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ABSTRACT 

A collocation me thod  is described which obtains approximate solutions to quasilinear parabolic 
problems on a general two-dimensional domain. The method  is best suited for obtaining robust 
solutions to smooth  problems with  the accuracy required in most engineering applications. The 
solution is obtained in terms o f  a finite element, B-spline basis. An interactive computer  graphics 
system is used for both problem formulation and the subsequent display o£ selected results. The 
theoretical basis for the me thod  is discussed, and some typical computat ional  results are present- 
ed. 

1. INTRODUCTION 

A collocation method is described for efficiently ob- 
taining approximate solutions to quasilinear parabolic 
probhms. The method is most suitabh when solutions 
to smooth problems on two-dimensional domains are 
needed with an accuracy sufficient for most practical 
applications. An interactive graphics system is used 
for both problem formulation and display of results. 
Let ~2 cEn be an open bounded domain, n > 1, with 

a ~ its boundary. Consider the initial-boundary value 
parabolic problem 

u t = a(x,u)Au +b(t,x,U,Ux) (t,x) ~ (0, T) x f2, 

u(t,x) = g(t,x) (t,x) ~ (O,T)X a~, (1.1) 

u ( 0 , x )  = u 0 ( x  ) x ~ ~ = ~2 u a~2 ,  

where x = (x 1 .... ,Xn), u x = (uxl,...,Uxn), 

n 

zxu =j~ l  Uxjxj ' T > 0, a(x,u) is a positive scalar 

function, g(t,x) and u0(x ) are given data functions. 
In order to solve (1.1) approximately, let 
S = span ~b 1 ..... ~b re)be a finite element approxima- 

tion space on ~2~ One is then looking for a map 

v : [0 ,T]  ~ S, 

i.e., an approximate solution of the form 
m 

v(~;t,x) =i~1 "i(t)~bi(x)" (1.2) 

The method is described as follows. 
(a) The initial-value function u 0 is first approximated 
in the discrete Q 1 norm using linear programming. This 
determines the initial approximation 

m 

v(~;0,x) =i~1 c~i(0)~bi(x) (1.3) 

and a set o£ collocation points, both in the interior 
and on the boundary o£ the domain, at which the 
approximate solution exactly safisfies the initial data. 
The accuracy of this initial approximation gives inform- 
ation prior to solving the problem, om the adequacy o£ 
the number m o£ basis functions @ being used. 

(b) The time-dependent solution is then carried for- 
ward by satisfying the differential equation on the 
interior collocation pointsand the boundary data on 
the boundary collocation points. This leads to a set o£ 
initial-value ordinary differential equations for ~i(t), 
i = 1 ..... m, which are solved approximately via a 
discretization in the time variable t (e.g., using a pre- 
dictor-corrector scheme). This is, of course, a version 
o£ the so-called line method [20]. 
The functions ~i are conveniently chosen so that they 

form a "smooth" B-spline product basis. This choice 
leads, in fact, to a finite element method. Let h be the 
maximal diameter o£ the elements induced by the space 
S,'and r the degree of the space. Then, provided that 
the choice of the collocation points is stable, the 

method is convergent and the error is 0(h r'l) (for the 
time-continuous approxirnation)~ 
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This is to be compared with the more favorable error 

of 0(h r+l) often achievable with Galerkin or least 
squares procedures, using the same approximation 
space. On the other hand, collocation methods are 
more economical and straightforward to use, since 
they require no integrations (cf. [7], [16], [1117. The 
method suggested here is most efficient, with respect 
to other methods, when very accurate solutions are 
not required, or when the problem to be solved in- 
volves a complicated nonlinear term b(t,x,U,Ux). This 

is true because the number of function evaluations 
required is relatively small. Also, the method handles 
nonzero boundary data g(t,x) with no need for further 
modification_(Such a modification is required in the 
case of a Galerkin procedure [4], [6]). It should also 
be emphasized that the method can handle a rather 
general spatial domain ~2 with no difficulty. 
In section 2 we consider the ~l-approximation 

