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Quotient spaces of locally compact Stonian spaces which generalize in some
sense the concept of Stone representation space of a Boolean algebra are
investigated emphasizing the measure theoretical point of view, and a representa-
tion theorem for finitely additive measures is proved. � 1996 Academic Press, Inc.

1. INTRODUCTION

1. Locally compact Stonian spaces play an outstanding role in represen-
tation theory of spaces of measures or, more generally, of Riesz spaces (see
e.g. [4; Sect. 2], [17; Chap. 7] or [12]). It is the aim of this paper to study
quotient spaces with respect to a natural equivalence relation on such
locally compact Stonian spaces Y, thereby generalizing those quotient
spaces arising from an equivalence relation which appears in representation
theory of measure spaces [8; Sect. 2] (see Sect. 3 for the definition). It will
turn out (Corollary 3.6) that the quotient spaces considered here have a
close relation to Stone representation spaces of Boolean algebras.

The elementary facts will be presented in Sect. 3; in this section, it is only
assumed that Y is a locally compact Hausdorff space. In Secs. 4 and 5,
measures on Y and the quotient space are investigated. Finally, in Sect. 6,
I present, as an application, a representation theorem for finitely additive
measures which generalizes results going back to Halmos, Yosida�Hewitt,
and Heider.

I am very grateful to Prof. C. Constantinescu for some stimulating dis-
cussions.

2. Let me fix some notation.

For a set X, I denote by 1A the characteristic function of a subset A of
X ; I write shortly [ f < g] for the set [x # X : f (x)< g(x)], provided
f, g # R� X, and use similar abbreviations.

Let R be a ring of subsets of X. The symbol R$ stands for the $-ring
generated by R. I write M(R) for the Riesz space of all real-valued
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measures on R (a real-valued measure on R is a countably additive finite-
valued set function with locally bounded variation).

Let + # M(R). Then |+| is defined as the map

R � R+, A [ sup
D # 2(A)

:
D # D

|+(D)|,

where 2(A) denotes the set of all finite partitions of A in R. I set

N(+) :=[A/X : A is a +-null set],

L(+) :=[A/X : 1A # L1(+)],

L1
loc(+) :=[ f # R� X : f 1A # L1(+) for all A # R].

The notion of integrability is the one used by Constantinescu�Weber [6]
or by Ionescu-Tulceas for their investigations of localizable spaces [15;
Chap. I, Sect. 8]; in locally compact Hausdorff spaces��which will be con-
sidered mainly in this paper��it coincides with Bourbaki's essential
integrability [3; Sect. 2].

If M is a band of M(R), I write

Mb :=[+ # M : + is bounded],

Mc :=[+ # M : _A # R with X"A # N(+)],

and, for + # M, I denote by M+ the band of M generated by +.
By $x I always mean the Dirac measure at x # X, i.e.

$x : R � R, A [ {1 if x # A
0 if x � A.

Now let Y be a Hausdorff space. I write

C(Y ) :=[ f # RY : f is continuous],

C�(Y ) :=[ f # R� Y : f is continuous, [ | f |=�] is nowhere dense],

K (Y ) :=[K/Y : K is compact],

Bc(Y ) :=[B/Y : B is a relatively compact Borel set].

Then Bc(Y ) is the $-ring generated by K (Y ). I denote by MR(Y ) the Riesz
space of Radon measures on Y, i.e. the set of measures on Y which are inte-
rior regular with respect to the compact subsets of Y; I always consider
Bc(Y ) to be the natural domain of a Radon measure on Y. Furthermore
I denote by M(Y ) the band of MR(Y ) consisting of those + # MR(Y ) which
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are also interior regular with respect to the open subsets of Y; the elements
of M(Y ) are called normal Radon measures.

A Stonian space is an extremally disconnected locally compact Hausdorff
space. Let Y be Stonian; then C�(Y ) is a Riesz space [17; 47.2], and for
+, & # M(Y ) we have: Every nowhere dense set is +-null, supp + is open-
closed, +=& iff supp + & supp &=<, +R& iff supp +/supp & (cf. Dixmier
[7]).

A Stonian space Y is called hyperstonian if �+ # M(Y ) supp + is dense
in Y.

For elementary Riesz space terminology, I refer to [1; Chap. I] or [17].

2. PRELIMINARIES

In this section, I collect some notions and results that will be used in the
sequel.

Let X be a non-empty set, and let D be a set of subsets of X which is
closed under finite intersections.

A filter F on X is called D-filter if F & D is a filter basis of F.
A D-filter F on X is called maximal if there exists no D-filter properly

containing F. Using Zorn's Lemma, it is easy to see that each D-filter is
contained in a maximal D-filter.

Analogously to a characterization of ultrafilters we have the following
result, which can be verified by standard arguments:

Proposition 2.1. For a D-filter F on X, the following are equivalent:

(a) F is maximal;
(b) D # D and F & D{< for all F # F imply D # F;

(c) D # F or X"D # F, for each D # D.

Let X1 and X2 be non-empty sets, let Ri be a ring of subsets of Xi

(i=1, 2), let + # M(R1), and let , : X1 � X2 be a mapping such that
,&1B # L(+) for all B # R2 . I denote by ,+ the measure

R2 � R, B [ | 1,&1B d+.

Then obviously |,+|�,( |+| ).
Let S/L(+). I call + S-quasiregular in A # L(+) if for every =>0,

there exists B # S such that B"A # N(+) and � 1A"B d |+|<=. If R is a
$-ring and + is S-quasiregular in all A # R, then obviously + is
S-quasiregular in all A # L(+).
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Proposition 2.2. If + is ,&1R2 -quasiregular in all A # L(+), then
|,+|=,( |+| ).

