give the proof for the case of two
variables. For the general cases, the ideas are completely same.

Let K(t) = exp(ta(z)d=dz+ t�a(z)) · 1 and H (t) =J(Ft), i.e. the Jacobian of Ft(z)
with respect to the variables z1; z2. It is easy to see that

K(0) = 1; (2.26)

@
@t
K(t) = (A(z) + �A(z))K(t): (2.27)

To show that K(t) =H (t), it is enough to show that H (t) also satis@es Eqs. (2.26)
and (2.27) above. First when t = 0, Ft(z) = (z1; z2) and H (0) = J(F)(z; 0) = 1. So it
only remains to check (2.27) for H (t).

@
@t
H (t) =

@
@t

∣∣∣∣∣∣∣∣
@F1(z; t)
@z1

;
@F1(z; t)
@z2

@F2(z; t)
@z1

;
@F2(z; t)
@z2

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
@2F1(z; t)
@z1@t

;
@F1(z; t)
@z2

@2F2(z; t)
@z1@t

;
@F2(z; t)
@z2

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
@F1(z; t)
@z1

;
@2F1(z; t)
@z2@t

@F2(z; t)
@z1

;
@2F2(z; t)
@z2@t

∣∣∣∣∣∣∣∣ : (2.28)

By Lemma 2.5, we calculate the @rst term of (2.28) as follows.∣∣∣∣∣∣∣∣
@2F1(z; t)
@z1@t

;
@F1(z; t)
@z2

@2F2(z; t)
@z1@t

;
@F2(z; t)
@z2

∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣
@
@z1

(a1(z)
@
@z1

+ a2(z)
@
@z2

)F1(z; t);
@F1(z; t)
@z2

@
@z1

(a1(z)
@
@z1

+ a2(z)
@
@z2

)F2(z; t);
@F2(z; t)
@z2

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
A
@F1(z; t)
@z1

;
@F1(z; t)
@z2

A
@F2(z; t)
@z1

;
@F2(z; t)
@z2

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
@a1

@z1

@F2(z; t)
@z1

+
@a2

@z1

@F2(z; t)
@z2

;
@F2(z; t)
@z2

@a1

@z1

@F2(z; t)
@z1

+
@a2

@z1

@F2(z; t)
@z2

;
@F2(z; t)
@z2

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
A
@F1(z; t)
@z1

;
@F1(z; t)
@z2

A
@F2(z; t)
@z1

;
@F2(z; t)
@z2

∣∣∣∣∣∣∣∣ +
(
@a1

@z1

)
J(Ft): (2.29)

Similarly, for the second term of (2.28), we have∣∣∣∣∣∣∣∣
@F1(z; t)
@z1

;
@2F1(z; t)
@z2@t

@F2(z; t)
@z1

;
@2F2(z; t)
@z2@t

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
@F1(z; t)
@z1

; A
@F1(z; t)
@z2

@F2(z; t)
@z1

; A
@F2(z; t)
@z2

∣∣∣∣∣∣∣∣ +
(
@a2

@z2

)
J(Ft): (2.30)

Combining (2.29) and (2.30), we get

@
@t
H (t) = A

∣∣∣∣∣∣∣∣
@F1(z; t)
@z1

;
@F1(z; t)
@z2

@F2(z; t)
@z1

;
@F2(z; t)
@z2

∣∣∣∣∣∣∣∣ +
(
@a1

@z1
+
@a2

@z2

) ∣∣∣∣∣∣∣∣
@F1(z; t)
@z1

;
@F1(z; t)
@z2

@F2(z; t)
@z1

;
@F2(z; t)
@z2

∣∣∣∣∣∣∣∣
= (A+ �A)J(Ft): (2.31)

(b) By formula (2.24) and Lemma 2.5, it is easy to check that both sides of (2.25)
satisfy Eqs. (2.26) and (2.27).

By the similar idea, we can also get an exponential formulas for the Jacobian
matrix JF(t; z) of F(t; z). First, we @x the following notations: Let Ja(z) be the Ja-
cobian matrix of the n-tuple (a1(z); a2(z); : : : ; an(z)). Let RJa be the operator over the
algebra Mn×n(C[[z]]), i.e. the n × n matrices with entries lying in C[[z]], de@ned by
multiplying the matrix Ja(z) from the right-hand side. In the following theorem, we
also view the di5erential operator A(z) = a(z)@=@z as a di5erential operator of the
algebra Mn×n(C[[z]]), which acts the matrices entry-wisely.

