A Leibniz variety with almost polynomial growth

S. Mishchenko⁴, A. Valenti⁵,*

⁴Department of Algebra and Geometric Computations, Faculty of Mathematics and Mechanics,
Ulyanovsk State University, Ulyanovsk 432700, Russia
⁵Dipartimento di Matematica ed Applicazioni, Università di Palermo, Via Archirafi 34, 90123 Palermo, Italy

Received 18 August 2004; received in revised form 7 January 2005
Available online 23 March 2005
Communicated by C.A. Weibel

Abstract

Let F be a field of characteristic zero. In this paper we study the variety of Leibniz algebras \tilde{V}_1 defined by the identity $y_1(y_2y_3)(y_4y_5) \equiv 0$. We give a complete description of the space of multilinear identities in the language of Young diagrams through the representation theory of the symmetric group. As an outcome we show that the variety \tilde{V}_1 has almost polynomial growth, i.e., the sequence of codimensions of \tilde{V}_1 cannot be bounded by any polynomial function but any proper subvariety of \tilde{V}_1 as polynomial growth.

© 2005 Elsevier B.V. All rights reserved.

MSC: Primary 17A32, 16R10; secondary 16P99

1. Introduction

A Leibniz algebra L over a field F is a nonassociative algebra with multiplication

$(-,-): L \times L \rightarrow L$,

where $(-,-)$ is a bilinear form satisfying the Leibniz identity

$(x, (y, z)) = ((x, y), z) - ((x, z), y)$.

* The first author was supported in part by RFBR, Grants no. 01-01-00728, and UR.04.01.036. The second author was supported in part by MIUR of Italy.
* Corresponding author.
E-mail addresses: mishchenkosp@ulsu.ru (S. Mishchenko), avalenti@unipa.it (A. Valenti).

0022-4049/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
In other words, the operator of right multiplication \((-, z)\) is a derivation of the algebra. Notice that in case \((-,-)\) is skew-symmetric, the above identity is equivalent to the classical Jacobi identity.

The free Leibniz algebra was described by Loday and Pirashvili [14] and in [7] the systematic study of polynomial identities of Leibniz algebras was started.

Let \(F\) be a field of characteristic zero and let \(A\) be an \((associative, Lie or Leibniz)\) \(F\)-algebra. It is well known that in characteristic zero all polynomial identities of \(A\) are completely determined by the multilinear ones. Hence let us denote by \(\text{Id}(A)\) the ideal of the free (associative, Lie or Leibniz) algebra of polynomial identities of \(A\) and by \(P_n\) the space of multilinear polynomials of degree \(n\) in the noncommutative variables \(y_1, \ldots, y_n\) over \(F\).

It is well known that in case of Lie or Leibniz algebras this space is spanned by the left skew-symmetric, the above identity is equivalent to the classical Jacobi identity.

Let \(F\) be a field of characteristic zero and let \(A\) be an \((associative, Lie or Leibniz)\) \(F\)-algebra. It is well known that in characteristic zero all polynomial identities of \(A\) are completely determined by the multilinear ones. Hence let us denote by \(\text{Id}(A)\) the ideal of the free (associative, Lie or Leibniz) algebra of polynomial identities of \(A\) and by \(P_n\) the space of multilinear polynomials of degree \(n\) in the noncommutative variables \(y_1, \ldots, y_n\) over \(F\).

It is well known that in case of Lie or Leibniz algebras this space is spanned by the left skew-symmetric, the above identity is equivalent to the classical Jacobi identity.

Let \(F\) be a field of characteristic zero and let \(A\) be an \((associative, Lie or Leibniz)\) \(F\)-algebra. It is well known that in characteristic zero all polynomial identities of \(A\) are completely determined by the multilinear ones. Hence let us denote by \(\text{Id}(A)\) the ideal of the free (associative, Lie or Leibniz) algebra of polynomial identities of \(A\) and by \(P_n\) the space of multilinear polynomials of degree \(n\) in the noncommutative variables \(y_1, \ldots, y_n\) over \(F\).

It is well known that in case of Lie or Leibniz algebras this space is spanned by the left skew-symmetric, the above identity is equivalent to the classical Jacobi identity.

Let \(F\) be a field of characteristic zero and let \(A\) be an \((associative, Lie or Leibniz)\) \(F\)-algebra. It is well known that in characteristic zero all polynomial identities of \(A\) are completely determined by the multilinear ones. Hence let us denote by \(\text{Id}(A)\) the ideal of the free (associative, Lie or Leibniz) algebra of polynomial identities of \(A\) and by \(P_n\) the space of multilinear polynomials of degree \(n\) in the noncommutative variables \(y_1, \ldots, y_n\) over \(F\).

It is well known that in case of Lie or Leibniz algebras this space is spanned by the left skew-symmetric, the above identity is equivalent to the classical Jacobi identity.
Recently in [1] the authors studied the variety of Leibniz algebras determined by the identity $x(y(zt)) \equiv 0$. They proved that such variety has many properties similar to those of the variety of abelian-by-nilpotent class 2 Lie algebras. In particular both varieties have overexponential growth of the codimensions and subexponential growth of the colengths.

In this paper we shall extensively study the variety of Leibniz algebras \tilde{V}_1 defined by the single polynomial identity

$$y_1(y_2y_3)(y_4y_5) \equiv 0.$$

We shall study in detail the S_n-module structure of $P_n(\tilde{V}_1)$ by determining all multiplicities in the nth cocharacter of \tilde{V}_1. As a reward we shall be able to prove that the variety \tilde{V}_1 has almost polynomial growth.

We remark that the variety \tilde{V}_1 shares many properties with the solvable variety of Lie algebras defined by the identity $(x_1x_2)(x_3x_4)(x_5x_6) \equiv 0$. In the search for a classification of the varieties of Leibniz algebras of almost polynomial growth, one could be inspired by the analogous varieties of Lie algebras. But so far \tilde{V}_1 is the only example explicitly constructed.

2. The algebra UT_2

Throughout F will be a field of characteristic zero and $F(Y)$ the free associative algebra on the countable set $Y = \{y_1, y_2, \ldots\}$. Recall that an algebra A is a PI-algebra if it satisfies a non-trivial polynomial identity. Also, if f is a polynomial identity of A we usually write $f \equiv 0$ on A.

The set $Id(A) = \{ f \in F(Y) \mid f \equiv 0 \text{ in } A \}$ of all identities of A is a T-ideal of $F(Y)$ i.e., an ideal invariant under all endomorphisms of $F(Y)$. If \mathcal{V} is a variety of algebras, \mathcal{V} determines uniquely a T-ideal $I = Id(\mathcal{V})$ and, in case \mathcal{V} is generated by the algebra A, we write $\mathcal{V} = \text{var}(A) = \text{var}(I)$ and $I = Id(A) = Id(\mathcal{V})$.

Let $I = Id(\mathcal{V})$ be the T-ideal of $F(Y)$ of identities of \mathcal{V}, then $F(Y)/I$ is the relatively free algebra of \mathcal{V} and $c_n(\mathcal{V})$ measures the space of multilinear polynomials in the first n variables of $F(Y)/I$; hence, if $\mathcal{V} = \text{var}(A)$, $c_n(A) = c_n(\text{var}(A)) = c_n(\mathcal{V})$.