Proof. Only ``�" has to be shown. Set & :=|+|, and let D # R2 . Con-
sider the equation

| 1B d&= sup
A # 2(B)

:
A # A

} |1A d+ } , (*)

where 2(B) denotes the set of finite partitions of B in L(+).
(*) is obviously true for B # R, and thus also for B # R$ . From this and

[6; 5.4.17] we conclude that (*) holds for all B # L(+), and so in par-
ticular

(,&)(D)= sup
A # 2(,&1D)

:
A # A

} | 1A d+ } .
Let =>0, let A # 2(,&1D), and let n be the number of elements of A.

For each A # A there exists FA # R2 with ,&1FA"A # N(+) and
� 1A",&1FA

d&<=�n, and we can assume FA /D. Then

F := .

A{A$
(A, A$) # A_A

FA & FA$ # R2

and ,&1F # N(+). The sets FA"F together with the set D"�A # A(FA"F )
form a partition of D in R2 , and thus

|,+|(D)� :
A # A

} | 1,&1(FA"F ) d+ }� :
A # A

} | 1A d+ }&=.

A and = being arbitrary, we conclude |,+|(D)�(,&)(D). K

Now let R be a ring of subsets of a set X, and let M be a band of M(R).
For f # RX, set

M( f ) :=[+ # M : f # L1(+)]

and

f4 : M( f ) � R, + [ | f d+.

Then, following [4], I denote by L� :=L�(M) the set of all f # RX for
which the ideal M( f ) is order dense in M. By [10], L� is exactly the set
of all f # RX which are +-measurable for all + # M (for the notion of
+-measurability, see [6; 5.4.2]). Hence L� is a unital subalgebra of RX and
a _-ideal of RX (cf. [4; 1.5.2]).
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According to Constantinescu [4; 2.3.1], an ordered triple (Y, u, v) is
called a representation of (X, R, M) if

(a) Y is a hyperstonian space;

(b) u : L� � C�(Y ) is a homomorphism of unital algebras;

(c) u(sup fn)=sup u( fn) for each upper bounded sequence ( fn)
in L� ;

(d) UA :=supp u(1A) is compact for all A # R, and Y=�A # R UA ;

(e) v : M � M(Y ) is a Riesz isomorphism;

(f ) for all f # L� and all + # M we have

f # L1(+) � uf # L1(v+), and in this case | f d+=| (uf ) d(v+),

f # L1
loc(+) � uf # L1

loc(v+), and in this case v( f } +)=(uf ) } (v+).

Since the map M(R$) � M(R), + [ + | R is a Riesz isomorphism, it is no
loss of generality to consider only $-rings (as is done in [4]).

By [4; 2.3.6, 2.3.8], there exists always a unique representation (Y, u, v)
of (X, R, M).

Some conditions in the definition above can be weakened, as is shown in

Proposition 2.3 [9; 11.10, 11.12]. (Y, u, v) is a representation of
(X, R, M) iff the following assertions hold:

(a) Y is a hyperstonian space;

(b) u : L� � C�(Y ) is a map with u(1X)=1Y ;

(c) UA is compact for all A # R, and Y=�A # R UA ;

(d) v : M � M(Y ) is a Riesz isomorphism;

(e) for all f # L� and all + # M+
c , we have

f # L1(+) � uf # L1(v+), and in this case | f d+=| (uf ) d(v+).

In the context given above, I call Y a representation space for (X, R, M).

3. THE EQUIVALENCE RELATION ON Y, AND ELEMENTARY
TOPOLOGICAL PROPERTIES OF THE QUOTIENT SPACE

Let Y be a locally compact Hausdorff space, and let R be a ring of open-
compact subsets of Y with Y=�A # R A. (As considered in several examples
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below, Y may be the representation space of a triple (X, S, M) and
R=[UA : A # S].)

I introduce an equivalence relation t on Y by

ytz : � 1A( y)=1A(z) for all A # R.

I denote the equivalence class of y by [ y], and set [B] :=[[ y]: y # B] for
all B/Y. We have [ y]=�A # R, y # A A, and thus [ y] is a compact subset
of Y.

Let Ra denote the algebra of sets generated by R. Since [B/Y : B is
open-compact] is an algebra of sets, each A # Ra is open-compact, and
since [B/Y : 1B( y)=1B(z)] is again an algebra of sets, we have

ytz � ( ytz with respect to Ra).

Proposition 3.1. The following assertions hold:

(a) �A # F A{< for each R-filter F.

(b) For each maximal R-filter F on Y there exists an equivalence
class [ yF] such that �A # F A=[ yF]; if F$ is a maximal R-filter with
F${F, then yF and yF $ are not equivalent.

(c) If R is an algebra of sets, then the set of maximal R-filters on Y
and the set [Y] are in bijection via F [ [ yF].

Proof. (a) Since all A # F & R are compact, we have �A # F & R A{<
which implies the assertion.

(b) Set F :=�A # F A, and fix yF # F. Let z # F. By Proposition 2.1(c)
we have either y, z # B or y, z � B for each B # R; hence zt y, and thus
F/[ y]. Now let z # [ y]. For each A # F there exists B # F & R with
B/A, hence z # B/A; thus z # F, which implies [ y]/F.

Now let F$ be a maximal R-filter with F${F. Then there exists, say,
A # F & R"F$, hence, by Proposition 2.1(c), X"A # F$. Since yF # A and
yF $ # X"A, they cannot be equivalent.

(c) Let y # Y. Let F be the filter generated by the filter base
G :=[A # R : y # A]. We have [ y]=�A # G A, and since Y"B # R for all
B # R, Proposition 2.1(c) shows that F is a maximal R-filter. In view of
(b), all is proved. K

[Y] is endowed with the quotient topology, i.e. the finest topology
making the map

? : Y � [Y], y [ [ y]
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continuous. I set

F :=[ f # C�(Y ) : f | [ y]=const. for all y # Y];

f� : [Y] � R� , [ y] [ f ( y) for f # F;

T :=[U/Y : 1U # F].