procedure which provides us with the initial approx- 
imation and the collocation points. The procedure 
assures, under normal circumstances, the local 
existence of the collocation approximation. 
It should be remarked that in general many sets of  
collocation points exist which would yield an approx- 

imation converging with the same order 0(h r- l )  as 
achieved by our selection of points. The Ql-approxim- 

ation here is just a device for producing a "good" set 
of  collocation points in an automatic manner for an 
arbitrarily shaped domain. We try to provide, in the 
remainder of section 2, the basis for the conjecture 
that the collocation points produced by the ~l- 
approximation process are "good". 
In section 3 we present the collocation method and 
prove its convergence, assuming that a stable set of 
points has been selected. Selection of a stable set of 
points depends primarily on the choice of weights in 
the initial approximation, and we discuss this choice 
of weights in section 4. 
Our method, for two spatial variables, has been 
implemented in an interactive computer graphics 
system [17], [3], [15]. This contributes significantly 
to,he flexibility and ease of use of the method. In 
section 4 we briefly describe the system and its use 
in order to solve, in an interactive environment, 
boundary value problems on general domains. 
A substantial amount of computational testing was 
carried out using the method described and the inter- 
active graphics system developed for this purpose. 
Some typical numerical results obtained are 
summarized in section 4. A detailed presentation of 
numerical results is given in [1]. Based on these 
numerical experiments it is concluded that the 
computational method presented here is both practic- 
al and efficient for parabolic problems on a general 
two-dimensional domain. 

2. THE INITIAL APPROXIMATION 

We fzrst describe how the approximation to the initial 

data is obtained. A similar approach has been used for 
solving linear boundary value problems [14]. 
Let ~v and - ~ u  be two discrete grids of/~ I and u B 

points, respectively : 

vI+l N 
f~v = {x I .... ,xVI '}cflandaf~v = {x .... ,x }caf~, 

where N = v I + VB, N > m. We call f2 V and a~2 v the 

m i n i m i z a t i o n  grids on the interior and boundary, and 
Finally let co 0 and 6o I be two weights for the interior 

and boundary, respectively. 
For a function f e  L ~ )  we determine a* = (~l,...~m) 

such that 
m g< 

v(~*; x) = ~ ~. ¢.(x) 
i=l i I 

is a best (discrete) Q 1-approximation to f on the mini- 

mization grids; i.e., a is determined as the solution to 
the minimization problem 

mina {6aO [Iv(a;.) - f(.)llg~v +Wlll v(c,;.) - f(')ll ag~v} 

(2.i) 
where 

= i  ~ I-I, II- I.lag2v= i ~ I.I. (2.2) II'll'~'v vI ~v vB a~2v 

A number of efficient linear programming algorithms 
[5], [13] have been suggested to solve (2.1). In the 
dual method, the required a* is obtained as the dual 
solution vector to the following linear programming 
problem with bounded variables [14]. 

max {c.r/IAr/= 0, -wj < rlj < wj, i -< j < N ) (2.3) 

wh 'e r e  

n = (r/1 ..... r/N), 

c = (f(x 1) ..... E(xN)), 

= [co0/vi, 1 < j < vi, 
wj ' "I < N, 

A = 

 1.(xl) .... 1 

(2.4) 

For a reasonable choice of basis functions ~i' i= 1,...,m 
and minimization grids ~2 v and aft v, one has rank(A)~ 

m. We shall henceforth assume this to be the case. 
Using an appropriate version of the Simplex method 
for the solution, an optimal basis @ of m columns of 
A is produced. Clearly a finite solution exists since 
7? = 0 is feasible, and the objective function is bounded 

by c00llf][£2 v + colllf]la~2v. Let ~(xJ) denote thejth 

column of A. The m x m non-singuLar matrix @then 

consists of the columns ¢(xJ) for j e J, where J denotes 
the set o fm selected columns. 
It follows from the duality theory of linear programm- 
ing that We have 

v(a*;xJ) = f(xJ), j e J. (2.5) 
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Thus the discrete ~l-approximation process provides 