Let e_{ij} be the usual matrix units and let $UT_2 = UT_2(F) = Fe_{11} + Fe_{12} + Fe_{22}$ denote the algebra of 2×2 upper triangular matrices over F. In the theory of associative algebras, UT_2 and the infinite dimensional Grassmann algebra G play a basic role. In [11] Kemer characterized the varieties of associative algebras \mathcal{V} having polynomial growth. He showed that \mathcal{V} has such property if and only if $G \notin \mathcal{V}$ and $UT_2 \notin \mathcal{V}$. The sequences of codimensions of the algebras G and UT_2 are well known (see [12,13]) and, as a consequence of Kemer’s result, it follows that there exists no variety of associative algebras with intermediate growth between polynomial and exponential. Also, the two algebras G and UT_2 generate the only two varieties of associative algebras with almost polynomial growth.

We shall next recall some properties of the algebra UT_2. It is well known that the polynomial $[y_1, y_2][y_3, y_4]$ generates $Id(UT_2)$, the T-ideal of identities of UT_2. (see [15]). The description of the structure of the multilinear part of UT_2 follows, for example, from [4].
If χ_1 is an S_n-character and χ_2 is an S_m-character, let $\chi_1 \otimes \chi_2$ denote their Kronecker product. Recall that such product can be computed by the Littlewood–Richardson rule (see [10, Theorem 2.8.2]). Let us recall the following result which allows to compute the n-cocharacter of a product of T-ideals.

Theorem 2.1 (Berele and Regev [4, Theorem 1.1]). Let A, A_1, A_2 be associative PI-algebras such that $Id(A) = Id(A_1)Id(A_2)$. Then

$$\chi_n(A) = \chi_n(A_1) + \chi_n(A_2) + \sum_{j=0}^{n-1} \chi_j(A_1) \otimes \chi_{n-j}(A_2)$$

$$- \sum_{j=0}^{n} \chi_j(A_1) \otimes \chi_{n-j}(A_2).$$

By using Theorem 2.1 it is easy to compute the S_n-cocharacter of $Id(UT_2)$. Write

$$\chi_n(UT_2) = \sum_{\lambda\vdash n} m_{\lambda} \chi_{\lambda},$$

(2.1)

where χ_{λ} is the irreducible S_n-character associated to λ and $m_{\lambda} \geq 0$ is the corresponding multiplicity. For any partition $\lambda\vdash n$ we denote by $h(\lambda)$ the height of the diagram associated to λ. We have the following:

Theorem 2.2. Let $\chi_n(UT_2)=\sum_{\lambda\vdash n} m_{\lambda} \chi_{\lambda}$ be the nth cocharacter of UT_2. Then $m_{\lambda} = q + 1$ if either

1. $\lambda = (p + q, p)$ for all $p \geq 1$, $q \geq 0$, or
2. $\lambda = (p + q + 1, p + 1, 1)$ for all $p \geq 0$, $q \geq 0$.

In all other cases $m_{\lambda} = 0$, except the case $m_{(n)} = 1$.

Proof. Since $\text{dim}_F UT_2 = 3$ any polynomial alternating on four variables vanishes on UT_2. It follows that if $m_{\lambda} \neq 0$ then $h(\lambda) \leq 3$. Since $[y_1, y_2][y_3, y_4] \equiv 0$ is a basis of $Id(UT_2)$ then $Id(UT_2(\text{F})) = Id(\text{F})Id(\text{F})$. Since $\chi_n(\text{F}) = \chi_{(n)}$, by applying Theorem 2.1 we obtain

$$\chi_n(UT_2(\text{F})) = 2\chi_{(n)} + \chi_{(1)} \otimes \sum_{j=0}^{n-1} \chi_{(j)} \otimes \chi_{(n-j-1)} - \sum_{j=0}^{n} \chi_{(j)} \otimes \chi_{(n-j)}.$$

(2.2)

From this we deduce that $m_{(n)} = 2 + n - n - 1 = 1$. Moreover the irreducible character corresponding to $\lambda = (p + q, p)\vdash n$ appears in the right end side of (2.2) only in the sum

$$\chi_{(1)} \otimes \sum_{j=p+1}^{p+q} \chi_{(j)} \otimes \chi_{(n-j-1)} + \sum_{j=p}^{p+q-1} \chi_{(j)} \otimes \chi_{(n-j-1)} - \sum_{j=p}^{p+q} \chi_{(j)} \otimes \chi_{(n-j)}$$

and $m_{(p+q, p)} = ((p + q) - (p - 1) + 1) + ((p + q - 1) - p + 1) - ((p + q) - p + 1) = q + 1.$
From (2.2) it also follows that the irreducible characters corresponding to \(\hat{\lambda} = (\hat{\lambda}_1, \hat{\lambda}_2, \hat{\lambda}_3) \parallel n \) appear only if \(\hat{\lambda}_3 = 1 \) and in this case the only sum involving these terms is

\[
\chi_{(1)} \otimes \sum_{j=\hat{\lambda}_2}^{\hat{\lambda}_1} \chi_{(j)} \otimes \chi_{(n-j)}.
\]

It follows that \(m(\hat{\lambda}_1, \hat{\lambda}_2, 1) = \hat{\lambda}_1 - \hat{\lambda}_2 + 1 \) and the proof is complete. \(\square \)

In the next corollary we shall compute the \(n \)th codimension and the \(n \)th colength of \(UT_2 \) for all \(n \geq 1 \). We recall that if \(\chi_n(A) = \sum_{\lambda \vdash r} m_{\lambda} \chi_{\lambda} \) is the decomposition of the \(n \)th cocharacter of \(A \), then the \(n \)th colength of \(A \) is defined as

\[
l_n(A) = \sum_{\lambda \vdash r} m_{\lambda}.
\]

Corollary 2.3. (1) \(c_n(UT_2) = 2^{n-1}(n-2) + 2 \).

(2) \(l_n(UT_2(F)) = \frac{1}{2}n^2 + \frac{5}{2}n + 4 \).

Proof. Let us consider the set of polynomials in \(P_n \) of the type

\[
y_{i_1} \cdots y_{i_m}[y_{k}, y_{j_1}, \ldots, y_{j_{n-m-1}}],
\]

(2.3)

where \(\{i_1, \ldots, i_m, j_1, \ldots, j_{n-m-1}, k\} = \{1, 2, \ldots, n\} \), and \(i_1 < \cdots < i_m, j_1 < \cdots < j_{n-m-1}, k > j_1, m \neq n-1 \) (see [6]). Here we are using the left normed notation for the Lie commutators \([y_1, y_2], \ldots, y_n] = [y_1, \ldots, y_n] \), where \([a, b] = ab - ba \). It is well known that such polynomials are a basis of \(P_n \) modulo \(P_n \cap Id(UT_2) \).