The next observations are easily verified:

Proposition 3.2. The following assertions hold:

(a) f� # C�([Y]) and f = f� b ? for all f # F.

(b) F � C�([Y]), f [ f� is injective.

(c) F is a sublattice of C�([Y]), and F & C(Y ) is a Riesz space and
a unital subalgebra of C�(Y ).

(d) The restriction of the map f [ f� to F & C(Y ) is a homomorphism
of Riesz spaces and of unital algebras.

(e) T is an algebra of sets containing R.

(f ) ?U=[
t
1U=1 ] is open-closed and ?&1(?U )=U for all U # T.

That T may contain Ra properly, can be seen by considering Y :=N
and R :=K (Y ).

Some beautiful properties are lost by passing from Y to [Y] even if Y
is Stonian, as is shown in

Example 3.3. Let Y :=;N and R :=[A/N : A finite] _ [;N"A :
A/N, A finite].

Then [Y] is the Alexandrov compactification of N, and we have

F=[ f # R� Y : _: := lim
n � �

f (n) # R� , f | ;N"N=:].

By the definition

f (2n) := f (2n&1) :=n+1,
g(2n) :=n+1, g(2n&1) :=n

for all n # N,

there are defined functions f, g # F. But f & g � F since ( f & g)(2n)=0,
( f & g)(2n&1)=1; hence F is not a vector space.

Also, f� & g~ � C�([Y]); hence C�([Y]) is not a vector space (and thus
[Y] is not Stonian).

Moreover, F is not closed under forming countable suprema; for this
claim, consider e.g. the sequence of functions fn :=�n

k=1 1[2k] .
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Observe that there exists a triple (X, S, M) such that Y is a representa-
tion space for it and R=[UA : A # S]: Indeed, let X :=N, S :=
[A/N : A or N"A is finite], M the band of M(S) generated by all Dirac
measures on X.

Proposition 3.4. Let K # K (Y ), and set L :=�y # K [ y]. Then:

(a) If F is a closed subset of Y with F & L=<, then there exists
A # R with L/A and F & A=<.

(b) L is compact.

Proof. (a) For each y # K, we have <=[ y] & F=�A # R, y # A (A & F );
hence there exists Ay # R with y # Ay and Ay & F=<. There are
y1 , ..., yn # K with K/�n

k=1 Ayk=: A.

(b) Let (U@) be an open cover of L, and set F :=Y"�U@ . By (a),
there exists A # R with L/A and F & A=<. Then A/� U@ , and thus A
(hence also L) is covered by finitely many of the U@ 's. K

We can now collect the main properties of [Y] and ?:

Theorem 3.5. The following assertions hold:

(a) [Y] is a totally disconnected locally compact Hausdorff space, and
[?A : A # R] is a base for the topology of [Y].

(b) ?&1K # K(Y ) for all K # K([Y]).

(c) ?F is closed for each closed F/Y.

(d) If K is a compact subset of [Y] and F is a closed subset of [Y]
with K & F=<, then there exists A # R with K/?A and F & ?A=<.

(e) For all K # K ([Y]) we have

K= ,

?&1K/A
A # R

?A and ?&1K= ,

?&1K/A
A # R

A.

(f ) The map

R � [U/[Y] : U open-compact ], A [ ?A

is an order isomorphism onto (the order given by the inclusion relation).

Proof. Using Proposition 3.4(b), assertions (a),(b),(c) follow from [2;
Sect. 10, Prop. 17], except for the total disconnectedness. To prove (d),
observe that ?&1K is compact by (c), and apply Proposition 3.4(a) for
?&1K and ?&1F. Now let [ y]/U/[Y], with U open. By (d), there exists
A # R with [ y] # ?A and ([Y]"U ) & ?A=<; since ?A is open-closed by
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Proposition 3.2(f ) and [ y] # ?A/U, it follows that [Y] is totally discon-
nected and that [?A : A # R] is a base for the topology of [Y]. The first
assertion of (e) follows from (d), while the second one is derived from the
first one, observing Proposition 3.2(f ). Finally, (f ) is a consequence of (d)
and Proposition 3.2(f ). K

That ? is also for Stonian Y in general not open, can be seen by modify-
ing Example 3.3: Let Y :=;N _ [0] (I assume 0 � N) and R :=[A/N :
A finite] _ [;N _ [0]"A : A/N, A finite]. Then [Y]=N _ [[0]] is the
Alexandrov compactification of N, and ?([0])=[[0]] is not open.

In the case of algebras of sets, the space [Y] is very familiar:

Corollary 3.6. If R is an algebra of sets, then [Y] is the Stone
representation space of the Boolean algebra R.

Proof. Immediate from Theorem 3.5(a), (f ). K

The topology on [Y] can now be described in the following way:

Corollary 3.7. The topology on [Y] is the coarsest for which all maps
t
1U are continuous (U # T), and the coarsest for which all maps f� are con-
tinuous ( f # F).

Proof. Let { be the quotient topology on [Y], and let _1(_2 , resp.) be
the coarsest topology for which all

t
1U (all f� , resp.) are continuous.

To show that {/_1 holds, let y # Y, and let W be a {-open
neighbourhood of [ y]. By Proposition 3.4(a), there exists A # R

with y # A/?&1W. From [
t
1A>1�2]/W it follows that W is a

_1 -neighbourhood of [ y]. The inclusions _1 /_2 /{ are obvious. K

The following corollary describes the restriction of t to an open-closed
subset of Y.

Corollary 3.8. Let Y1 be an open-closed subset of Y, and let
R1 :=[A & Y1 : A # R]. For all y # Y1 let ( y) be the equivalence class with
respect to R1 , and endow (Y1) :=[( y) : y # Y1] with the quotient topology
with respect to ?1: Y1 � (Y1), y [ ( y). Then the well-defined map

, : (Y1) � ?Y1 , ( y) [ [ y] (where y # ( y))

is a homeomorphism.

