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A B S T R A C T

Cyclic-diGMP is a bacterial messenger that regulates many physiological processes, including many
attributed to pathogenicity. Bacteria synthesize cyclic-diGMP from GTP using diguanylate cyclases; its
hydrolysis is catalyzed by phosphodiesterases. Here we report the over-expression and purification of a
bi-functional diguanylate cyclase-phosphodiesterase from Agrobacterium vitis S4. Using homology
modeling and primary structure alignment, we identify several amino acids predicted to participate in
the phosphodiesterase reaction. Upon altering selected residues, we obtain variants of the enzyme that
efficiently and quantitatively catalyze the synthesis of cyclic-diGMP from GTP without hydrolysis to
pGpG. Additionally, we identify a variant that produces cyclic-diGMP while immobilized to NiNTA beads
and can catalyze the conversion of [a-32P]-GTP to [32P]-cyclic-diGMP. In short, we characterize a novel
cyclic-diGMP processing enzyme and demonstrate its utility for efficient and cost-effective production of
cyclic-diGMP, as well as modified cyclic-diGMP molecules, for use as probes in studying the many
important biological processes mediated by cyclic-diGMP.
ã 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cyclic-diGMP [(bis-30-50)-cyclic dimeric guanosine monophos-
phate] is a second messenger ubiquitously produced by bacteria
[11,15,25] and the eukaryote Dictyostelium discoideum [7]. Since its
discovery as a regulator of cellulose biosynthesis in Acetobacter
xylinum [45], it has been linked to the regulation of various cellular
processes with medical and agricultural implications, including
biofilm formation, regulation of virulence factors, pathogenicity,
and cell mobility [10,21,26,36,43,53]. Because of its role in
medically relevant processes, cyclic-diGMP is currently being
explored as an anti-infective agent [50], as well as a vaccine
adjuvant [6,22,38].

The growing interest in understanding the underlying mecha-
nisms by which this molecule regulates these diverse processes
has been hampered by the cost associated with obtaining cyclic-
diGMP. Because of this, more cost-effective avenues needed to be

explored to allow researchers to obtain the nucleotide. Several
groups have achieved chemical syntheses of cyclic-diGMP
[14,20,24,27,28,44,45]. However, these syntheses require multiple
steps that involve protection and deprotection of various
functional groups of GTP, which often results in low product yield.

Bacteria synthesize cyclic-diGMP from two molecules of
guanosine triphosphate (GTP) using a diguanylate cyclase (DGC)
containing a conserved GG(D/E)EF motif [1,5,15,44,45,47,52] or the
AGDEF motif [23,39]. The conserved D/E is proposed to be the
active site base responsible for deprotonating the 30-OH of GTP
which facilitates nucleophilic attack of the a-phosphate of the
second molecule of GTP thereby producing the cyclized product
[5,26,57]. Frequently, diguanylate cyclases demonstrate product
inhibition. The sequence RxxD has been shown to be required for
cyclic-diGMP binding and therefore product inhibition
[2,8,9,30,54]. In bacteria, cyclic-diGMP is hydrolyzed to
50-phosphoguanylyl-(30,50)-guanosine (pGpG) by phosphodiester-
ases (PDE) containing the signature ExL motif [9,48,52], or less
commonly the HD-GYP motif [12,16,17,18,46]. In most cases
enzymes containing both GG(D/E)EF and ExL motifs exhibit either
diguanylate cyclase or phosphodiesterase activities, but rarely
both. However, to date eight bi-functional DGC–PDE enzymes have
been identified from various species [13,19,31,33–35,49,55].

Enzymatic synthesis of cyclic-diGMP has been reported by
several groups using diguanylate cyclases [9,29,40,51,58]. In most
cases, the enzymes used by these groups contain an RxxD product-
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inhibition site that limits the amount of cyclic-diGMP produced.
One group reported generation a variant of a diguanylate cyclase
from the thermophile Thermotoga maritima, encoded by the gene
TM1788, in which they changed the RxxD motif to AxxD [40].
However, despite use of this variant, they still observed product
inhibition at high concentrations of GTP.