Theorem 2.9. For any U (z)∈Mn×n(C[[z]]); we have

exp (tA+ tRJa)U = U (Ft(z))JFt(z): (2.32)

In particular; when U is chosen to the identity matrix Id; we get

JFt(z) = exp(tA+ tRJa) · Id: (2.33)
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Proof. For any 1 6 i; j 6 n, consider

@
@t
@Fi(t; z)
@zj

=
@
@zj

@Fi(t; z)
@t

=
@
@zj

n∑
k=1

ak(z)
@Fi(t; z)
@zk

=
n∑
k=1

@ak
@zj

@Fi(t; z)
@zk

+

(
n∑
k=1

ak
@
@zk

)
@Fi(t; z)
@zj

=
n∑
k=1

@Fi(t; z)
@zk

@ak
@zj

+ A
@Fi
@zj
:

Hence, we have

@
@t
JFt(z) = (A+ RJa)JFt(z): (2.34)

By Lemma 2.5, we also have (@=@t)U (Ft(z)) = AU (Ft(z)). So it is easy to see that
the right-hand side of (2.32) satis@es the equations

@
@t

(U (Ft(z))JFt(z)) = (A+ RJa)(U (Ft(z))JFt(z)); (2.35)

U (F0(z))JF0(z) = Id: (2.36)

Hence (2.32) holds.

Remark 2.10. (a) Note that the proofs of Theorems 2.8 and 2.9 only need the condition
o(a(z)) ¿ 1 instead of o(a(z)) ¿ 2. So for any A(z) = a(z)@=@z with o(a(z)) ¿ 1, set
F(t; z) = etA(z)z, then the formulas in Theorems 2.8 and 2.9 still hold.

(b) In particular, over the complex @eld C, it is straightforward to check that F(z)=
eA(z)z is a well-de@ned formal power series and we can replace t by 1 in all the
formulas in Theorems 2.8 and 2.9.

Next we will derive a little bit more information about JFt .

Proposition 2.11.

@
@t
J(Ft) = (A+ (�a)(z))J(Ft) = (�a)(Ft)J(Ft): (2.37)

In particular;

AJ(Ft) = ((�a)(Ft) − (�a)(z))J(Ft): (2.38)

Proof. From (2.31), we see that (@=@t)J(Ft)=(A+(�a)(z))J(Ft). Let L(z; t)=(A+
(�a)(z))J(Ft) and R(z; t) = (�a)(Ft)J(Ft). Then by (2.24) and Lemma 2.5, it is
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easy to see that

@L(z; t)
@t

= (A+ (�a)(z))L(z; t): (2.39)

@R(z; t)
@t

= (A+ (�a)(z))R(z; t): (2.40)

While L(z; 0) = (�a)(z) = R(z; 0). Hence we must have L(z; t) = R(z; t).

As an application of Theorem 2.8, we give a new proof to the following result,
which was @rst proved by Pittaluga in [5] by using the theory of formal Lie groups
and Lie algebras.

Corollary 2.12. J(F) ≡ 1 if and only if �A ≡ 0.

Proof. First from (2.24), it is easy to see that if �A ≡ 0, then J(F) ≡ 1. Conversely,
suppose that J(F) ≡ 1. Observe that a(z)∈C2[[z]], or in other words, the least degree
of ai are at least 2, therefore the operators A=a(z)@=@z and A+�A increase the degree
at least by one. If �a(z) �= 0, say its lowest degree is m. Let M be it the homogeneous
part of degree m. From (2.24) for t = 1, we have

1 ≡J(F) = e(a(z)@=@z+�a(z)) · 1

= 1 +
(
a(z)

@
@z

+ �a(z)
)
· 1 +

∑
i¿2

1
k!