Proof. It is easy to see that , is bijective and continuous. To show that
,&1 is continuous, take a closed set F of (Y1). By Theorem 3.5(c),
G :=?(?&1

1 F ) is closed in [Y], hence also in ?Y1 ; moreover ,F=G. K
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4. NORMAL POINTS AND MEASURES

From now on, let Y be a Stonian space.
In this section I assume that the Hahn decomposition property for

M(Y ) and R is satisfied, i.e. for all A # R and all +, & # M(Y )+, +=&, there
exists B # R with +(B)=0=&(A"B).

Some of the results of this section are only minor generalizations of
results obtained in [8]; in these cases I refer to the proofs given there,
which can be adopted with only slight modifications.

I call y # Y normal (or R-normal if it is necessary to specify the underly-
ing ring of sets R), if [ y]=[ y]. Moreover I set

Y0 := .
+ # M(Y )

supp +.

Since Y is Stonian, Y0 is open.

Proposition 4.1. If y and z are two different points of Y0 , then y and
z are not equivalent.

Proof. See [8; 2.5]. Let me remark that also in this proof the assump-
tion is used that Y be Stonian. K

Thus, if Y=Y0 , then all points of Y are normal. The converse is not
true, as the following example shows.

Example 4.2. Let X be an uncountable set, endowed with the discrete
topology. Set Y :=;X and R :=[A/Y : A open-compact]. All points of Y
are normal, but Y0=�A/X, A countable A� . Thus Y0 is not compact, whence
Y0{Y.

Using an indirect argument, we get as an easy consequence of Proposi-
tion 4.1 the following

Corollary 4.3. For each subset A of Y0 , the set ?&1(?A)"A is a subset
of Y"Y0 (and hence a +-null set for all + # M(Y ).

But ?&1(?(Y"Y0))"(Y"Y0) need not be a +-null set, as the next example
shows:

Example 4.4. Let X be an uncountable set, put S :=[A/X : A or
X"A is countable], and

+ : S � R, A [ {0 if A is countable,
1 if X"A is countable.
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Then

M(S)={ :
x # X

:x$x : (:x)x # X # l 1(X)=�M+ .

Set Y :=;X _ [ y], where X is endowed with the discrete topology and y
is a point not belonging to ;X. Then Y is a representation space for
(X, S, M(S)) such that

R :=[UA : A # S]=[A� : A/X, A countable]

_ [A� _ [ y] : A/X, X"A countable],

M(Y )={ :
x # X

:x$x : (:x)x # X # l 1(X)=�M$y ,

and, with A0 :=�A/X, A countable A� , we have Y0=A0 _ [ y].
Each point of A0 is normal, while [ y]=Y"A0 . Thus [Y]=A0 _ [[ y]]

is the Alexandrov compactification of A0 .
We have ?&1(?(Y"Y0))"(Y"Y0)=[ y], and this set is not a null set for

$y # M(Y ).

The last example can be generalized as follows:

Proposition 4.5. Let S be a $-ring of subsets of a set X such that
[x] # S for all x # X. Let M be a band of M(S) containing the band
MD :=�x # X M$x generated by the Dirac measures. Furthermore let (Y, u, v)
be a representation of (X, S, M). We set R :=[UA : A # S], Y$ :=
�+ # MD

supp v+, Y" :=Y"Y$.
Then we have:

(a) All points of Y$ & Y0 are normal.

(b) <{[ y] & Y$/Y$"Y0 for all y # Y".

(c) ?Y=?Y$ and ?Y"/?(Y$"Y0).

(d) [Y] and the quotient space constructed from a representation of
MD coincide.

Proof. (a) follows from [8; 3.2,1.4].

(b) Obviously we have UA & Y${< for each A # S with y # UA ,
which implies [ y] & Y$=�A # S, y # UA

(UA & Y$){<. Moreover, by (a),
[ y] & [Y$ & Y0]=<.

(c) follows from (b).

(d) follows from Corollary 3.8. K
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One might suspect that all points of Y be normal if M=MD in the
preceding proposition. I give a counterexample to this conjecture:

Example 4.6. Assume (c ch).

Let X :=[0, 1], and let B denote the set of Borel sets of X. Set Y :=;X
(here X is considered with the discrete topology). Then Y is a representa-
tion space for (X, B, MD), and UB=B� (the closure in ;X) for all B # B. By
Proposition 4.5(a), all points of Y0 are normal.

Now let A be a subset of X with +0<card A<2+0. Let G be an ultrafilter
on X containing all subsets B of A for which A"B is countable.

Let B # G & B. The assumption B/A implies card B�+0 [16; Sect. 33,
Part I, Th. 3] which yields the contradiction A"B # G. Thus
[B"A : B # G & B] is a filter basis on X; let H be a finer ultrafilter.

For B # B, we have obviously: B # G iff B # H. Let G$ and H$ be the
extensions of G and H to ultrafilters on ;X. Then G$ converges to some
y satisfying [ y]=�C # G C� , and likewise H$ � z with [z]=�D # H D� . Since
A # G and X"A # H, we have y{z. But ytz: Indeed let B # B with y # UB .
Then UB # G$ and thus B=UB & X # G. Hence B # H and thus z # UB .
That z # UB for B # B implies y # UB , is shown analogously.

I set

Z0 :=[ y # Y0 : y is normal].

Proposition 4.7. We have Z0=�A # R, A/Y0
A; in particular, Z0 is open.

Proof. See [8; 2.7]. K

Let me denote by (*) the following property of R: For each sequence
(An) from R whose union is contained in some A # R, we have
�n # N An # R.

Observe that in the case R=[UA : A # S] for some representation of a
triple (X, S, M), property (*) is just the ``translation'' of the assumption
that S be a $-ring.