Based on its primary structure, the protein AvHaCE (H-NOX-
associated cyclic-diGMP processing enzyme), encoded by the gene
Avi_3097 from Agrobacterium vitis strain S4, is predicted to be a bi-
functional DGC–PDE. Of particular interest is the fact that the
protein lacks the RxxD motif. We hypothesized that due to its lack
of the RxxD inhibition site, a variant of AvHaCE without
phosphodiesterase activity could efficiently produce large quanti-
ties of cyclic-diGMP, and therefore be of great utility to the cyclic-
diGMP field. Thus, we sought to investigate whether altering
residues thought to be important for phosphodiesterase activity
would result in variants of AvHaCE lacking PDE activity while
maintaining DGC activity, thus resulting in an improved system for
enzymatically producing cyclic-diGMP.

2. Materials and methods

2.1. Materials

50-GTP was purchased from Promega. [a-32P]-GTP was obtained
from PerkinElmer and cyclic di-GMP and pGpG were from Biolog.
Restriction endonucleases and Phusion High Fidelity polymerase
were purchased from New England Biolabs. PfuTurbo was obtained
from Agilent. Qiagen was the source for nickel–nitriloacetic acid
(Ni–NTA) agarose. A. vitis S4 cells were a generous gift from
Professor Thomas Burr (Cornell University).

2.2. General procedures

Matrix assisted laser desorption ionization (MALDI) analyses
were performed at the Stony Brook Proteomics Center or at the
Institute of Chemical Biology and Drug Discovery (Stony Brook
University) with a-cyano-4-hydroxycinnamic acid as the matrix.
High performance liquid chromatography (HPLC) was conducted
with a LC-2010A HT liquid chromatography system (Shimadzu).
Nucleotides were separated with either a Shim-pack XR-ODS
(3 mm � 100 mm) or a Beckman ODS Ultrasphere (4.6 mm � 25
cm) reverse phase C18 column and detection was monitored at
254 nm.

2.3. Construction of wild-type and variant AvHaCE expression vectors

Genomic DNA for cloning A. vitis Avi_3097 was purified from
cells of A. vitis S4 by use of the Wizard SV Genomic DNA
Purification System by Promega. The gene was cloned from A. vitis
genomic DNA by the polymerase chain reaction (PCR) with Pfu
Turbo or Phusion as the polymerase. The gene was cloned between
the NdeI and XhoI sites of pET20b to generate a C-terminal hexa-
histidine tagged protein. QuikChange site directed mutagenesis
was used to generate variants of AvHaCE with wild-type Avi_3097
in pET20b plasmid DNA serving as the template for PCR. The
Avi_3097 DGC only variant was constructed by introducing a stop
codon after the 248th amino acid of the wild-type protein. The
presence of the gene and mutations was confirmed at the Stony
Brook DNA sequencing facility.

2.4. Expression and purification of hexa-histidine tagged wild-type
and variant AvHaCE proteins

Plasmid DNA harboring the gene encoding wild-type or variant
AvHaCE was transformed into BL21DE3pLysS competent cells for

protein over-expression. Cultures were grown in 2XYT medium
(16 g tryptone, 10 g yeast extract, 5 g sodium chloride per liter)
supplemented with 100 mg mL�1 ampicillin at 37 �C to an OD600 of
�1.2. Protein expression was induced by the addition of 10 mM
isopropyl b-D-thiogalactopyranoside (IPTG) and was allowed to
proceed overnight (�16 h) at 18 �C after which cells were harvested
by centrifugation. Cells were resuspended in Buffer A (50 mM
Tris–HCl, pH 7.4, 5 mM b-mercaptoethanol, 10% glycerol, 50 mM
arginine, 50 mM glutamic acid, 200 mM sodium chloride, 10 mM
imidazole and 500 mM EDTA) containing 1 mM phenylmethylsul-
fonyl fluoride (PMSF) at room temperature. The suspension was
incubated on ice for 20 min and cells were lysed by sonication.
Cellular debris was removed by centrifugation at 39,000 � g for one
hour at 4 �C. The cleared lysate was applied to a Ni–NTA column
equilibrated in Buffer A and the column was washed with
10 column volumes of Buffer A followed by washing with
10 column volumes of buffer containing 50 mM Tris–HCl, pH 7.4,
5 mM b-mercaptoethanol, 10% glycerol, 50 mM arginine, 50 mM
glutamic acid, 200 mM sodium chloride, 100 mM imidazole, and
500 mM EDTA. The protein was eluted from the column with buffer
containing 50 mM Tris–HCl, pH 7.4, 5 mM b-mercaptoethanol, 10%
glycerol, 50 mM arginine, 50 mM glutamic acid, 200 mM sodium
chloride, 250 mM imidazole, and 500 mM EDTA. Fractions con-
taining pure protein, as judged by SDS-PAGE analysis, were pooled
and dialyzed overnight against 50 mM Tris–HCl, pH 7.4, 5 mM
b-mercaptoethanol, 10% glycerol, 50 mM arginine, 50 mM gluta-
mic acid, 200 mM sodium chloride, and 500 mM EDTA and were
then stored at �80 �C.