(
a(z)

@
@z

+ �a(z)
)k−1

�a(z)

= 1 +M + high degree terms: (2.41)

Clearly M = 0, contradiction.
Another way to prove the result above is the following: Consider the “deformation”

Ft(z) of F as before. Notice the Jacobian J(Ft)∈C[t][[z]] and J(Ft)=J(F [k]) when
t=k, for any k ∈N. Now since J(F)(z; 1) ≡ 1, then, by the chain rule, J(F [k])(z) ≡ 1.
This implies that J(Ft) ≡ 1, when t = k for any k ∈N. Hence J(Ft) itself must be
identically 1, for as a polynomial of t, the coeOcient of any monomial of positive
degree of F cannot have in@nitely roots unless it is zero. In particular, J(Ft) does not
depend on t. So we have

0 =
@
@t

∣∣∣∣
t=0

JF(z; t) =
(
a(z) @
@z

+ �a(z)
)
JF(z; 0) = �a(z): (2.42)

From the arguments in the proof for the Corollary above, or by the Corollary itself,
we have:

Corollary 2.13. For any F ∈F1; if J(F) ≡ 1. Then J(Ft) ≡ 1.
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3. Some explanations and applications

At the @rst glance, the formulas we proved in Theorems 2.8 and 2.9 are a little
mysterious. Here we try to give a little explanations to these two formulas.

First, the exponential formula (2.24) reminds us of the following elementary formula
in linear algebra. Namely, for any n× n matrix M ∈Mn×n(C), then

Det eM = eTrM : (3.1)

Actually, we will see that formula (2.24) can be viewed as a generalization of the
formula above.

First, we de@ne the embedding

$ :Mn×n(C) → D(z); (3.2)

M = (mij) →
n∑

i; j=1

mijzi
@
@zj
; (3.3)

where D(z) is the Lie algebra of the derivations of C[[z]]. It is very easy to check
that the linear map $ :Mn×n → D(z) is an injective homomorphism of Lie algebras.

Lemma 3.1. Let F(z) = exp ($(M))z. Then
(a) J (F) = eM .
(b) F(z) = eMz.
(c) J(F) = eTrM .

Proof. Note that J$(M) = M and �$(M) = TrM . By Remark 2.10, we can apply
formula (2.33) to the map F , we get

J (F) = e$(M)+RJ$(M) In×n
= eRM e$(M)In×n
= eRM In×n
= eM ;

where the second equality above follows from the fact that the operators $(M) and
RJ$(M) commutes with each other. So we have proved (a). (b) follows immediately
from (a).

To prove (c), we apply formula (2.24) to F , we get

J(F) = e$(M)+�$(M) · 1

= e
�$(M)e$(M) · 1

= eTr(M):

Combine (a) and (c) in the lemma above, we recover formula (3.1). Therefore,
formula (2.24) and (2.33) can be viewed as some generalizations of formula (3.1).



W. Zhao / Journal of Pure and Applied Algebra 166 (2002) 321–336 333

One of the motivations for the present work is that we believe the exponential
formulas (2.3), (2.24) and Corollary 2.12 are closely related with the well-known
Jacobian Conjecture. In the rest of section, we will consider some applications to the
Jacobian Conjecture.

From Proposition 2.1, Lemma 2.4 and Corollary 2.12, we see that the Jacobian
Conjecture is equivalent to the following pure algebraic problem.

Conjecture 3.2. Let a(z)∈C2[[z1; z2; : : : ; zn]] and �a(z) = 0. Then F(z) =
exp(a(z)@=@z)z ∈ (C[z])n if and only if G(z) = exp(−a(z)@=@z)z ∈ (C[z])n.

In the case when a(z) is even, we have a very simple answer to the conjecture
above.

Proposition 3.3. (a) For any F ∈F1; let G be its formal inverse. Then G(z)=−F(−z)
if and only if a(z) is even.

(b) If F satis'es the conditions in the Jacobian Conjecture and a(z) is even; then
G is also a polynomial map.

Proof. Clearly (b) is an immediate consequence of (a). For (a), suppose a(z) is even,
then, replacing z by −z in (2.3), we get

F(−z) = exp
(
a(−z) @

@(−z)
)

(−z)

= −exp
(
−a(z) @

@z

)
z

= −G(z): (3.4)

Conversely, suppose the formal inverse G(z) = −F(−z). Let B = b(z)@=@z be the
associated formal di5erential operator of G, i.e.

G(z) = exp(B(z))z: (3.5)

By the uniqueness of B, we have B(z) =−A(z). On the other hand, from (3.4), we get

−F(−z) = exp(A(−z))z: (3.6)

Comparing (3.5) and (3.6), we have A(−z) = B(z) = −A(z). Therefore a(z) must be
even.