Proposition 4.8. Let (Kn) be a sequence of open-compact subsets of Y.
Then we have:

(a) �n # N Kn /Y0 implies �n # N Kn/Y0 .

(b) (*) and �n # N Kn /Z0 imply �n # N Kn/Z0 .

Proof. See [8; 2.8]. K

I call + # M(Y ) R-normal (R-anomalous, resp.) if all points of supp +
are R-normal (if no point of supp + is R-normal, resp.), and I set
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Mno, R(Y ) :=[+ # M(Y ) : + is R-normal],

Man, R(Y ) :=[+ # M(Y ) : + is R-anomalous].

Proposition 4.9. For + # M(Y ) we have:

+ # Mno, R(Y ) � supp += .

A/supp +
A # R

A.

Proof. `` O '' follows from the fact that A & supp + # R for each A # R
(Proposition 3.4(a)). `` o '' follows from Proposition 4.7. K

The most important result of this section is

Theorem 4.10. The following assertions hold:

(a) Man, R(Y ) is a band of M(Y ).

(b) Mno, R(Y ) is an order dense ideal of (Man, R(Y ))d.

(c) If (*) holds, then Mno, R(Y ) is a band of M(Y ), and we have

M(Y )=Mno, R(Y )�Man, R(Y ).

Proof. See [8; 2.9]. K

To see that (b) cannot be improved, consider again Example 3.3: Then
(*) is not satisfied, and we have M(Y )=�n # N M$n , Man, R(Y )=[0] and

Mno, R(Y )={ :
n # M

:n$n : M/N finite, :n # R= .

The proof of the last observation in this section is analogous to [8;
2.10]:

Corollary 4.11. If (*) holds, then (Z0"Z0) & Y0=<.

5. MEASURES ON THE QUOTIENT SPACE

Again, as in Sect. 4, R is assumed to possess the Hahn decomposition
property with respect to M(Y ).

In the sequel, I denote by B1(B2 , resp.) the set of relatively compact
Borel sets of Y (of [Y], resp.).

132 WOLFGANG FILTER



File: 607J 155414 . By:CV . Date:21:11:96 . Time:08:37 LOP8M. V8.0. Page 01:01
Codes: 2781 Signs: 1405 . Length: 45 pic 0 pts, 190 mm

Proposition 5.1. For each + # M(Y ), we have:

(a) + is ?&1B2 -quasiregular in all A # L(+).

(b) ?+ # MR([Y]).

(c) If A # L(+) satisfies A� /Y0 , then ?A # L(?+) and � 1?A d(?+)=
� 1A d+.

(d) [Y]"?(supp +) # N(?+).

Proof. (a) Let A # B1 . Then B :=?(A & supp +) # K ([Y]). We have
A"?&1B/A� "A & supp + # N(+) and, using Proposition 4.1 and
Corollary 4.3,

?&1B"A/(?&1B"A� ) _ (A� "A)/(Y"Y0) _ (A� "A) # N(+).

(b) is obvious.

(c) (i) If A # K (Y ), then ?A # K ([Y]), and Corollary 4.3 gives
the assertion.

(ii) Let A # N(+). Then for each B # K ([Y]), we have
A� & ?&1B # N(+) & K (Y ), hence by (i) ?A� & B/?(A� & ?&1B) # N(?+).
It follows ?A� # N(?+).

(iii) In the general case, there exists a sequence (Kn) of compact sub-
sets of A with A"� Kn # N(+). Case (i) for ++ yields sup ?( ++ )( ?Kn ) =
� 1A d++ , and thus ? (� Kn ) # L ( ? ( + + )) and ?(++)(?� Kn))=� 1A ++.
Case (ii) applied to ++ gives ?(A"� Kn) # N(?(++)), and thus
?A # L(?(++)) and � 1?A d?(++)=� 1A d++. Similarly one proves the
assertion for +&.

(d) Set A :=supp +. For each compact subset K of [Y]"?A we have
?&1K & A=<, hence K # N(? |+| ). By (b) and [6; 5.4.17], we get
�
*

1[Y]"?A d? |+|=0. By Theorem 3.5(c), ?A is a Borel set of [Y]; hence

|
*

1[Y]"?A d? |+|=|
*

1[Y]"?A d? |+|=0. K

Example 4.4 shows that the assumption ``A� /Y0 '' in (c) cannot be
omitted.

Let us now consider integrable functions:

Theorem 5.2. For + # M(Y ) and f # R� [Y] we have:

f # L1(?+) � f b ? # L1(+), and in this case | f d(?+)=| f b ? d+;

f # L1
loc(?+) � f b ? # L1

loc(+), and in this case f } (?+)=?(( f b ?) } +).
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Proof. Observing Theorem 3.5(b) and [3; Sect. 6, no. 1, Rem. 2)], the
first line follows from [3; Sect. 6, no. 2, Th. 1]. To prove `` O '' in the
second line, let K # K (Y ). Then 1K=1?K b ? +-a.e., and hence ( f b ?)1K=
(( f1?K) b ?) +-a.e. The implication `` O '' of the first part shows now that
( f1?K) b ? # L1(+); hence f b ? # L1

loc(+). For each K # K ([Y]) we have
?&1K # K (Y ) by Theorem 3.5(b), and since ( f1K) b ?=( f b ?) 1?&1K , ``o''
of the first part shows that ``o'' holds also in the second line. The identity
f } (?+)=?(( f b ?) } +) again is a consequence of the corresponding identity
for the integrals. K

I set

� : M(Y ) � MR([Y]), + [ ?+.

Theorem 5.3. The map � is an injective Riesz homomorphism, and
�(M(Y )) is a band of MR([Y]); in particular, � preserves arbitrary
suprema and infima.