2.5. Protein concentration determination

Protein concentrations were determined by the method of
Bradford with bovine serum albumin (BSA) as standard [3]. Protein
purity was assessed by SDS-PAGE with a 12.5% gel as described by
Laemmli [32].

2.6. Enzyme activity assay

Assays to determine product formation were carried out in
50 mM Tris–HCl, pH 7.5, containing 5 mM MgCl2 and 100 mM GTP.
Reactions were initiated by the addition of 1 mM wild-type or
variant protein to the assay mixture and were allowed to incubate
overnight at room temperature. Reactions were terminated by
heating the samples at 95 �C for 5 min. Precipitated proteins were
removed by centrifugation after which the supernatant was
filtered through a 0.22 mm membrane and analyzed by HPLC with
a Shim-pack XR-ODS column. The column was equilibrated with
95% Solvent A (0.1 M triethyl ammonium acetate (TEAA), pH 6.1)
�5% Solvent B (70% Solvent A �30% acetonitrile) at a flow rate of
0.1 mL min�1. Nucleotides were eluted with the following gradient:
5–10% Solvent B over 10 min, 10–15% Solvent B over 5 min, 15–20%
Solvent B over 5 min, 20–25% Solvent B over 5 min, 25–50% Solvent
B over 5 min, 50–5% Solvent B over 5 min and maintained at 5%
Solvent B for 5 min. Authentic GTP, cyclic di-GMP, and pGpG were
used as standards to determine retention times of the nucleotides.
The activity of each enzyme, wild-type or variant, was confirmed a
minimum of three times.

2.7. Homology modeling of AvHaCE phosphodiesterase domain

A structural model of the phosphodiesterase domain (residues
249-502) of AvHaCE was generated by use of Modeller 9.9 (http://
www.salilab.org/modeller/) with the phosphodiesterase domain
(residues 1-250) of YkuI (pdb 2W27) from Bacillus subtilis serving
as the template. These residues were chosen for AvHaCE based on
its domain prediction with PROSITE (http://prosite.expasy.org/).
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2.8. Larger scale synthesis of cyclic-diGMP

Cyclic-diGMP was produced enzymatically with the AVL variant
of AvHaCE. GTP (5 mmoles; 2.62 mg) was incubated with 9.9 nmole
of enzyme at 30 �C in a 2 mL reaction containing 50 mM Tris–HCl,
pH 7.5 and 5 mM MgCl2. Aliquots (100 mL) were removed at various
times and reactions were terminated by heating, as described
above. Samples were filtered, diluted, and analyzed by HPLC with a
Beckman Ultrasphere ODS C18 column with a gradient composed
of Solvent A (100 mM KH2PO4, pH 6.1) and Solvent B (70 mM
KH2PO4, pH 6.1, and 30% acetonitrile). The column was equilibrated
with 10% Solvent B at a flow rate of 0.65 mL min�1. Nucleotides
were eluted with the following gradient: 10% Solvent B over
13 min, 10–100% Solvent B over 1 min, hold at 100% Solvent B for
2 min, 100–10% Solvent B over 1 min, and maintained at 10%
Solvent B for 3 min.

2.9. Synthesis of cyclic-diGMP with the immobilized AvHaCE AAL
variant

Ni–NTA resin, equilibrated with 50 mM Tris–HCl, pH 7.5, was
saturated with purified AAL variant of AvHaCE. The resin was
washed extensively with 50 mM Tris–HCl, pH 7.5 to remove any
AvHaCE not bound to the resin. A reaction mixture containing

500 mM GTP, 5 mM MgCl2 and 50 mM Tris–HCl, pH 7.5 was added
to the resin after which the resin was incubated at room
temperature with slight agitation. At various time points the
reaction sample was centrifuged at 700 � g for 5 min. Aliquots
(200 mL) of the supernatant were removed, desalted with a
C18 ZipTip and analyzed by MALDI.