a set o fpo in t s  

{xJ [j ~ J ) -- {~1 .... '~m } 

which solve the following interpolation problem : 
Among all subsets of m points from ~v  w a~2v, fred 

one of  these subsets such that  the corresponding inter- 
polant minimizes the bracketed quanti ty of  (2.1). 
At this stage we also have useful information on the 
adequacy of  the basis functions ¢i' i= 1,...,m, being 
used. If  the error given by (2.17 in approximating the 
initial data is too large, then we must  either increase 
m, or choose a bet terse t  of  basis functions. 
The interpolatory property exhibited for the discrete 
Q 1-approximation, appears also in best continuous 

(integral) Lp-approximations, 1 ~ P < **, on an inter- 

val I = [0,1] say, to continuous functions f. In 
particular, in the polynomial  case 

~bi(x ) = x i-1 i = l  .... ,m 

with f(x) = x m, the interpolating points are zeroes of  
the Chebyshev polynomial o f  the first kind, of  the 
Legendre polynomial, or of  the Chebyshev polynomial 
of  the second kind, for the L**, L 2 or L 1 norm, res- 
pectively [12]. 
The points {~l"" '~m ) --- (xJ I j ~ J ) obtained above, 

are "best" interpolation points for f in the "discrete 
~1" sense. We wish to know if interpolation at these 

same points will still give a good approximation to 
other functions £ 
Conditions were given in [2] under which inter- 
polation at ~ 1  ..... ~m ) still produces a best ~l-approx- 

imation to other functions. In practice, using tensor 
products of  one-dimensional B-splines, it has been 
our experience that  the interpolation points did not  
vary much from one discrete Ql-approximation to 

another, even when the conditions for invariance 
given in [2] were violated (cf. [16]). More important ,  
the interpolation points ~1 ..... ~m' determined with a 

function fwere  also "good"  (although not  "best"  7 
for other functions tested. That  is, for another 
function # the error using ~1 ..... ~m' was of  the same 

order o f  magnitude as the error obtained for the best 
Ql-approximation to t~. 

The interpolation matrix 

~ =  [~bi (~j)] (2.6) 

is the optimal basis matrix o f  the linear programming 
solution, and as such is invertible. 

m 

Let v(a;. 7 = i=~1 ai~i(.7 ~ S and/~('7 ~ L~.(~).  We can 

write, with ~" determined so that  v(a';. 7 interpolates 
/~(.) on (~1 ..... ~m ) '  

Defining 

3 i=  ~ i - a i '  i = l  ..... m, 

3 =  (31 .... ~m) '  e = [e(~l),...,e(~m)], 

we have 
~ ( I  )~-  e ,  

and 

3= e e  -z .  

Thus, 

[IDkv(a';') - Dkv(~; ")IIL,~ ~) = [1i~1 3iDk¢i(')llL** (~) 

m 

~< Ilell~ I1~-1tl** i=~1 IIDkci(.)llL (~), 

where 

D k = a [k[ [k] = k I + ... + k n. (2.77 
k axt l . . .  3xkn 

n 

S o ,  

m k 
IIDkv(~;') - Dku('7 ILL** (~7 < Ilell** 114) -lll**i=ZllID 0i('7 ILL** (~)  

+ [IDkv(a ;.) - Dkgt(.)IlL, * (~) (2.8) 

The vector a is arbitrary in (2.8) and so we can choose 
it such that v(~;.) is a best L approximation, say, to 
gt(. 7 out of S. Inequality (2.8) then says that v(a'; .) 
approximates gt(.) to,the order of  the best approxim- 

ation possible out of  S, ff ]l~ -1[l** is bounded. 

Consider now a spline-product space S S h o n  
r 

n 
U - X [0,1], of  degree r and uniform knot  size h i in  

i=1 
each direction xi, with h = max hi/Assume, without 

l ~ i ~ n  
loss o£ generality, that ~2 c U. Then the following 
theorem easily foUows from the results of Schuhz [18] 
and (2.8). 