Proof. That � is a Riesz homomorphism, follows from Proposition
5.1(a) and Proposition 2.2.

Let +, & # M(Y ) with �+=�&. Using Proposition 5.1(c), we get for each
A # B1 (with F :=(supp +) _ (supp &)):

+(A)=+(A� & F )=(�+)(?(A� & F ))=(�&)(?(A� & F ))=&(A� & F )=&(A).

Hence � is injective.
Now let + # M(Y )+ and & # MR([Y]) with 0�&��+. By Proposition

5.1(c), the map

* : B1 � R, A [ | 1?(A & supp +) d&

is well-defined. If (An) is a disjoint sequence from B1 with � An # B1 , then
by Proposition 4.1 (?(An & supp +)) is a disjoint sequence, from which we
conclude *(� An)=� *(An); thus * # M(B1). For all A # B1 we have
*(A)�� 1?(A & supp +) d(?+)=+(A), and hence 0�*�+, which implies
* # M(Y ). To show that &=?* holds, let B # B2 . By Proposition 5.1(c),
B"?(?&1B & supp +) # N(?+)/N(&), and thus &(B)=*(?&1B)=(?*)(B).
We get & # �(M(Y )), and so �(M(Y )) is an ideal of MR([Y]).

Finally, let 0��+@ A & # MR([Y]), with +@ # M(Y ). Since � is injec-
tive, we conclude 0�+@ A . For all A # B1 and all @ we have
+@(A)�(�+@)(?A� )�&(?A� ), and thus + :=sup +@ exists in M(Y ). Then
�+@��+ implies &��+, and thus, by what has been proved above,
&=�+ # �(M(Y )). K
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That � is in general not onto MR([Y]), even if Y is hyperstonian, can
easily be seen using the characterization of elements of �(M(Y )) given in
Theorem 5.10.

The easy proof of the following proposition, which describes the (very
natural) behaviour of atomical and atomfree measures, is omitted.

Proposition 5.4. For + # M(Y ) we have:

(a) If [ y]/Y0 is a +-atom, then ?([ y]) is a ?+-atom; if [ y] is a
?+-atom, then [ y] & Y0 is a +-atom.

(b) + is atomical iff ?+ is atomical.

(c) + is atomfree iff ?+ is atomfree.

(d) Denoting by &a(&f , resp.) the atomical (atomfree, resp.) component
of a measure &, we have: ?(+a)=(?+)a and ?(+f)=(?+)f .

The following example shows that even if [Y] is hyperstonian, the inclu-
sion �(M(Y ))/M([Y]) need not hold:

Example 5.5. Let X be an uncountable set, endowed with the discrete
topology. We fix points y # ;X"�A/X, A countable A� and z � ;X, and set
Y :=;X _ [z] and

R :=[A/;X : A open-compact, y � A]

_ [A/Y : A open-compact, y # A, z # A].

Then

M(Y )={ :
x # X

:x$x : (:x)x # X # l 1(X)=�M$x .

All points of ;X"[ y] are normal, and [ y]=[z]=[ y, z]. Since z is an
isolated point of Y, [Y] and ;X are homeomorphic; thus [Y] is hyper-
stonian. But we have ?$z=$[z] � M([Y]).

Let me remark that Y is again a representation space of a triple
(X, 2X, M) with R=[UA : A/X]. Namely, let G be a free ultrafilter on X
with the property ``An # G for all n # N O �n # N An # G'', such that the
extension of G to ;X converges to y, and set

M :={ :
x # X

:x $x : (:x)x # X # l 1(X)=�M+ ,
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with

+ : 2X � R, A [ {1 if A # G

0 if A � G.

Nevertheless the elements of �(M(Y )) are not too far from being normal
Radon measures, as Corollary 5.7 will show. First, I prove

Proposition 5.6. ?(supp +)=supp(?+), for each + # M(Y ), and hence

?Y0= .
& # �(M(Y ))

supp &.

Proof. [Y]"?(supp +) is an open ?+-null set (Theorem 3.5(c) and
Proposition 5.1(d)), hence supp(?+)/?(supp +). By Theorem 5.2,
Y"?&1(supp(?+))=?&1([Y]"?(supp +)) is an open +-null set, which
implies supp +/?&1(supp(?+)) from which we conclude ?(supp +)/
supp(?+). K

Corollary 5.7. For +, & # �(M(Y )) we have:

(a) +=& � (supp +) & (supp &)=<.

(b) +R& � supp +/supp &.

Proof. Since ?|Y0
is injective (Proposition 4.1) and � is an injective

Riesz homomorphism (Theorem 5.3), the assertions follow, using Proposi-
tion 5.6, from the corresponding assertions which hold in M(Y ). K

Corollary 5.8. �(Mc(Y ))=(�(M(Y )))c and �(Mb(Y ))=(�(M(Y )))b .

Proof. The first assertion follows by applying Proposition 5.6 and
Theorem 3.5(b), while the second is a consequence of Theorem 5.2.

Corollary 5.9. For + # M(Y ), the map

?+ : supp + � supp(?+), y [ [ y]

is a homeomorphism (and hence supp(?+) is hyperstonian).

Proof. By Propositions 5.6 and 4.1, ?+ is bijective. Furthermore, ?+ is
obviously continuous, and ?&1

+ is continuous by Theorem 3.5(c). K

Now I can give a characterization of those Radon measures on [Y]
which occur as image of an element of M(Y ):
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Theorem 5.10. For & # MR([Y]), the following are equivalent:

(a) & # �(M(Y ));

(b) supp &/?Y0 , Y0 & ?&1(supp &) is open-closed, and &| supp & #
M(supp &).

Proof. We can assume &>0. Set W :=Y0 & ?&1(supp &).

(a) O (b): Set + :=�&1&. Using Proposition 5.6, we get supp &/?Y0

and W=supp +. Furthermore &| supp &=?+(+), which implies the third
property (Corollary 5.9).