We now count for any fixed \(n \), the total number of elements (2.3) i.e., the \(n \)th codimension \(c_n(UT_2) \). If \(0 \leq m \leq n - 2 \) then this number is equal to

\[
\binom{n}{m} (n - m - 1) = \binom{n}{n-m} (n-m-1).
\]

In case \(m = n \) we have exactly one monomial \(y_1 \cdots y_n \). Hence

\[
c_n(UT_2) = \sum_{j=2}^{n} \binom{n}{j} (j - 1) + 1 = \sum_{j=2}^{n} j \binom{n}{j} - \sum_{j=2}^{n} \binom{n}{j} + 1
\]

\[
= n2^{n-1} - \binom{n}{1} - 2^n + \binom{n}{1} + \binom{n}{0} + 1
\]

\[
= n2^{n-1} - 2^n + 2 = 2^{n-1}(n-2) + 2.
\]

This prove (1).
Let us now prove (2). From Theorem 1 we have

\[l_n(UT_2(F)) = \sum_{\lambda \geq n} m_\lambda \]
\[= m(n) + \sum_{\lambda_1 + \lambda_2 = n} m(\lambda_1, \lambda_2) + \sum_{\lambda_1 + \lambda_2 = n-1} m(\lambda_1, \lambda_2, 1) \]
\[= 1 + \sum_{\lambda_1 + \lambda_2 = n} (\lambda_1 - \lambda_2 + 1) + \sum_{\lambda_1 + \lambda_2 = n-1} (\lambda_1 - \lambda_2 + 1) \]
\[= 1 + \sum_{\lambda_1 = n/2} n (\lambda_1 - (n - \lambda_1) + 1) + \sum_{\lambda_1 = n/2} n (\lambda_1 - (n - 1 - \lambda_1) + 1) \]
\[= 1 + \frac{1}{4}(n + 2)2 + \frac{1}{4}(n + 4)(n + 2) = \frac{1}{2}n^2 + \frac{5}{4}n + 4. \]

We complete this section by recalling the following well known result [11]. □

Theorem 2.4. If \(\mathcal{V} \) is a variety of associative algebras such that \(\mathcal{V} \subset \text{var}(UT_2) \), then \(\mathcal{V} \) has polynomial growth.

3. Leibniz algebras

Recall that a Leibniz algebra \(L \) over a field \(F \) is a non associative algebra with multiplication satisfying the Leibniz identity

\[((xy)z) = ((xz)y) + (x(yz)), \]

for all \(x, y, z \in L \). If the Leibniz algebra \(L \) satisfies also the condition \(a^2 = aa = 0 \), for all \(a \in L \), then \(L \) is a Lie algebra. The Leibniz identity allows us to express every product of elements of \(L \) as a linear combination of left normed products and we shall tacitly use this fact throughout the paper. Also we shall use the left normed notation and write

\[(((a_1a_2)a_3)\cdots a_n) = a_1a_2\cdots a_n, \]

for all \(a_1, \ldots, a_n \in L \). Let us observe that from the Leibniz identity it follows that, for all \(a, b \in L \), \(a(b^2) = a(bb) = 0 \).

Let now \(F\{Y\} \) be the free Leibniz algebra on the countable set \(Y = \{ y_1, y_2, \ldots \} \) and let \(\tilde{\mathcal{V}}^{-1} \) be the variety of Leibniz algebras defined by the identity

\[y_1(y_2y_3)(y_4y_5) \equiv 0. \]

We next want to construct a Leibniz algebra \(U \) lying in the variety \(\tilde{\mathcal{V}}^{-1} \).

Let us denote by \(UT_2^0 \) the algebra of \(2 \times 2 \) upper triangular matrices with zero multiplication, i.e., for all \(a_1^0, a_2^0 \in UT_2^0 \) then \(a_1^0a_2^0 = 0 \) and let

\[U = UT_2^0 \oplus UT_2 \]
be the direct sum of the two vector spaces UT^0_2 and UT_2. We can give to U a structure of Leibniz algebra by defining the following multiplication:

$$(a_1^0 + a_1)(a_2^0 + a_2) = (a_1^0 a_2^0) + [a_1, a_2],$$

where $e_{ij}^0 e_{hl} = \begin{cases} e_{il} & \text{if } j = h \\ 0 & \text{otherwise.} \end{cases}$

Notice that from the multiplication rule of U it follows by induction that for all $a_1^0 + a_1, \ldots, a_n^0 + a_n \in U$,

$$(a_n^0 + a_n)(a_1^0 + a_1) \cdots (a_{n-1}^0 + a_{n-1}) = (((a_1^0 a_1)^0 a_2^0) \cdots a_{n-1})^0 + [a_n, a_1, \ldots, a_{n-1}],$$

where we are using the left normed notation for the Lie commutators $[a_n, a_1, \ldots, a_{n-1}] = [[a_n, a_1], \ldots, a_{n-1}].$

It is easy to check that U is a Leibniz algebra and since $(a_1^0 + a_1)(a_2^0 + a_2)(a_3^0 + a_3) = (a_1^0(a_2^0 + a_3))^0 + [a_1, a_2, a_3]$ we immediately obtain the following:

$$0 = U s(a_1^0(a_2^0 + a_3))^0 + [a_1, a_2, a_3].$$

Recall that P_n is the space of multilinear polynomials in y_1, \ldots, y_n and if A is a Leibniz algebra or a variety of Leibniz algebras, $Id(A)$ is the ideal of $F\{Y\}$ of polynomial identities of A. Denote $P_n(A) = P_n/P_n \cap Id(A)$. The symmetric group S_n acts on P_n: if $\sigma \in S_n, f(y_1, \ldots, y_n) \in P_n, \sigma f(y_1, \ldots, y_n) = f(y_{\sigma(1)}, \ldots, y_{\sigma(n)})$ and this in turn induces a structure of S_n-module on $P_n(A)$. Its character denoted $\chi_n(A)$ is the nth cocharacter of A.

Throughout this paper we assume that the Leibniz algebra U and the Leibniz variety \tilde{V}_1 have the following nth cocharacters:

$$\chi_n(U) = \sum_{\lambda \vdash n} \tilde{m}_\lambda \chi_\lambda,$$

$$\chi_n(\tilde{V}_1) = \sum_{\lambda \vdash n} \tilde{m}_\lambda' \chi_\lambda,$$

where χ_λ is the irreducible S_n-character associated to λ and $\tilde{m}_\lambda \geq 0, \tilde{m}_\lambda' \geq 0$ are the corresponding multiplicities. Since $U \in \tilde{V}_1$ we immediately obtain the following:

Remark 3.1. For all partitions $\lambda \vdash n$, $\tilde{m}_\lambda \leq \tilde{m}_\lambda'$.

Proof. Since $U \in \tilde{V}_1$ then $Id(\tilde{V}_1) \subseteq Id(U)$ hence

$$P_n/(P_n \cap Id(U)) \cong P_n/(P_n \cap Id(\tilde{V}_1)/(P_n \cap Id(U)/P_n \cap Id(\tilde{V}_1))).$$

Then we have an embedding of FS_n-modules $P_n/P_n \cap Id(U) \hookrightarrow P_n \cap Id(\tilde{V}_1)$ and this implies that $\tilde{m}_\lambda \leq \tilde{m}_\lambda'$ for all $\lambda \vdash n$. \square

We are next going to obtain polynomial identities for U out of associative polynomial identities for UT_2. Throughout the paper, unless otherwise stated, all monomials and all polynomials will be left-normed.
Lemma 3.2. The associative polynomial
\[\sum_{\sigma \in S_{n-1}} a_\sigma y_\sigma(1) \cdots y_\sigma(n-1) \quad (1') \]
is an identity for UT if and only if the left-normed polynomial
\[\sum_{\sigma \in S_{n-1}} a_\sigma y_{\sigma(1)} \cdots y_{\sigma(n-1)} \quad (2') \]
is an identity for U.

Proof. Suppose that \(\sum a_\sigma y_\sigma(1) \cdots y_\sigma(n-1) \) is not an identity of U. Thus there exist elements \(a_1^0 + a_1, \ldots, a_n^0 + a_n \in U \) such that
\[\sum_{\sigma} a_\sigma \left((a_1^0 a_\sigma(1))^0 \cdots a_{\sigma(n-1)}^0 \right) + \sum_{\sigma} a_\sigma [a_n, a_{\sigma(1)}, \ldots, a_{\sigma(n-1)}] \neq 0. \]

Since by the multiplication rule defined in U
\[\sum_{\sigma} a_\sigma \left((a_1^0 a_\sigma(1))^0 \cdots a_{\sigma(n-1)}^0 \right) = \left(a_n^0 \left(\sum_{\sigma} a_\sigma a_{\sigma(1)} \cdots a_{\sigma(n-1)} \right) \right)^0, \]
in case such sum is non-zero, we would get that \(\sum a_\sigma a_{\sigma(1)} \cdots a_{\sigma(n-1)} \neq 0 \) and the lemma is proved in this case.