Theorem 2.1 

Assume that ~-1 is bounded independently of h : 

lib-ill** ~ M, (2.9) 

and le t / /have  all derivatives up to order r+l.  Then 
there exists a constant K such that 

Khr+l-lklmaxlI~gt(x) 1, [IDktt(') - Dkv(a'; ")IlL- (~) Ij [= r+l  

o ~ Ikl ~ r. (2.107 

3. THE COLLOCATION SCHEME 

Given the problem (1.1), we first obtain a set of  
" m 

collocation points {~i }~=1 and an ~ i-approximation 
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m 

v(a ;O,x) = i~ 1 ai(O)¢i(x) (3.1) 

to the initial data f=uo, as described in section 2. I f  

the collocation points are known in advance, then 
the above computation is not needed. 
o f  the cbllocation points, let e l  ..... gd e ~ and 

~d+l ..... ~m ~ aI2, 0 <  d < m. 
Define 

P = ¢1(~d+1)... em(~d+ll 

I 
¢1(~m) ¢mi~m) J , 

i.e., [QT:pT] = ~ .  

Q =  ~t.(~1) ""era. (~1) 1 
¢;(~d) "'" em(~d)J 

(3.2a) 

To simplify the presentation we assume that the 
coefficient a(x,u) in (1.1) depends on x only, that is, 
a = a(x). The more general case can be handled with 
some modification and is discussed in [1]. Then let 

w = di~g {a(~i) 5i= 1 ..... d; g (t) = ;g(t ,~d+l) ..... g(t,~m) ). 
(3.2b) 

Furthermore, define the vector g = g(a;t) with ith 
element given by 

gi(a ;t) = b[t,~i,v(a ;t,~i) , Vx(,, ;t,~i)], i= 1 ..... d, (3.2c) 

where v is def'med by (1.2). Finally, define the (dx m) 
rrlatrix R by applying the operator lx to Q, i.e., 

(R)i J = ZxSj(~i) i=1 ..... d ; j =  1 ..... m. (3.2d) 

Then the boundary collocation equations are 

P~(t) = g(t) (m-d equations), (3.3) 

while the interior collocation equations are 

Q d~a = WRa(t) + g[a(t);t] (d equations). (3.4) 
dt 

The initial values a(0) for (3.4) are given by the 
initial approximation (3.1). 
The set o f  initial-value ordinary differential equations 
(3.3) - (3.4) is now solved approximatelyfor a(t), 
using one of  the well-known finite difference techni- 
ques [10], possibly with an error-controlled variable 
step size. 
By differentiating (3.3) we can combine equations 
(3.3) - (3.4) to form a set o f m  equations 

~T cl~ = Gn(t) + aid(t)] + q(t); a(0) given, (3.5) 
dt 

where ~is  defined in (2.6) and G,o,q are defined in 
an obvious manner. Since • is invertlbh, a local 
existence of  the approximate solution follows. The 
global existence will follow upon proof  of  converg- 
ence. This depends on a stability assumption, which 
we state next. A discussion of  stability in the 
implementation of  the computational method is 
given in section 4. 

Stability assumption 

The collocation procedure is said to be stable if  
(a) The bound (2.9) holds. 

(b) The matrix (@T)-I G has eigenvalues with real 
parts Which are bounded from above independent 
of  h, for each t. 

The convergence theorem now follows. 

Theorem 3.1 

Let the functions a(x,u) and b(t,x,U,Ux) in (1.1) have 

bounded derivatives au,bu,bfl x. Let u possess r+l 

derivatives in the spatial variables, r > 2, and at least 
two in the time variable. Assume that the procedure 
is stable for our choice of  collocation points and 

approximation space S h. Then, for each t e [0,T], 
r 

Ilu(t,.) - v(a ; t , . ) l lL .~  ) = 0(hr-1), (3.6) 

where ~ is determined by (3.3) - (3.4). 