2.10. Enzymatic synthesis of radiolabeled cyclic-diGMP

Radiolabeled cyclic-diGMP was synthesized with 2.5 mM
purified AAL variant of AvHaCE incubated with 3 mM MgCl2,
300 mM GTP, 100 mCi [a-32P]-GTP and 50 mM Tris–HCl, pH 7.5, at
room temperature for 90 min. After 15 min, 60 min, and 90 min,
120 mL of the reaction mixture was removed and the reaction was
terminated by heating, as described above. Samples were then
centrifuged at 13,000 � g for 1 min to remove precipitates.
Supernates were analyzed by HPLC, with a BIOSCAN isotope
detector, on a DEAE column (Altex Spherogel-TSK DEAE-5PW;
10 mm, 7.5 mm � 75 mm). The column was developed with a
gradient of water (Solvent A) and triethylammonium bicarbonate
(1 M TEAB; pH 8; Solvent B) at a flow rate of 1 mL min�1; TEAB is
prepared by bubbling CO2 through a solution of 1 M triethylamine
until pH 8 is achieved. Nucleotides were eluted with the following
gradient: 20% Solvent B over 10 min, 10–40% Solvent B over 25 min,

Fig. 1. Characterization of wild-type AvHaCE. (A) Coomassie blue stained SDS-PAGE gel (12.5%) of purified AvHaCE. Lane 1, molecular mass standards; lane 2, AvHaCE after
purification by immobilized metal affinity chromatography with Ni–NTA as the matrix. (B) HPLC analyses of wild-type AvHaCE reaction product and guanine nucleotide
standards, as indicated. (C) MALDI analysis of the HPLC purified AvHaCE reaction product. The species with a molecular mass of 558 corresponds to pGp. (D) Time-course for
pGpG production from GTP with wild-type AvHaCE. To correct for variations in injection volumes, pGpG and GTP peak areas were normalized to peak areas of a co-injected
NAD standard.
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hold at 40% Solvent B for 5 min, 40–95% Solvent B over 5 min, hold
at 95% Solvent B for 5 min, 95–20% Solvent B over 5 min and then
maintained at 20% Solvent B for 5 min.

3. Results and Discussion

3.1. Avi_3097 encodes a bi-functional diguanylate cyclase-
phosphodiesterase

The growing interest in understanding processes regulated by
cyclic-diGMP requires one to have access to large quantities of the
compound for both in vitro studies as well as for use as a probe in
cellular studies. However, obtaining sufficient amounts of pure
cyclic-diGMP has presented researchers with a substantial
challenge due to the high cost of commercially available cyclic-
diGMP and the complexities of its chemical synthesis
[14,20,24,27,28,44,45]. Based on the primary structure of its
encoded protein, Avi_3097 is predicted to encode a bi-functional
diguanylate cyclase-phosphodiesterase. The encoded protein
contains both the signature GG(D/E)EF and ExL motifs as well as
a conserved loop 6 motif that is proposed to be required for
phosphodiesterase activity [41,56]. To determine whether or not
the protein encoded by Avi_3097 contains both diguanylate cyclase
and phosphodiesterase activities, we cloned the gene and purified
the resulting protein. Upon purification of the protein, we observed

a single band with a mass of �56 kDa by SDS-PAGE, consistent with
the predicted molecular mass of the protein based on its primary
structure (Fig. 1A). To confirm that this protein encodes a
bi-functional diguanylate cyclase-phosphodiesterase, we incubat-
ed the purified wild-type enzyme with GTP. After an overnight
incubation, the predominant product eluted from reverse-phase
HPLC with a retention time consistent with that of a pGpG standard
(Fig. 1B). The eluted peak was collected, analyzed by MALDI, and
was confirmed to be pGpG (Fig. 1C; expected molecular
mass = 708.5 g/mol). This result suggests that the protein encoded
by Avi_3097 is, in fact, a bi-functional diguanylate cyclase-
phosphodiesterase and will be referred to as AvHaCE. Fig. 1D
illustrates the time-dependent formation of pGpG from 100 mM
GTP with 1 mM wild-type AvHaCE. These data indicate the reaction
is essentially complete after 1 h under these experimental
conditions, with essentially complete conversion of substrate
GTP to the ultimate product pGpG.