Therefore we may assume that \(\sum a_\sigma [a_n, a_{\sigma(1)}, \ldots, a_{\sigma(n-1)}] \neq 0 \) for some \(a_1, \ldots, a_n \in UT_2 \).

Let \(UT_2^{(-)} \) denote the Lie algebra \(UT_2 \) under the bracket operation \([\ ,\]\). If \(\mathcal{A}^2 \) denotes the variety of Lie algebras defined by the identity \([x, y], [z, t] = 0\), then we claim that \(UT_2^{(-)} \) generates \(\mathcal{A}^2 \). In fact \(UT_2^{(-)} \) is not Lie nilpotent and clearly lies in \(\mathcal{A}^2 \). But by [2, 4.7.1] any proper subvariety of \(\mathcal{A}^2 \) is Lie nilpotent and the claim follows.

Let us consistently denote by \(P_n(\mathcal{A}^2) = P_n(UT_2^{(-)}) \) the space of multilinear Lie polynomials in the variables \(y_1, \ldots, y_n \) modulo the identity \([x, y], [z, t] = 0\). It is well known (see [2, 4.8.6]) that under the usual left permutation action of the symmetric group \(S_n \), the space \(P_n(\mathcal{A}^2) \) is an \((n-1)\)-dimensional irreducible module corresponding to the partition \((n-1, 1)\).

Since \(\sum a_\sigma [y_{\sigma(1)}, \ldots, y_{\sigma(n-1)}] \) is not an identity of \(UT_2^{(-)} \) and, so, of \(\mathcal{A}^2 \), this says that there exists \(i \in \{1, \ldots, n\} \) and an evaluation \(a_1 = \cdots = a_{i-1} = a_{i+1} = \cdots = a_n = a \) and \(a_i = b \), with \(a, b \in UT_2^{(-)} \), such that
\[\sum_{\sigma \in S_{n-1}} a_\sigma [a_n, a_{\sigma(1)}, \ldots, a_{\sigma(n-1)}] \neq 0. \quad (3') \]

Now, if \(i = n \) then \((3') \) becomes \(\sum a_\sigma [b, a, \ldots, a] \neq 0 \). Thus \(\sum a_\sigma \neq 0 \) and we may substitute \(e_{11} \) for all variables in \((1')\) in order to get the non-zero value \((\sum a_\sigma) e_{11}^n = (\sum a_\sigma) e_{11} \), as wished.
In case \(i \neq n \), then \((3')\) becomes \((\sum_{\sigma \in \Sigma_{n-1}} \alpha_{\sigma})[a, b, a, \ldots, a] \neq 0\). Then in \((1')\) make the substitution \(y_i = e_{12} \) and \(y_j = e_{22} \), for \(j \neq i \). We obtain
\[
\left(\sum_{\sigma \in \Sigma_{n-1}} \alpha_{\sigma} \right) e_{12} e_{22} \cdots e_{22} = \left(\sum_{\sigma \in \Sigma_{n-1}} \alpha_{\sigma} \right) e_{12} \neq 0
\]
and we are done also in this case.

Conversely if \(f(x_1, \ldots, x_{n-1}) \notin \text{Id}(UT_2) \) then the left-normed polynomial
\[
y_n f(y_1, \ldots, y_{n-1})
\]
does not vanish in \(U \). In fact if \(f(a_1, \ldots, a_{n-1}) \neq 0 \) for some \(a_1, \ldots, a_{n-1} \in UT_2 \), consider the evaluation \(y_n = (e_{11} + e_{22})^0 + 0, y_1 = a_1^0 + a_1, \ldots, y_{n-1} = a_{n-1}^0 + a_{n-1} \) where \(a_1^0 = \cdots = a_{n-1}^0 = 0 \). Then the polynomial \(y_n f(y_1, \ldots, y_{n-1}) \) takes the value \((e_{11} + e_{22})^0 f(a_1, \ldots, a_{n-1})^0 \neq 0 \) and we are done. \(\square \)

In the next lemma we shall find a relation between the multiplicities in \(\chi_\lambda(UT_2) \) and those in \(\chi_\lambda'(\mathcal{V}_1) \). As a consequence we shall derive a relation between the codimensions of \(UT_2 \) and those of \(\mathcal{V}_1 \). For a partition \(\lambda' \) of \(n + 1 \), let \(\lambda^- \) denote the set of partitions of \(n \) obtained by erasing one box from the diagram of \(\lambda \). Notice that one obtains a partition of \(n - 1 \) only by erasing a suitable box from the rim of the diagram of \(\lambda \). Let \(T_\lambda \) be a Young tableau of shape \(\lambda \) and let \(e_{T_\lambda} \) be the corresponding minimal essential idempotent of the group algebra \(FS_n \). Recall that \(e_{T_\lambda} = (\sum_{\sigma \in R_{T_\lambda}} \sigma)(\sum_{\tau \in C_{T_\lambda}} \text{sgn}(\tau)\tau) \), where \(R_{T_\lambda} \) and \(C_{T_\lambda} \) are the subgroups of \(S_n \) consisting of all permutations stabilizing the rows and the columns of \(T_\lambda \), respectively.

Lemma 3.3. For all \(n \geq 1 \) we have that \(c_{n+1}(\mathcal{V}_1) = (n + 1)c_n(UT_2) \). Moreover, if the \(n \)-th cocharacter of \(UT_2 \) has the decomposition
\[
\chi_n(UT_2) = \sum_{\lambda \vdash n} m_\lambda \chi_\lambda
\]
and the \(n \)-cocharacter \(\chi_n(\mathcal{V}_1) \) of \(\mathcal{V}_1 \) has the decomposition given in \((3.2) \), we have that
\[
\widetilde{m}'_\lambda(\mathcal{V}_1) \leq \sum_{\mu \in \lambda^-} m_\mu
\]
for all \(\lambda \vdash n + 1 \).

Proof. Let \(f_1(y_1, \ldots, y_n), \ldots, f_m(y_1, \ldots, y_n) \) be associative polynomials linearly independent in \(P_n(UT_2) \). We want to prove that the \((n + 1)m\) left-normed polynomials
\[
y_1 f_1(y_1, y_2, \ldots, y_{n+1}), \ldots, y_n f_1(y_1, \ldots, y_{n+1}), \quad i = 1, \ldots, m
\]
are linearly independent in \(P_{n+1}(\mathcal{V}_1) \), where \(\sim \) means that the corresponding element is omitted.
In fact suppose
\[\sum_{i,j} x_{ij} y_j f_i(y_1, \ldots, \hat{y}_j, \ldots, y_{n+1}) = 0 \]
(3.3)
in \(P_{n+1}(\hat{\nu}^{-1}) \) with \(x_{i_0 j_0} \neq 0 \), for some \(i_0 \) and \(j_0 \). If we make the substitution \(y_{j_0} = y^2_0 \), since \(a(b^2) = 0 \) holds in any Leibniz algebra, by (3.3) we have that
\[\sum_{i=1}^m x_{i j_0} y_0^2 f_i(y_1, \ldots, \hat{y}_{j_0}, \ldots, y_{n+1}) = 0 \]
in \(P_{n+2}(\hat{\nu}^{-1}) \). Since \(U \in \hat{\nu}^{-1} \), then also \(y^2_0 \sum_{i=1}^m x_{i j_0} f_i(y_1, \ldots, \hat{y}_{j_0}, \ldots, y_{n+1}) = 0 \) holds in \(P_{n+2}(U) \). By Lemma 3.2, this implies that the associative polynomial
\[y_0 \sum_{i=1}^m x_{i j_0} f_i(y_1, \ldots, \hat{y}_{j_0}, \ldots, y_{n+1}) \]
is zero in \(P_{n+1}(UT_2) \).