Proof 
We estimate u - v through the function 

m sh 
fi(&;t,x) =i~1 ~i(t)~i(x) ~ r (3.7) 

which, at each time t, interpolates u on (~1 ..... ~m )" 
Let 

~7= u-fi, p = f i - v .  (3.8) 

Then p~S h : 
r 

m m 

oCt'x) =i~1 [&i(t) - "i(t)] el(x) --i=~1 3i(t)~bi(x)" (3.9) 

We may write 

lu- vl < I¢/[+ Ipl. 

The error of  interpolation ~7 and its derivatives up to 
order of  at least s = 2 are bounded by (2.10), since 
theorem (2.1) is applicable. Thus we are left to treat 
P. 
To simplify the proof  we consider the case where b in 
(1.1) depends on t,x and u only, that is, b = b(t,x,u). 
The proof  is similar when b depends on u x also. For 
any t, and at each ~i e ~2 we have 

v t = a(v) Av + b(v),  

and the same holds, o f  course, for u. Also, since fi is 
the interpolant, we have fi = u, or ~ -- ~?t -- 0, at each 
~i' i = 1 ..... m. Therefore, at ~i e f~ we have 

Pt = Pt + ~t = ut - vt = a(u)Au + b(u) - a(v)~v - b(v), 

o r  

Pt = a(U)Au - a ( u ) A f i  + a ( u ) A f i  - a ( u ) A v  + a ( ~ ) A v  

- a(v)Av + b(a)  - b(v).  

Making use of  the mean value theorem, we obtain 

Pt = a ( u ) ~  + a (u)~p  + ~ u  p + ~u p, 
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where ~u and b u represent partial derivatives evaluated 

at intermediate values. 
We now rearrange the terms, substitute the estimates 
from (2.10) for A¢/and, using the assumed bounded- 
ness of all the appearing quantities, arrive at an 
equation of the form 

o t - ai.Ap - pi p = di;. p(0) = 0, (3.10) 

with a i = a($i,u), Pi bounded quantities and 

d i = 0(hr-1), for each $i ~ ~2. 

Also, trivially for the boundary collocation points, 

P t=  p = 0  a t ~ i e a n .  (3.11), 

By (3.7) we can combine equations (3.10) - (3.11) to 
form a set o f m  equations, similar to (3.5) : 

~T d~_ = G/~(t) + ~@T/~ + ~; /~(0) = 0, (3.12) 
dt 

where 

[Pi, 1 < i =  j < d 
ft.. 

1] = 110, otherwise, 

L (1 < i , j  ~ m) 

~i , l< i<  d 
a i = ~  J , d <  i~< m. 

The matrix ~; -= G + ~ T  i~ a perturbation matrix of 
G, with the perturbation term coming from the lower 
order terms in (1.1). Thus, from the stability assump- 

tion, for h small enough the matrix (~T)-I ~ has 
eigenvalues with real parts which are bounded from 
above independently ofh.  Also, by (2.9), 

II(¢T)-lall = O(hr-1). 
By elementary stability analysis of the initial value 
problem (3.12), one now obtains 

II$(t)ll, = O(hr-1), 0 < t < T. 

From here, trivially, 

IIp(//;t,.)tlL®(~ ) = O(hr-1), 0 < t < T, 

and the theorem follows. 
Q.E.D. 

4. IMPLEMENTATION AND COMPUTATIONAL 
RESULTS 

The method described above was implemented, for 
two spatial variables (n= 2), using an interactive 
graphics system. This system is composed of a 
Digigraphics terminal with the CDC 1700 as a host 
computer, linked to a CDC Cyber 74 computer. It is 
capable of handling linear boundary value problems 
on general domains, according to the method 
described in [14] (including ~ 1-approximation as a 
special case), quasilinear elliptic [1] and quasilinear 
parabolic prbblems, according to the method 
described here. A detailed description of the system 
is given in [171, [3]. 

When using the system, the user specifies the domain 
~2 of the problem, ~vhich is contained in the unit 
square, by drawing its boundary on the graphics screen 
using the light pen, or by specifying thevertices of a 
polygon. The boundary curve obtained by either 
method may be approximated by spline functions in 
parametric form, and then be replaced by the resulting 
smooth curve ff the user so desires.A few examples of 
domains which have been used are shown in fig. 1. 
The domain fZ and its boundary a~2 thus defined are 
represented internally by discrete point grids ~2 v and 
a~2 v (see section 2). The userspecifies the desired grid 
densities (the two grids ~2 u and a~2D are independent). 