3.2. Identification of residues important for phosphodiesterase activity

Enzymatic synthesis of cyclic-diGMP is a very attractive and
cost effective means of producing large amounts of cyclic-diGMP.
The price of commercially available cyclic-diGMP is approximately
$150 per mg (e.g., from Sigma–Aldrich for orders of more than
250 mg) whereas GTP can be purchased for less than $1 per mg. We

Fig. 2. Residues important for phosphodiesterase activity. (A) HPLC analysis of the reaction products of the AVL variant of AvHaCE after incubation overnight. (B) HPLC analysis
of the reaction products of the AAL variant of AvHaCE before and after incubation overnight. The HPLC analysis of the nucleotide mixture immediately after adding AvHaCE is
also illustrated, indicting the retention time of GTP. (C) Primary structure alignment of AvHaCE and the phosphodiesterase YkuI from B. subtilis (BSU14090). Conserved
residues are highlighted in red. Residues shown to be important for phosphodiesterase activity of RocR from P. aeruginosa [42] are indicated by the asterisk. The yellow
highlight indicates the position of loop D. (D) Homology model of residues 249-502, corresponding to the phosphodiesterase domain, of AvHaCE. The model was built with
YkuI (pdb 2W27) as the template. Select amino acids proposed to be located within the phosphodiesterase active site of AvHaCE, as well as bound cyclic-diGMP, are rendered
in stick format. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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therefore sought to identify variants of AvHaCE that maintain
efficient cyclic-diGMP synthesis, but lack phosphodiesterase
activity.

Based on homology with previously characterized cyclic-
diGMP phosphodiesterases [37,41,42], we predicted that the ExL
motif of AvHaCE (EVL in AvHaCE) would be essential for its
phosphodiesterase activity. It has been shown that alteration of
the conserved Glu within the requisite ExL motif of a homologous
enzyme, residue 284 in AvHaCE, results in loss of phosphodiester-
ase activity [35,37,42]. Therefore, we generated the Glu284Ala
variant, AVL, of AvHaCE. Prolonged incubation of the AVL variant
with GTP resulted in the accumulation of cyclic-diGMP (Fig. 2A),
but no pGpG was generated, confirming that this residue is
essential for phosphodiesterase activity. Most phosphodiesterases
contain an Ala in the “x” position of the ExL motif, therefore we
also generated a variant in which both the Glu284 and Val285 were
changed to Ala the AAL variant. Unsurprisingly, as we observed
with the AVL variant, the AAL variant completely lacked
phosphodiesterase activity (Fig. 2B).

To identify other amino acids important for phosphodiesterase
activity, the primary structure of the putative phosphodiesterase
domain of AvHaCE (residues 249–502) was aligned with residues
1-250 of the phosphodiesterase YkuI from B. subtilis (Fig. 2C). The
primary structures of these proteins are 20% identical, and many of
the residues shown to be important for activity in other
phosphodiesterases are conserved [37,41,42]. We then generated
a homology model of AvHaCE using YkuI from B. subtilis as the
template (pdb 2W27) (Fig. 2D). Our model suggests that a number
of the conserved residues are located within the modeled
phosphodiesterase active site of AvHaCE. We therefore generated
several AvHaCE variants, each with a mutated putative active site
residue, to determine the essential residues for phosphodiesterase
activity in this bi-functional protein from A. vitis.