Notice that if \(yf(y_1, \ldots, y_t) \in Id(UT_2) \), then by putting \(y = 1 \) we obtain that \(f(y_1, \ldots, y_t) \in Id(UT_2) \). Applied to the above, this says that
\[\sum_{i=1}^m x_{i j_0} f_i(y_1, \ldots, \hat{y}_{j_0}, \ldots, y_{n+1}) = 0 \]
in \(P_n(UT_2) \). Since by hypothesis the polynomials \(f_1, \ldots, f_m \) are linearly independent over \(F \) we obtain that \(x_{i j_0} = 0 \), for all \(i \). Hence \(x_{i_0 j_0} = 0 \) and this is a contradiction. Thus \(c_{n+1}(\hat{\nu}^{-1}) \geq (n + 1)c_n(UT_2) \).

Let now \(M_{\hat{\nu}} \) be an irreducible \(S_{n+1} \)-module associated to the partition \(\hat{\nu} + n + 1 \) which appears with non-zero multiplicity in \(P_{n+1}(\hat{\nu}^{-1}) \). By embedding \(S_n \) into \(S_{n+1} \) as the subgroup of all permutations leaving \(n + 1 \) fixed, then we may regard \(M_{\hat{\nu}} \) as an \(S_n \)-module.

By the branching rule of the symmetric group [10] we have
\[M_{\hat{\nu}} = \bigoplus_{\mu \in \hat{\nu}^\prime} M_{\mu} . \]

Moreover, since \(M_{\mu} \) is irreducible as an \(S_n \)-module, there exists a tableau \(T_{\mu} \) such that \(M_{\mu} \cong y_{n+1} + F S_n e_{T_\mu}(y_1, \ldots, y_n) \). Notice that if for some associative multilinear polynomial \(f(y_1, \ldots, y_n) \), \(e_{T_\mu} f(y_1, \ldots, y_n) \in Id(UT_2) \) for some tableau \(T_\mu \), then, by Lemma 3.2, the left-normed polynomial \(y_{n+1} e_{T_\mu} f(y_1, \ldots, y_n) \in Id(U) \supseteq Id(\hat{\nu}^{-1}) \).

Thus if \(F S_n e_{T_\mu} f(y_1, \ldots, y_n) \) appears in the decomposition of the \(S_n \)-module \(P_n(UT_2) \), then \(y_{n+1} F S_n e_{T_\mu} f(y_1, \ldots, y_n) \) appears in the decomposition of \(P_{n+1}(\hat{\nu}^{-1}) \). It follows that if \(M_{\hat{\nu}} \) appears with multiplicity \(m_{\hat{\nu}} \) in \(P_{n+1}(\hat{\nu}^{-1}) \), i.e., \(\chi_{n+1}(\hat{\nu}^{-1}) = \sum_{\mu \in \hat{\nu}^\prime} m_{\mu} \chi_{\mu} \), and \(\chi_n(UT_2) = \sum_{\mu \in \hat{\nu}^\prime} m_{\mu} \chi_{\mu} \) then
\[m_{\hat{\nu}}(\hat{\nu}^{-1}) \leq \sum_{\mu \in \hat{\nu}^\prime} m_{\mu} \]
(3.4)
for all $\lambda \vdash n + 1$. As a consequence,

$$c_{n+1}(\tilde{\chi}_1) = \sum_{\lambda \vdash n+1} \tilde{m}_\lambda \chi_\lambda(1) \leq \sum_{\lambda \vdash n+1} \left(\sum_{\mu \vdash \lambda} m_\mu \right) \chi_\mu(1)$$

$$\leq (n + 1) \sum_{\mu \vdash n} m_\mu \chi_\mu(1) = (n + 1)c_n(UT_2),$$

where the last inequality holds since, for every $\mu \vdash \lambda$, $\chi_\mu(1) \leq (n + 1)c_n(UT_2)$. We have proved that $c_{n+1}(\tilde{\chi}_1) = (n + 1)c_n(UT_2)$. □

4. Some technical lemmas

In this section we shall prove a sequence of combinatorial lemmas giving us the multiplicities in the cocharacter of $\tilde{\chi}_1$ for most partitions.

For $\lambda \vdash n$ let λ^+ denote the set of partitions of $n + 1$ whose diagrams are obtained from that of λ by adding one box. Recall that λ^- denotes the set of partitions of $n - 1$ obtained from λ by deleting one box. In particular if $\lambda = (\lambda_1, \ldots, \lambda_t)$, for every $i = 1, \ldots, t$, such that $\lambda_i > \lambda_i + 1$, we denote by λ_i^- the partition of $n - 1$ whose diagram is obtained from that of λ by deleting the rightmost box of the ith row.

In the next lemmas we shall construct polynomials corresponding to essential idempotents of the group algebra of S_n. More precisely, if $e_{T_\lambda} \in FS_n$ is the essential idempotent corresponding to the tableau T_λ, we shall identify e_{T_λ} with the polynomial $e_{T_\lambda}(y_1, \ldots, y_n) = e_{T_\lambda}y_1 \cdots y_n$ obtained by acting with e_{T_λ} on the left normed monomial $y_1 \cdots y_n$. We shall then identify all variables corresponding to each row of the tableau. In order to simplify the notation we shall also use the following convention: a monomial M in which some variables are marked with the same symbol, must be read as the polynomial in which those variables are alternated.

We illustrate this procedure with an example. Let $\lambda = (3, 2, 1, 1) \vdash 7$ and

$$T_\lambda = \begin{array}{ccc}
3 & 2 & 7 \\
4 & 6 \\
5 \\
1
\end{array}$$

Then

$$e_{T_\lambda}(y_1, \ldots, y_7) = \left(\sum_{\sigma \in RT_\lambda} \sigma \right) \sum_{\rho \in S'_4 \tau \in S'_2} (\text{sgn } \rho)(\text{sgn } \tau)y_{\rho(1)}y_{\tau(2)}y_{\rho(3)}y_{\rho(4)}y_{\rho(5)}y_{\tau(6)}y_7,$$

where S'_4 and S'_2 are the symmetric groups action on the sets $\{1, 3, 5\}$ and $\{2, 6\}$, respectively. We then identify and rename the variables $y_3 = y_2 = y_7 = x_1$, $y_4 = y_6 = x_2$, $y_5 = x_3$, $y_1 = x_4$.
Hence $e^T_i(y_1, \ldots, y_7)$ becomes a scalar multiple of the polynomial

$$g(x_1, \ldots, x_4) = \sum_{\rho \in S_4} (\text{sgn } \rho)(\text{sgn } \tau)x_{\rho(4)}x_{\tau(1)}x_{\rho(1)}x_{\rho(2)}x_{\rho(3)}x_{\tau(2)}x_1.$$

We then write the polynomial g in the form

$$g(x_1, \ldots, x_4) = x_4^2x_1x_2x_3x_2x_1,$$

where "_" and "^_" mean alternation on the corresponding variables.