(b) O (a): Since supp &/?Y0 , there exists, by Proposition 4.1, for
each z # supp & a unique yz # Y0 with [ yz]=z. Then

\ : supp & � W, z [ yz

is a homeomorphism. Hence * :=\(&| supp &) # M(W). Let + be the natural
extension of * to Y (i.e. Y"W # N(+)). Since W is open-closed, we have
+ # M(Y ), and we conclude &=?+. K

While in Y the set M(Y ) of normal Radon measures plays the central
role, Example 5.5 shows that in [Y] all Radon measures are important.
Therefore it is of interest to decide whether [Y] is a Radon space. The
following example disproves this conjecture:

Example 5.11. Let X be an uncountable set, endowed with the discrete
topology, set Y :=;X and

R :=[A/X : A finite] _ [;X"A : A/X, A finite].

All x # X are normal, for each y # ;X"X we have [ y]=;X"X, and
Bc([Y])=2[Y] holds.

Let G be a free ultrafilter on [Y] with the property ``An # G for all
n # N O �n # N An # G'', and set

+ : 2[Y] � R, A [ {1 if A # G

0 if A � G.

Then + is not a Radon measure, since +(?X)=1.

To finish this section, I want to make concrete the natural observation
that Y is a representation space for ([Y], B2 , �(M(Y ))).
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Theorem 5.12. Set M :=�(M(Y )). Then the following assertions hold:

(a) For each h # L�(M), there exists a unique u� h # C�(Y ) such that
[u� h{h b ?] is nowhere dense.

(b) (Y, u� , v� ) is a representation of ([Y], B2 , M), where v� + :=�&1+
for all + # M.

(c) u� 1?A=1A for each open-closed subset A of Y0 and for each A # R.

Proof. (a) Using Theorems 5.3 and 5.2, we get for h # R[Y]:

h # L�(M)

� [?+ : + # M(Y ), h # L1(?+)] is an ideal of M

� [+ # M(Y ) : h # L1(?+)] is an ideal of M(Y )

� [+ # M(Y ) : h b ? # L1(+)] is an ideal of M(Y )

� h b ? # L�(M(Y )).

The claim now follows from [4; 2.3.9a)].

(b) We have to check (a)�(e) of Proposition 2.3. Conditions (a), (b),
(d) are obvious, (e) follows from (a) of the present theorem and from
Theorem 5.2. To verify (c), let K # K ([Y]). Then u� 1K is the characteristic
function of the interior of ?&1K. Hence supp(u� 1B) is compact for each
B # B2 (Theorem 3.5(b)). For each open-compact A/Y we have
1A�u� 1?A , which implies Y=�B # B2

supp(u� 1B).

(c) Since the second assertion is obvious, let us consider an open-
closed A/Y0 . For all & # Mc(Y )+ we have, by (a) and Proposition 5.1(c):

| u� 1?A d&=| (1?A b ?) d&=| 1?A d(?&)=| 1A d&.

Since [u� 1?A=1]"A is open-closed, the claim follows. K

Remark. With the terminology of Theorem 5.12, set R� =[[u� 1B=1] :
B # B2]. By Theorem 5.12(c), we have R/R� . That the partitioning of Y
into equivalence classes defined by R� is in general properly finer than that
defined by R, can be seen considering Example 3.3: All points of ;N"N are
R-equivalent. But take y, z # ;N"N, y{z. There exists A/N with y # A� ,
z � A� . Then ?A # B2 , 1?A b ?=1A _ (;N "N ) , u� 1?A=1A� . Thus y and z are not
R� -equivalent.
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6. A REPRESENTATION THEOREM FOR FINITELY ADDITIVE
MEASURES

As an application of the theory developed in the preceding sections,
I want to give a representation theorem for the Riesz space of finitely
additive measures.

Halmos remarked [13; Sect. 2] that if S is a _-algebra and & is an
additive set function on S with values in R+, then & can be extended in
a unique way to a Baire measure on the Stone space of S. (Observe that,
by the Riesz Representation Theorem, such Baire measure can be extended
uniquely to a Radon measure.) Yosida and Hewitt proved [19; 4.5] that
this extension process generates an isomorphism between the space of
bounded finitely additive measures on the _-algebra S and the space of all
Radon measures on the Stone space of S. Heider generalized this result to
the case of an algebra of sets [14; 3.1].

In Theorem 6.5, I will prove that if S is an arbitrary ring of sets, then
the Riesz space E(S) of finitely additive real-valued measures with locally
bounded variation (or equivalently: which are locally exhaustive; cf. [5;
4.1.8]) on S is Riesz isomorphic to the space MR([Y]) of all Radon
measures on an appropriate space [Y]: namely, let (Y, u, v) be a represen-
tation of (X, S, M(S)), set R :=[UA : A # S], and let [Y] be the corre-
sponding quotient space; let this setting be fixed for the rest of this section.
By Corollary 3.6 (and Proposition 6.1), all results mentioned above are
contained in Theorem 6.5.

Proposition 6.1. Let A and B be sets which are +-measurable for all
+ # M(S). Then A/B iff UA /UB .

Proof. Let UA /UB . Then, by [8; 2.3], A"B is a +-null set for all + # M(S).
Since M(S) contains all Dirac measures, A"B must be empty. K

I denote by P the set of all increasing sequences (Bn) of open-compact
subsets of [Y] for which � Bn is open-compact.

Proposition 6.2. (Bn) # P iff there exists an increasing sequence (An) in
S with A :=� An # S such that Bn=?UAn for all n # N and � Bn=?UA .

Proof. Let (Bn) # P. By Theorem 3.5(f ) there exist A # S and a
sequence (An) in S such that ?UA=� Bn , ?UAn=Bn for all n, (UAn)
increases, and � UAn=UA . By Proposition 6.1, we conclude that (An)
increases and that A=� An .