The variants we made, as well as the effect of each mutation on
the phosphodiesterase activity of AvHaCE, are summarized in
Table 1. Each variant was incubated with GTP overnight and then
assessed for product formation by HPLC. In this qualitative assay,
accumulation of cyclic-diGMP indicates phosphodiesterase inac-
tivity, while accumulation of pGpG indicates intact phosphodies-
terase activity. We found that, as expected, Glu461, which
corresponds to the putative active site base [37,42,56], is essential
for phosphodiesterase activity; alteration of this residue to either
Gln or Asp resulted in the accumulation of cyclic-diGMP (Fig. 3).
Furthermore, we found that Glu374 and Lys425, which are also
located within the modeled active site, also play an essential role in
the phosphodiesterase reaction. Mutation of either Arg288,
Asp427, or Glu464 to Ala however, was not found to affect
phosphodiesterase activity, therefore none of these residues are
essential for activity in AvHaCE. At present, the mechanism of PDE
phosphodiesterases is not well understood, but presumably the

requirement for each of these residues is related to a role in the
phosphodiesterase mechanism (e.g., catalysis, substrate binding,
structural integrity). Interestingly, a truncated variant of AvHaCE
(AvHaCE 1-248) that lacks the phosphodiesterase domain still
functions as a diguanylate cyclase (Table 1). This indicates that the
presence of the phosphodiesterase domain is not essential for
diguanylate cyclase activity in the bi-functional enzyme.

3.3. The AvHaCE AVL variant efficiently produces cyclic-diGMP

To determine if these variants of AvHaCE lacking phosphodies-
terase activity could be used to obtain large amounts of cyclic-
diGMP, we increased by 20-fold the scale of the enzyme reaction
with the AVL AvHaCE variant. Under our conditions we observed
76% conversion of GTP to cyclic-diGMP within four hours (yielding
an average conversion rate of �7.5 nmol min�1; Fig. 4B) and 96%
conversion after an overnight incubation of AVL with GTP. This
reaction produced 2.4 mmol of cyclic-diGMP from 5 mmol of GTP
with 9.9 nmol of enzyme.

Therefore, AvHaCE variants can efficiently produce cyclic-
diGMP, making this enzymatic synthesis a very attractive and
cost effective means of producing large amounts of cyclic-diGMP.
Although the enzymatic synthesis of cyclic-diGMP has been
reported by several groups [9,29,40,51,58], our system offers clear
advantages over other reported diguanylate cyclases. With these
other enzymatic syntheses, it has not been possible to produce
large amounts of cyclic-diGMP because most diguanylate cyclases
are regulated by product inhibition. For example, Spehr et al.
reported the large-scale enzymatic synthesis of cyclic-diGMP from
ATP and GMP [51]. However, this system required the coupling
enzymes guanosine monophosphate kinase (GMPK) and nucleo-
side diphosphate kinase (NDK) in addition to a modified
diguanylate cyclase from Caulobacter crescentus, and the overall
yield of the reaction was less than 50% [51]. Zähringer et al.
successfully synthesized cyclic-diGMP using the diguanylate
cyclase YdeH from Escherichia coli. However, the reaction required
30 mg of protein to produce 75 mg of cyclic-diGMP and cyclic-
diGMP production was limited to 250 mM [58]. As mentioned in
the introduction, alteration of the regulatory RxxD product
inhibition site of the diguanylate cyclase from T. maritima showed
increased cyclic-diGMP production in comparison with the wild-
type enzyme. Despite this, however, product inhibition was still
observed at concentrations of GTP greater than 0.8 mM [40].
Recently, this variant was engineered to contain the protein's

Table 1
Ability of select AvHaCE variants to produce cyclic-diGMP and/or pGpG.

Variant cyclic-diGMP accumulation pGpG accumulation

E284A + –

E284A/V285A + –

R288A – +
E374A + –

K425A + –

D427A – +
E461Q + –

E464A + +
Cyclase onlya + –

a Contains residues 1-248 of AvHaCE.

Fig. 3. HPLC analyses of reaction products of AvHaCE variant E461Q and D427A, as
indicated. Reactions were overnight at room temperature as described in the text.
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hydrophobic domain and the resulting enzyme was purified from
inclusion bodies [29]. This modified T. maritima protein displayed
improved enzymatic activity, producing 500 mM of cyclic-diGMP
with 2.5 mM of protein. Here, we report using 5 mM of AvHace to
produce 1.2 mM of cyclic-diGMP.