Lemma 4.1. Let $p \geq 0$ and $q \geq 0$. If $\lambda = (p + q + 1, p + 1, 1, 1)$ then $\tilde{m}_\lambda = \tilde{m}_\lambda' = q + 1$.

Proof. For every $i = 0, \ldots, q$, we define the tableau $T^{(i)}_{\lambda}$

$$
\begin{array}{cccccc}
 & i + p + 2 & i + 2 & \cdots & i + p + 1 & 2 \cdots i + 1 & i + 2 p + 5 \cdots n \\
 & i + p + 3 & i + p + 5 & \cdots & i + 2 p + 4 \\
 & i + p + 4 \\
 i + p + 1 \\
\end{array}
$$

and we associate to $T^{(i)}_{\lambda}$ the left-normed polynomial

$$B^{(i)}_{p,q}(y_1, y_2, y_3, y_4) = \tilde{y}_4y_1^i \tilde{y}_1 \tilde{y}_2y_3 \tilde{y}_2y_1y_3y_2 \tilde{y}_2y_1y_3y_2y_1q^{-i},$$

where "_" and "^_" mean alternation on the corresponding elements.

Notice that the polynomial $B^{(i)}_{p,q}$ is obtained from the essential idempotent corresponding to the tableau $T^{(i)}_{\lambda}$ by identifying all the elements in each row of λ.

We start by proving that these polynomials are linearly independent over F modulo $Id(U)$. Suppose not and let $\sum_{i=0}^q \alpha_i B^{(i)}_{p,q} = 0$ (mod $Id(U)$). If $t = \max\{i: \alpha_i \neq 0\}$ let us substitute y_1 with $y_1 + y_5$, then we obtain

$$\alpha_t \tilde{y}_4(y_1 + y_5)^i (y_1 + y_5) \tilde{y}_2 \tilde{y}_2(y_1 + y_5)^q - i$$

$$+ \sum_{i < t} \alpha_i \tilde{y}_4(y_1 + y_5)^i (y_1 + y_5) \tilde{y}_2 \tilde{y}_2(y_1 + y_5)q^{-i}$$

$$\times (y_1 + y_5) \tilde{y}_2 \tilde{y}_2 \tilde{y}_2(y_1 + y_5)^q - i = 0.$$

Since $|F| = \infty$, all the homogeneous components are still identities for U and we look at the homogeneous component of degree $p + t + 1$ in y_1 and of degree $q - t$ in y_5. If we make in such component the evaluation $y_1 = e_{11}$, $y_2 = y_5 = e_{22}$, $y_3 = e_{12}$, $y_4 = e_{11}$ we obtain $-\alpha_t e_{11}^0 = 0$ and so $\alpha_t = 0$, a contradiction. We have proved that the $q + 1$ polynomials $B^{(i)}_{p,q}, i = 0, \ldots, q$, are linearly independent modulo $Id(U)$.

Notice that, for every i, the complete linearization of $B^{(i)}_{p,q}(y_1, y_2, y_3, y_4)$ is $e^T(i)(y_1, \ldots, y_n)$. Hence, from the above it follows that the polynomials $e^T(i), i = 0, \ldots, q$,
are FS_n independent modulo $Id(U)$. Hence, in the module decomposition of $P_n(U)$, they generate distinct copies of the same irreducible module associated to the partition λ. This implies that $\tilde{m}_\lambda \geq q + 1$.

On the other hand, by Theorem 2.2 and Lemma 3.3 we have that $\tilde{m}_\lambda' \leq m_{\lambda_1^-} + m_{\lambda_2^-} + m_{\lambda_3^-} = q + 1$. It follows that $\tilde{m}_\lambda' = \tilde{m}_\lambda = q + 1$ and the proof is complete. □

The strategy of the proof of the following lemmas is similar to the one given above, and we reproduce them for convenience of the reader.

Lemma 4.2. Let $p \geq 0$ and $q \geq 0$. If $\lambda = (p + q + 2, p + 2, 2)$ then $m_\lambda = m_\lambda' = q + 1$.

Proof. For every $i = 0, \ldots, q$, let $T^{(i)}_\lambda$ be the tableau

\[
\begin{array}{cccccccc}
 & & & & & & & \\
 & & & & & & & \\
 & & & & & & & \\
 & & & & & & & \\
 & & & & & & & \\
\end{array}
\]

and let

\[
\tilde{B}^{(i)}_{p,q}(y_1, y_2, y_3, y_4) = \tilde{y}_3 y_1^i \tilde{y}_1 \cdots \tilde{y}_3 \tilde{y}_1 y_1^* y_2 y_3^* y_2 \tilde{y}_2 \cdots \tilde{y}_2 y_1^{q-i}
\]

be the left-normed polynomial associated to $T^{(i)}_\lambda$, where $\tilde{,}^{*}$ mean alternation on the corresponding elements.

We claim that these polynomials are linearly independent over F modulo $Id(U)$. In fact let $\sum_{i=0}^q \alpha_i \tilde{B}^{(i)} = 0$ and assume that $t = \max\{i : \alpha_i \neq 0\}$. Substitute y_1 with $y_1 + y_4$, and y_3 with $y_3 + y_5$ and consider the homogeneous component of degree 1 in y_3 and y_5. If we make the substitution $y_1 = e_{11}$, $y_2 = y_4 = e_{22}$, $y_3 = e_{12}$, $y_5 = e_{21}^0$, we obtain $\alpha_i = 0$ and this is a contradiction. We have proved that the $q + 1$ polynomials $\tilde{B}^{(i)}_{p,q}$, $i = 0, \ldots, q$ are linearly independent modulo $Id(U)$. As in the previous lemma, by linearizing these polynomials, we obtain $\tilde{m}_\lambda \geq q + 1$.

Since by Theorem 2.2 and Lemma 3.3, $\tilde{m}_\lambda' \leq m_{\lambda_1^-} + m_{\lambda_2^-} + m_{\lambda_3^-} = q + 1$, we have $\tilde{m}_\lambda' = \tilde{m}_\lambda = q + 1$. □

Lemma 4.3. Let $p \geq 0$ and $q \geq 0$. If $\lambda = (p + q + 1, p + 1, 1)$ then

\[
m_\lambda = m'_\lambda = \begin{cases}
3q + 3 & \text{if } p \neq 0, \\
2q + 1 & \text{if } p = 0.
\end{cases}
\]

Proof. Suppose first that $p \neq 0$ and denote by

\[
A^{(i)}_{p,q}(y_1, y_2, y_3) = \tilde{y}_3 y_1^i \tilde{y}_1 \cdots \tilde{y}_1 \tilde{y}_1 y_1^* y_2 y_2^* y_2 \tilde{y}_2 \cdots \tilde{y}_2 y_1^{q-i}, \quad i = 0, \ldots, q,
\]
The left-normed polynomials associated to the following tableaux

\[T^{(i)}_\lambda : \]

\[
\begin{array}{cccccccc}
 i + p + 2 & i + 2 & \cdots & i + p + 1 & 2 & \cdots & i + 1 & i + 2p + 4 & \cdots & n \\
 i + p + 3 & i + p + 4 & \cdots & i + 2p + 3 & 1 & \\
 1
\end{array}
\]

\[\tilde{T}^{(i)}_\lambda : \]

\[
\begin{array}{cccccccc}
 i + p + 1 & i + 2 & \cdots & i + p & i + 2p + 3 & 2 & \cdots & i + 1 & i + 2p + 4 & \cdots & q \\
 i + p + 2 & i + p + 4 & \cdots & i + 2p + 2 & 1 & \\
 i + p + 3 & 1
\end{array}
\]

\[\tilde{T}^{(q+1)}_\lambda : \]

\[
\begin{array}{cccccccc}
 q + p + 2 & q + 3 & \cdots & q + p + 1 & 2 & \cdots & q + 2 \\
 q + p + 3 & q + p + 5 & \cdots & n & 1 & \\
 q + p + 4 & 1
\end{array}
\]

\[\tilde{z}^{(i)}_\lambda : \]

\[
\begin{array}{cccccccc}
 i + p + 2 & i + 2 & \cdots & i + p + 1 & 2 & \cdots & i + 1 & i + 2p + 5 & \cdots & n \\
 i + p + 3 & i + p + 5 & \cdots & i + 2p + 3 & 1 & \\
 i + p + 4 & 1
\end{array}
\]

respectively.