Points in ~2 v which are too close to a~2, and may thus 

cause trouble, can be deleted, if desired. Associated 
with eahh such "minimization grid" is an "evaluation 
grid" which is approximately four times as dense, and 
is used to measure the error in the approximate solution 
after the actual computation is performed. 
The quasilinear parabolic problems which the system 
can now solve are of the form (1.1) with a=a(x). The 
scheme that is normally used to solve (3.3) - (3.4) is 
a predictor-corrector scheme, with a fixed time in- 
crement r. Denoting a quantity @(t) at time t= tk=kr  

by ~k ,  the unknown vector a k+l is obtained from 

the known k (starting with the known value -0=a(0), 
obtained as described in Section 2) according to the 
following scheme : 

p~k+l __ ~k+l  (4.1) 

(Q _ 1 ,rWR)~.k+l= (Q + 1-rWR)ak+ r~(ak;tk ) 
2 2 

(q_ l rWR)ak+l= (q + 12 rWR)ak 

+ 1 r[b (8k+1; tk~_l) + g(.ak;tk) ] 
2 

(4.2) 
The approximate solution v is then given in the follow- 
ing convenient form on a set of discrete time levels 
tk, k=0,...,T/¢, 

ml  m2 k 
v(ak;tk'X) = ~ ~ ~ij @i(Xl) ~J (x2)" (4.3) 

i = l j = l  
The ~i(') form a "smooth" B-spline basis, with 

equally spaced knots, in each of the spatial directions, 
and ml .m  2 = m. 
After the user has completed the formulation of the 
problem via the graphics terminal, the data are pre- 
pared by the terminal's host computer and sent to 
the large scale computer (the Cyber 74) for execution. 
If suitable collocation points are not already known, 
the application program solves an e 1-minimization 
problem (2.1), defined on the "minimization grids". 
The approximate solution is then carried forward in 
time on the collocation points using (4.1) and (4.2). 
Because of its smooth and convenient form the 
approximate solution thus obtained (and, ff desired, 
its derivatives), can be displayed graphically in several 
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I. Regular octagon 

I I .  Heart-shaped 

l 
Ill. L-shaped 

1 

IV. Hand drawn 

Fig. I. Examples of two-dimensional domains on 
which parabolic problems were solved. 

. m  
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ways, such as a contour plot or a selected cross-section 
plot. Furthermore, the evaluation grid may be used to 
compute quantities which allow error estimates to be 
made. In particular, the error in the initial approxim- 
ation and on the boundary a ~ can be computed and 

, displayed graphically. If the user is not satisfied with the 
results obtained, the problem can be modified interact- 
ivily to get an improved solution. For example, the 
number of basic functions can be increased (increase m, 
decrease 11) in order to get a more accurate approximate 
solution. It is also rather easy to solve the same problem 
with modified initial and boundary data u0(x ) and g(t,x), 
once a solution has been obtained for one choice of 
these functions, say ~0 and g. Specifically the colloca- 

tion points determined for u0 and ~ can be used for 
the new data, so that the initial ~l-minimization is not 
required. 
For a given domain and choice of basis functions, the 
matrices @-and G appearing in equations (3.5) and 
(3.12) are, determined by the selection of the colloca- 

m 

tion points {~i}i= 1" These points are determined by 

the initial Ql-approximation, and depend on the 

ratio 7 = C°l/CO 0 of wbighting factors used in (2.1). 