3.4. Immobilized AvHaCE AAL variant retains enzymatic activity

To explore an even more optimal method for the synthesis of
large quantities of cyclic-diGMP with variants of AvHaCE, we
immobilized the AAL variant of AvHaCE on a matrix, in this case
Ni-NTA resin. A 30 min incubation of GTP and MgCl2 with the
AAL-variant bound to Ni–NTA beads resulted in the production of
cyclic-diGMP. Fig. 5 depicts the mass spectrum we obtained from
analysis of the solutes in the flow-through from this column. The
major peak with a mass of 691 corresponds to the molecular mass
of cyclic-diGMP [M + H]+. The other major peak observed with a
molecular mass of 568 corresponds to GTP [M + 2Na]+. It is likely
that with optimization of reaction and flow conditions, near
quantitative conversion of GTP to cyclic-diGMP could be achieved.
With this proof-of-principle, this immobilized enzyme could be
used as a reaction column through which GTP could continuously
flow to produce correspondingly large quantities of cyclic-diGMP
rapidly. To our knowledge, this is the first report of the synthesis of
cyclic-diGMP by use of an immobilized enzyme.

3.5. AAL variant of AvHaCE can produce radiolabeled cyclic-diGMP

Finally, in order to demonstrate the versatility of our enzymatic
cyclic-diGMP production system, the ability of AAL AvHaCE to
produce [32P]-cyclic-diGMP from [a-32P]-GTP was explored. The
enzymatic reaction was monitored as a radioactive trace from
anion-exchange chromatography, comparing the peaks to a UV

Fig. 5. MALDI analysis of cyclic-diGMP synthesized by immobilized AvHaCE AAL
variant.

Fig. 6. HPLC analysis of radiolabeled cyclic-diGMP synthesis by the AvHaCE AAL
variant. Both radioactivity and UV–vis absorbance were monitored, as indicated. A
slight shift in the detection of radioactivity and absorbance occurs because of the
delay that occurs as eluted material flows first through one detector then the other.
(A) Reaction products after 15 min incubation at room temperature. (B) Reaction
products after 60 min incubation at room temperature.

Fig. 4. Enzymatic synthesis of cyclic-diGMP with the AvHaCE AVL variant. (A) HPLC
analysis of cyclic-diGMP standard. (B) HPLC analysis of reaction products at 0 min
(dotted line), after 4 h incubation (dashed line), and overnight incubation (solid
line) at room temperature. The species observed at 0 min is GTP.
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trace of nucleotide standards (Fig. 6). Production of [32P]-cyclic-
diGMP is apparent after a 15 min incubation at room temperature
(Fig. 6A). After 60 min of incubation, essentially all of the
radioactivity co-elutes with cyclic-diGMP, suggesting 100% con-
version from GTP to cyclic-diGMP under our assay conditions
(Fig. 6B). Due to the high turnover efficiency of this enzyme, the
product obtained is essentially pure. Tritium- or 14C-labeled GTP
would be similarly converted to the correspondingly labeled cyclic-
di-GMP. Radiolabeled cyclic-diGMP has previously found applica-
tion in the study of cyclic-diGMP binding/processing proteins
[4,2,8,9,30,54]. With the simple methods described here, radioac-
tively labeled cyclic-diGMP can be easily prepared, thereby
facilitating its use as a probe in studies of cyclic-diGMP signaling
in biology.

4. Conclusions

Generation of a homology model of the PDE domain of AvHaCE
allowed us to visualize a putative active site of the enzyme. Guided
by this homology model, we used site-directed mutagenesis to
generate variants of the enzyme that lack phosphodiesterase
activity, therefore resulting in the accumulation of cyclic-diGMP.
We showed further that our AVL and AAL variants are capable of
producing cyclic-diGMP from GTP, quantitatively, in large amounts,
and with only a small amount of enzyme. We anticipate this would
be observed for all of our variants that lack phosphodiesterase
activity. In addition to these features, our enzymes are extremely
attractive for large-scale cyclic-diGMP synthesis because AvHaCE
lacks the RxxD motif for product inhibition, which limits the
amount of cyclic-diGMP that can be produced by other diguanylate
cyclases. We observed no product inhibition under our experimen-
tal conditions. Furthermore, our variants are active while immo-
bilized to a solid resin and retain enzymatic activity after several
months of storage, making them ideal for long-term storage and
repeated cyclic-diGMP syntheses. Lastly, we show that our variants
can be used to synthesize radiolabeled cyclic-diGMP from radio-
labeled GTP, increasing the versatility and applicability of the cyclic-
diGMP production system we describe here.
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