We claim that these polynomials are linearly independent \((\text{mod } \text{Id}(U))\). In fact let us assume that

\[
\sum_{i=0}^{q} \alpha_i A^{(i)}_{p,q} + \sum_{i=0}^{q+1} \beta_i \tilde{A}^{(i)}_{p,q} + \sum_{i=0}^{q-1} \gamma_i \tilde{z}^{(i)}_\lambda = 0 \pmod{\text{Id}(U)}
\]

and suppose first that for some \(i, \alpha_i \neq 0\). Let \(t = \max\{i : \alpha_i \neq 0\}\). Let us substitute \(y_1\) with \(y_1 + y_4\), and let us consider the homogeneous component of degree \(p + t + 1\) in \(y_1\) and \(q - t\) in \(y_4\) in the new polynomials. If we evaluate \(y_1 = e_{11}, y_2 = e_{12} + e_{22}, y_3 = e_{11}', y_4 = e_{22}\) we obtain \(\alpha_t = 0\), a contradiction. So \(\alpha_t = 0\) for all \(i\). Now let us assume that \(\beta_i \neq 0\) for some \(i\) and let \(t = \max\{i : \beta_i \neq 0\}\).
As before let us substitute y_1 with $y_1 + y_4$, and consider the homogeneous component of degree $p + t$ in y_1 and $q - t + 1$ in y_4. By making the evaluation $y_1 = e_{11}$, $y_2 = e_{12}^0 + e_{22}$, $y_3 = e_{12}$. $y_4 = e_{22}$ we obtain the contradiction $\beta_i = 0$. So $\beta_i = 0$ for all i.

Finally, if $t = \max\{i : \gamma_i \neq 0\}$, also in this case we have $\gamma_i = 0$ and, so, as done in the previous lemmas we obtain that $\tilde{m}_t \geq 3q + 3$. Now, by Theorem 2.2 and Lemma 3.3, $\tilde{m}_t \leq m_{x_1} + m_{x_2} + m_{x_3} = q + (q + 2) + (q + 1) = 3q + 3$. Hence $\tilde{m}_t = 3q + 3$ and we are done.

In case $p = 0$ we consider the polynomials

$$A_{p,q}^{(i)}(y_1, y_2, y_3) = y_1 y_1^i y_1 y_2 y_3 y_1^{q-i-1}, \quad i = 0, \ldots, q - 1$$

and

$$\bar{A}_{p,q}^{(i)}(y_1, y_2, y_3) = \bar{y}_3 y_1^i y_1 y_2 y_1^{q-i}, \quad i = 0, \ldots, q.$$

Also in this case it can be easily proved that $\bar{m}_t = \tilde{m}_t = 2q + 1$. \(\square\)

Lemma 4.4. If $\lambda = (p + q, p)$, with $p, q \geq 0$ then $m_\lambda = m'_\lambda = \begin{cases} 2q + 2 & \text{if } p > 1, \\ q + 1 & \text{if } p = 1, \\ 1 & \text{if } p = 0. \end{cases}$

Proof. If $\lambda = (n)$ then clearly $m_\lambda = m'_\lambda = 1$. In case $p = 1$ it is also easy to see that the polynomials

$$C_{p,q}^{(i)}(y_1, y_2) = y_1^i [y_1, y_2] y_1^{q-i}, \quad i = 0, \ldots, q - 1$$

are linearly independent (mod $Id(U)$). It will follow that $m_\lambda = m'_\lambda = q + 1$, in this case.

Let us now assume that $p > 1$ and consider the polynomials

$$C_{p,q}^{(i)}(y_1, y_2) = y_1 y_1^i \bar{y}_1 \cdots \bar{y}_1 [y_1, y_2] \bar{y}_2 \cdots \bar{y}_2 y_1^{q-i-1}, \quad i = 0, \ldots, q - 1, \quad q \geq 1$$

and

$$\bar{C}_{p,q}^{(i)}(y_1, y_2) = \begin{cases} \bar{y}_2 y_1^i \bar{y}_2 \cdots \bar{y}_1 [y_1, y_2] \bar{y}_2 \cdots \bar{y}_2 y_1^{q-i}, \quad i = 0, \ldots, q, \\ \bar{y}_2 \bar{y}_1 y_1^i \bar{y}_2 \cdots \bar{y}_1 [y_1, y_2] \bar{y}_2 \cdots \bar{y}_2, \quad i = q + 1. \end{cases}$$

As in the previous lemmas it is possible to prove that these polynomials are F-linearly independent (mod $Id(U)$). In fact let assume that

$$\sum_{i=0}^{q-1} \gamma_i C_{p,q}^{(i)} + \sum_{i=0}^{q+1} \beta_i \bar{C}_{p,q}^{(i)} = 0$$

for some γ_i, $\beta_i \in F$. If for some i, $\gamma_i \neq 0$, let $t = \max\{i : \gamma_i \neq 0\}$. If we substitute y_1 with $y_1 + y_3$, and we look at the homogeneous component of degree $p + t + 1$ in y_1 and $q - t + 1$ in y_3, by evaluating $y_1 = e_{11}^0 + e_{11}$, $y_2 = e_{12} + e_{22}$, $y_3 = e_{22}$ we obtain the contradiction...
\(x_i = 0\). So \(x_i = 0\) for all \(i\). In the same way we obtain that \(\beta_i = 0\). Hence it will follow that
\[\tilde{m}_\lambda \geq 2q + 2.\]

On the other hand by Theorem 2.2 and Lemma 3.3, \(\tilde{m}''_\lambda \leq m_{\lambda_1} + m_{\lambda_2} = q + (q + 2) = 2q + 2\) and \(\tilde{m}_\lambda = \tilde{m}'_\lambda = 2q + 2 \) follows. \(\square\)

5. Some numerical invariant of \(\tilde{\mathcal{V}}_1\)

In this section we shall compute the \(n\)th cocharacter and the \(n\)th colength of \(\tilde{\mathcal{V}}_1\).