Increasing 7 will emphasize the boundary error and 
therefore will tend to increase the number of boundary 
collocation points. 
Since • and G depend on" the ratio 7, the stability and 
convergence of the method will also depend on 7. A 
computational investigation has been carried out [ 1] for 
a variety of two-dimensional domains. This investigation 
shows that the best choice for 7 is in the range 
2 .~ 7 g 4. T)rpically this will result in the two terms 
of (2.17 being of approximately the same magnitude. 
So far, it has not been possible to show theoretically 
that stability and convergence can be guaranteed by a 
suitable choice of 7. 
With the approximating functions ~l(X) ..... ~m(X) being 

products of one-dimensional "smooth" B-spline 
functions 

= , i(Xl) k(x27, 1 j 1 k {¢i(x) 
the desirable number of points on the boundary is 

4(x/m - 1) < m - d < 4 x/~. (4._4) 

For a rectangular domain, the maximum number of 
collocation points allowed on the boundary with the 
above product space is 4x/m - ~, where Q is the number 
of corners which are collocation points (usually ~=47, 
and for stability this number of collocation points 
should be achieved. 
When solving a new problem the following procedure 
is recommended. First solve a test problem of a 
similar smoothness with known solution on the same 
domain and with the same equations (1.17, except 
that a known term g(t,x) is added to b(t,x,U,Ux). The 

data g(t,x) and u0(x ) will also correspond to the known 

solution. The actual error in the approximate solution 
v(a ;t,x) can then be computed on the evaluation grid. 
If the error is acceptably small, the given problem is 
then solved using the same basis functions and 

,,,,, ,, 
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collocation points. On the other hand, ff  the test 
problem error is too Large, the number o f  basis func- 
tions is increased until acceptable accuracy is obtain- 
ed with the test problem, before attempting to solve 
the given problem. 
This interactive graphics system has been successfully 
tested on a variety o f  parabolic problem~'in two space 
variables. We conclude with a brief discussion o f  some 
of  these numerical results. For  complete details on 
these numerical results see [1]. 
Problems were solved on 6 different domains, in- 
eluding the unit square. Four  o f  these are shown in 
Fig. 1. A multiply connected domain is illustrated in 
Fig. 2, which also shows the minimization grid (heavy 
dots) and the evaluation grid (all dots). The differential 
operators in (1.1) were all o f  the form 

u t --- L[u] + f(t,x,y) 

and four different (elliptic) operators L[u] were used, 
with one linear and three quasilinear. In order to 
compare accuracy, problems with known solutions 
were constructed in most cases, by  choosing f(t,x,y) 
- ut - L[fi] for any desired test function ~ = fi(t,x,y). 
A total o f  six such test functions were used. 
To illustrate the numerical results obtained we briefly 
describe several typical cases. 
For the First cas~the quasilinear elliptic operator 
L[u] = Au - 4au + bu x was used. For  initial data 

given by u0(x,y,0 ) = 1/x/~(x+y~) and f(x,y,t) ---- 0, 

this has the exact solution ~(x,y,t) = 1/x/~(x÷y+bt+c). 
The parameter values a = E - 4, b = 0.2 and c = 0.1 
were used. The basis consisted of  49 quintic B-splines 
with support on the unit square. A time step At = 0.02 
was used. The error in the approximate solution v is 
measured in the discrete Ql-norm and is given as a 

relative error, RE = Ilv - ~ l l l / l l ~ l l  1 .  For  the heart- 

shaped domain shown in Fig. 1, the relative error at 
t' = I was RE = 1.90E - 5. The corresponding error 
at t = 0 (best ~l-approximation to the initial data 
with this basis) was RE = 1.39E - 5. 
For  the second case described here, the same operator 
was used, but  f(x,y,t) was determined so that (1.1) " 
had the exact solution 
= log [2 + cos (~x) sin (try) exp (-cfr2t)]. 

The same quintic spline basis was used as above, and 
the parameter value was taken as c = 0.2. For  the 
heart-shaped domain with At = 0.02 the result was 
RE = 6.70E - 6 at t = 1, starting with an initial error 
o f  RE = 9.15E - 5 at t = 0. Thus the relative error 
decreased with time (as the solution becomes 
smoother). The identical problem was also solved on 
the unit square with the same spline basis and At. The 
result was RE = 9.45E - 6 at t = 1, with an inital error 
o f  RE = 3.24E - 4 at t = 0. 
The smaller error on the irregular and nonconvex (but 
smaller) heart-shaped domain, shows dear ly  the 
advantage o f  this collocation method for  irregular 
domains. The improved accuracy on the heart-shaped 
domain (as compared to the unit square domain) is 
due to the better approximation to the initial data 

. ° * • o • • . • . • ° • . • ° • . • ° • 

• ° • • ,  o • a ° a o • . • ° • • • ° • o • 

. . . . .  • . . . . . . . . .  ° . . . . . . . .  