As an immediate consequence, we have the following:

Corollary 3.4. With the same notation above; if a(z) is even and F= eAz are polyno-
mials; then �a(z) = 0.

Note that this is not true for arbitrary formal power series a(z).
Finally, we give a new proof for a theorem of Bass et al. in [2].
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Theorem 3.5 (Bass et al. [2]). Let F(z) = z + H (z) be a polynomial map with H (z)
being homogeneous of degree d¿ 2. If J (H)2 = 0; then the formal inverse map
G = z − H (z).

Note that J (H)2 = 0 implies that J(F) = 1. Thus, the Jacobian Conjecture is true
in this case.

Proof. First note that J (H)z = dz, since H (z) is homogeneous of degree d. From
J (H)2 = 0, we have 0 = J (H)2z = dJ (H)H , hence J (H)H = 0.

Now, let us calculate the formal di5erential operator A(z)=a(z)@=@z by the incursive
procedure in Proposition 2.1. Write a(z)=

∑∞
k=2 ak(z), where ak(z) is homogeneous of

degree k. By incursive formula (2.9), it is easy to see that ak(z)=0 if k �= m(d−1)+1
for some m¿ 0. For k = m(d− 1) + 1 with m¿ 0, we have ad(z) = H (z) and

ad(z) = H (z);

a2d−1(z) = − 1
2

(
H (z)

@
@z

)2

z

= − 1
2

(
H (z)

@
@z

)
H (z)

= − 1
2JH (z) · H (z)

= 0:

By Mathematical Induction and incursive formula (2.9), it is easy to show that
am(d−1)+1 =−(1=m!)(H (z)@=@z)mz= 0 for any m¿ 2. Therefore, we have a(z) =H (z)
and A(z) =H (z)@=@z. Note that A2(z) = 0, so the formal inverse G(z) of F(z) is given
by G(z) = e−Az = z − H (z).

4. Some open problems

For the case of two variables, by using the residue and intersection theory in complex
algebraic geometry, the author in [10] shows that, to prove the Jacobian Conjecture, it
will be enough to consider the following special polynomial maps F ∈F1.

Let r(x) be a monic polynomial of degree N + 1¿ 1 with distinct roots and ((x)
and )(x) are unique polynomials satisfying

(a) r(x))(x) + r′(x)((x) = 1:

(b) deg )(x) 6 N − 1 and deg ((x) 6 N: (4.1)

Consider F = (F1; F2), where

F1(z1; z2) = r(z1)H1(z1; z2) − z2((z1)K2(z1; z2); (4.2)

F2(z1; z2) = r(z1)H2(z1; z2) + z2((z1)K1(z1; z2); (4.3)
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where Hi and Ki are polynomials in z= (z1; z2) and satisfy H1K1 +H2K2 = 1. Further-
more, without lose of generality, we also can assume that F ∈F1. Then the Jacobian
Conjecture is equivalent to the following

Conjecture 4.1. Let F = (F1; F2) as above; A = a(z)@=@z be the associated formal
di;erential operator of F; then �A �= 0.

Finally, we ask the following very important and interesting question (this question
for the case of one variable was @rst suggested to the author by Y.-Z. Huang), namely,
if the analytic map F is well de@ned in an open neighborhood of 0∈Cn, is a(z)
convergent near 0∈Cn?

This is unknown both in the case of one variable and in the case F is a polynomial
map with J(F) ≡ 1. We believe the following conjecture is true, but we do not have
much evidence.

Conjecture 4.2. If F is convergent near 0∈Cn; then so is a(z).

The converse of the conjecture above is very easy to prove.

Proposition 4.3. Suppose a(z)∈C2[[z]] is convergent near point 0∈Cn; then so is the
formal power series F(z) = ea(z)@=@zz.

Proof. Consider the deformation F(z; t) = eta(z)@=@zz, which satis@es the following dif-
ferential equations:

@
@t
F(z; t) = a(z)

@
@z
F(z; t); (4.4)

F(z; 0) = z: (4.5)

It is well known in PDE that di5erential equation (4.4) with condition (4.5) has
a unique analytic solution. Then as a formal power series solution of (4.4), F is
convergent near 0∈Cn.
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