Conversely, let (An) be an increasing sequence from S with A :=� An # S.
Then UA=� UAn, and, by the continuity of ?, ?UA /?(� UAn)=� ?UAn ,
which implies ?UA=� ?UAn . K
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Proposition 6.3. Let & # E(S)+. For the map

, : K ([Y]) � R+, K [ inf

?&1K/UA

A # S
&(A)

(which is well-defined by Theorem 3.5(e)), we have:

(a) K, L # K ([Y]) O ,(K _ L)�,(K)+,(L);

(b) K, L # K ([Y]), K & L=< O ,(K _ L)=,(K)+,(L);

(c) K@ # K ([Y]), K@ a O ,(� K@)=inf ,(K@).

Proof. (a) is easy to see.

(b) Let A # S with ?&1(K _ L)/UA . By Theorem 3.5(d), there is
B # S with K/?UB , L/[Y]"?UB . Then ?&1K/UA & B , ?&1L/UA "B

and thus ,(K)+,(L)�&(A & B)+&(A"B)=&(A). We conclude ,(K _ L)�
,(K)+,(L).

(c) Let A # S with ?&1(� K@)/UA . By compactness, there is an
index * with ?&1K*/UA . It follows inf ,(K@)�,(K*)�&(A). Thus
inf ,(K@)�,(� K@). K

Corollary 6.4. The following assertions hold.

(a) For each & # E(S)+, there exists &~ # MR([Y])+ such that

&~ (K)= inf

?&1K/UA

A # S
&(A)

for all K # K ([Y]).

(b) &~ (?UA)=&(A) for each & # E(S)+ and each A # S.

(c)
t&++=&~ ++~ for all &, + # E(S)+.

Proof. (a) follows from Proposition 6.3 and [6; Exerc. 5.2.17]. (b) is
a consequence of Proposition 6.1, while (c) is easy to see. K

Theorem 6.5. For a ring of sets S, we have:

(a) There exists a unique positive linear operator \ : E(S) � MR([Y])
such that \&=&~ for all & # E(S)+ (where &~ is as in Corollary 6.4).

(b) \ is a Riesz isomorphism.

(c) \&(?UA)=&(A) for each & # E(S) and each A # S.

(d) \ | M(S)=� b v.

140 WOLFGANG FILTER



File: 607J 155422 . By:CV . Date:21:11:96 . Time:08:37 LOP8M. V8.0. Page 01:01
Codes: 2682 Signs: 1531 . Length: 45 pic 0 pts, 190 mm

(e) & is bounded iff \& is bounded.

(f ) There exists A # S such that &(B)=0 for all B # S with
B & A=< iff supp(\&) # K ([Y]).

(g) & # M(S) iff � Bn"�Bn # N(\&) for each (Bn) # P.

(h) & is purely finitely additive iff for each * # E(S) with 0<*�|&|
there exists (Bn) # P with *(� Bn "� Bn)>0.

Proof. (a) follows from [20; 83.1] by observing Corollary 6.4(c).

(b) To show that \ is a Riesz homomorphism, let &, + # E(S) with
inf (&, +)=0, and let K # K ([Y]). Let =>0. There exists C # S with
?&1K/UC . Furthermore, there are A, B # S such that A & B=<,
A _ B=C, and &(A)++(B)<=. Setting L :=K & ?UA and J :=K & ?UB ,
we have ?&1L/UA , ?&1J/UB , L & J=< and L _ J=K. Thus

(inf (\&, \+))(K)�\&(L)+\+(J)�&(A)++(B)<=.

We conclude (inf (\&, \+))(K)=0, hence inf(\&, \+)=0.
In order to prove that \ is injective, let & # E(S) with \&=0. Then

\(&+)=(\&)+=0, and we get &+(A)=0 for each A # S, by Corollary
6.4(b). Hence &+=0, and analogously &&=0.

To prove that \ is onto, let + # MR([Y])+. We set

& : S � R+, A [ +(?UA).

Obviously & is finitely additive. To show that & is also locally exhaustive,
let (An) be a disjoint sequence from S with A :=� An # S. Then (?UAn)
is a disjoint sequence, and we get

�&(An)=� +(?UAn)�+(?UA)

which implies &(An) � 0. Hence & # E(S)+. By Theorem 3.5(e) we get
\&(K)=+(K) for all K # K ([Y]), and thus \&=+.

(c) follows from (b) and Corollary 6.4(b).

(d) is easy to see.

(e) Using (b),(c) and Theorem 3.5(e), we get

sup
B # B2

|\&| (B)= sup
A # S

|\&| (?UA)= sup
A # S

|&| (A).

(f ) Assume that A # S exists with &(B)=0 for all B # S, B & A=<.
Then supp(\&)/?UA : Indeed, let K # K ([Y]) with K & ?UA=<.
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There exists B # S with K/?UB . Set C :=B"A. Then |&| (C)=
sup[&(D) : D # S, D/C]=0, and by (b) and (c) |\&| (K)�|\&| (?UC)=0.
Hence [Y]"?UA # N(\&). The converse implication follows from (c).

(g) is a consequence of Proposition 6.2.

(h) Let & be purely finitely additive, and let 0<*�|&|. If no (Bn) # P

exists with *(� Bn"� Bn)>0, then by (g) * # M(S) which is impossible
since the set of purely additive elements of E(S) is a band of E(S).

Conversely, let the condition be satisfied, and let + # M(S). Then
* :=inf ( |+|, |&| ) # M(S) and therefore, by (g), *=0. Hence & # M(S)d, i.e.
& is purely finitely additive. K

The condition in (g) is not very surprising: See e.g. [18; 18.7.2].
A representation for E(S) as the Riesz space M(Y) for some hyper-

stonian space Y was given by the author in [11; 4.5].
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