• ~ • ° • • ° • . • ° • ° • ° • . • ° • 

• • • ° • ° • . • ° • • . • . • . • . • 
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Fig. 2. Typical multiply-connected domain defined by 
a polygonal inner boundary. 

which can be obtained using the same basis functions 
on a smaller domain. 
The last case to be summarized here is one for which 
the general behavior has been investigated [9], but  for 
which the exact time-dependent solution is not known• 
The operator here is L[u] = Au + ee u, with boundary 
cofidition u = 0 on 0~2 and u = u 0 (x;7) as initial 

condition. For  a specified domain ~ ,  we consider the 
corresponding elliptic (steady-state) problem L[u]= 0, 
with u = 0 on 3~2. Then for each domain there is a 
value ¢c' such that for ¢ < T c there exist two solutions 

to the elliptic problem; for T = r c there is one solution; 

and for ¢ > ¢c there is no solution. Furthermore, the 

solution to the parabolic p robhm (1.1) will generally 
converge to one of  the elliptic problem solutions as 
t -~ ** (this depends on the initial data uo), provided 
that ¢ ~< ¢c" On the other hand, for ¢ > ¢c the solutibn 

to (1.1) will "blow up",  that is Ilu(t~l! becomes 
unbounded in a finite time. 
Numerical solutions were obtained for a circular 
domain (radius = 0.5), the unit square and the heart- 
shaped domain, while the parabolic problem solution 
is not  known, the elliptic problem solution is known 
for the circular domain. For  this case ¢ = 8.0, and for 
¢ = 7.9 we know that I1~1 . .  = 1.174, w~aere ~ solves 

the elliptic problem. The numerical solution to (1.1) 

with uo(r ) = sinlr(r+l/2), where r 2 = (x-1-/2) 2 + 
(y - 1/2) 2, was obtained with 49 quintic splines and 
At = 0.02. The "steady-state" solution was essentially 
reached at t -- 2. The relative error at t = 2 was given 
by IIv- ~li/ll~!l I = 6.3E - 3. 

For the unit square and heart-shaped domains the 
value of  ¢c was determined numerically by solving 

(1.1) for increasing values of  r. The maximum value 
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of  r for which v did not blow up was taken as r . The 
values obtained in this way were r c = 6.81 for t~e 

unit square, and r c = 11.5 for the heart-shaped 
domain. 
Finally, numerical solutions were obtained to this 
parabolic problem on the unit square and heart- 
shaped domains for values of  '¢ > ¢c' in order to 

follow in detail how the solution v(t,x,y) grows with 
time. This solution represents a simplified model o f  
the self-ighition o f  a gas mixture, where v is the local 

temperature and the term re v represents the corres- 
ponding rate o f  heat generation. The interactive 
graphics system; was used to give a 3-dimensional, 
hidden-line display showing v at each time step. The 
display was photographed to produce a 16 mm film 
showing the time history of  the self-ighition as a 
dynamic graphical presentation [15]. 
A sequence o f  20 frames from this film is shown in 
Fig. 3. This sequence shows the temperature (vertical 
axis) for the square domain (x-y axis) at equal time 
intervals At = 0.03, starting with t = 0.03. The initial 
temperature distribution was.'taken as v = 0. The 
parameter value used for this sequence was r =  7 . 5 > f  c 
= 6.81. The slow initial growth, and rapid final increase 

of  temperature at the center of  the domain is clearly 
shown, The Final frame shown (t = 0.6) represents the 
largest value o f  t for which a bounded solution was 
obtained. 
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