Theorem 5.1. Let \(\chi_n(\tilde{\mathcal{V}}_1) = \sum_{\lambda \in \mathcal{Y}} \tilde{m}''_\lambda \chi_\lambda\) be the \(n\)th cocharacter of \(\tilde{\mathcal{V}}_1\). Then

\[
\tilde{m}'_\lambda = \begin{cases}
q + 1 & \text{if } \lambda = (p + q + 1, p + 1, 1), (p + q + 2, p + 2, 2), \\
2q + 1 & \text{or } (q + 1, 1), \\
2q + 2 & \text{if } \lambda = (q + 1, 1, 1), \\
3q + 3 & \text{if } \lambda = (p + q, q), \ p \geq 2, \\
1 & \text{if } \lambda = (n), \\
0 & \text{in all other cases.}
\end{cases}
\]

Proof. By Theorem 2.2, \(m_\lambda = 0\) whenever \(h_\lambda\) the height of \(\lambda\), is greater than 3. Hence, since by Lemma 3.3, \(\tilde{m}'_\lambda \leq \sum m_{\lambda''}\), it follows that \(\tilde{m}'_\lambda = 0\) whenever \(h_\lambda > 4\). Moreover a close look at the multiplicities in \(\chi_n(UT_2)\) shows that actually if \(\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4)\) and \(h_\lambda = 4\), then \(\tilde{m}'_\lambda = 0\) unless \(\lambda_3 = \lambda_4 = 1\). Also, in case \(h_\lambda = 3\), \(\tilde{m}'_\lambda = 0\) if \(\lambda_3 > 2\). At the light of this, now the conclusion follows from Lemmas 4.1, 4.2, 4.3, 4.4. \(\square\)

If the sequence of codimensions, \(c_n(\mathcal{V})\), of a variety \(\mathcal{V}\) is exponentially bounded then one naturally defines the upper exponent and the lower exponent of the variety

\[
\text{Exp}(\mathcal{V}) = \lim_{n \to \infty} \sup \sqrt[n]{c_n(\mathcal{V})}, \quad \text{Exp}(\mathcal{V}) = \lim_{n \to \infty} \inf \sqrt[n]{c_n(\mathcal{V})}.
\]

In case of equality, \(\text{Exp}(\mathcal{V}) = \text{Exp}(\mathcal{V}) = \text{Exp}(\mathcal{V})\) is called the exponent of \(\mathcal{V}\). In the next corollary we shall compute \(\text{Exp}(\tilde{\mathcal{V}}_1)\) and \(l_n(\tilde{\mathcal{V}}_1)\) for all \(n \geq 1\).

Corollary 5.2. (1) \(\text{Exp}(\tilde{\mathcal{V}}_1) = 2\).

(2) For all \(n > 2\), \(l_n(\tilde{\mathcal{V}}_1) = \begin{cases} n^2 - \frac{7}{2}n + 6 & \text{if } n \text{ is even}, \\
n^2 - \frac{7}{2}n + \frac{11}{2} & \text{if } n \text{ is odd.}
\end{cases}\)

Proof. The first part follows from Lemma 3.3 since \(\text{Exp}(UT_2) = 2\).

The second part of the Corollary is obtained by a direct calculation by making use of Theorem 5.1. \(\square\)

In the sequel we shall make use of the following very useful remark where \(x_i, y_i, z, z_i\), are noncommutative variables.
Remark 5.3. (a) For all $n \geq 0$, $z(z_1z_2)y_1 \cdots y_n(z_3z_4) \in Id(\tilde{V}_1)$.

(b) For all $n \geq 0$ and for all permutations $\sigma \in S_n$ we have

$$z y_{\sigma(1)} \cdots y_{\sigma(n)}(z_1z_2) = z y_1 \cdots y_n(z_1z_2) \pmod{Id(\tilde{V}_1)}$$

and

$$z(z_1z_2)y_{\sigma(1)} \cdots y_{\sigma(n)} = z(z_1z_2)y_1 \cdots y_n \pmod{Id(\tilde{V}_1)}.$$

(c) For all $n, m \geq 0$ and for all permutations $\sigma \in S_n, \tau \in S_m$ we have

$$(z_1z_2x_{\sigma(1)} \cdots x_{\sigma(n)})(z_3z_4y_{\tau(1)} \cdots y_{\tau(m)})$$

$$= (z_1z_2x_1 \cdots x_n)(z_3z_4y_1 \cdots y_m) \pmod{Id(\tilde{V}_1)}.$$

Proof. The first statement follows from the basic relation $zyx = z(xy) + (yx)y$. Let now $w = z y_1 \cdots y_{i-1} y_i y_{i+1} y_i y_{i+2} \cdots y_n(z_1z_2)$. Since w can be written as

$$w = z y_1 \cdots y_{i-1} y_i y_{i+1} \cdots y_n(z_1z_2) + z y_1 \cdots y_{i-1}(y_{i+1}y_i) \cdots y_n(z_1z_2),$$

by (a) we obtain that $w = z y_1 \cdots y_n(z_1z_2) \pmod{Id(\tilde{V}_1)}$. This clearly implies the first part of (b). Similarly we can reorder the variables to the right of $z(z_1z_2)$ proving this way the second part of (b).

Part (c) follows from part (b). \(\square\)

We conclude this paper by proving that \tilde{V}_1 is a variety of Leibniz algebras with almost polynomial growth.

Lemma 5.4. Let \mathcal{V} be a subvariety of \tilde{V}_1. If \mathcal{V} satisfies an identity of the form

$$z_1z_2x_1 \cdots x_m(z_3z_4y_1 \cdots y_m) \equiv 0,$$

for some $m \geq 1$, then \mathcal{V} has polynomial growth.

Proof. Since $\mathcal{V} \subseteq \tilde{V}_1$, for every n and for every partition $\lambda \vdash n, m_\lambda(\mathcal{V}) < m_\lambda(\tilde{V}_1)$. Clearly, if $m_\lambda(\mathcal{V}) \neq 0$ then λ has one of the shapes indicated in Lemmas 4.1, 4.2, 4.3, 4.4.

Let n be any integer such that $n \geq 2m + 6$ and take any pair of positive integers p, q such that $p \geq n + 2$ and a partition λ as in Lemmas 4.1, 4.2, 4.3, 4.4 i.e., the second row of λ has length greater than $m + 1$. Let D be any one of the polynomials $A_{p,q}^{(i)}, B_{p,q}^{(i)}, C_{p,q}^{(i)}$ and $\tilde{C}_{p,q}^{(i)}$. After multilinearizing D, since right multiplication is a derivation, we obtain a linear combination of polynomials of the form $(z_1z_2 \cdots y_{11} \cdots y_{1r})(z_3z_4 \cdots y_{21} \cdots y_{2l})$. Since \mathcal{V} satisfies a polynomial of the given type, we obtain that also D is an identity of \mathcal{V}.

We have shown that $m_\lambda(\mathcal{V}) = 0$ as soon as the second row of λ has length greater than $m + 1$. Recalling that $m_\lambda(\mathcal{V}) < m_\lambda(\tilde{V}_1)$, by Theorem 5.1 we obtain that $m_\lambda(\mathcal{V}) \neq 0$ provided λ has at most $m + 3$ boxes below the first row. But this condition says that \mathcal{V} has polynomial growth and we are done.

Theorem 5.5. Let \mathcal{V} be a variety of Leibniz algebras and suppose that $\mathcal{V} \subseteq \tilde{V}_1$. Then \mathcal{V} has polynomial growth.
Proof. Since $\mathcal{V} \subset \widetilde{\mathcal{V}}_1$, there exists n and a partition $\lambda + n$ such that $m_\lambda(\mathcal{V}) < m_\lambda(\widetilde{\mathcal{V}}_1)$. Clearly λ has one of the shapes indicated in Lemmas 4.1, 4.2, 4.3, 4.4. Suppose first that $\lambda = (p + q + 1, p + 1, 1, 1, 1)$. Then the polynomials $B_{p,q}$ constructed in Lemma 4.1 must be linearly dependent mod $Id(\mathcal{V})$. Recall that for every i,

$$B^{(i)}_{p,q} = \frac{y_1 y_2 \cdots y_{2i+1}}{p} y_1^{2i+1}$$

and let $\sum_i x_i B^{(i)}_{p,q} = 0 \pmod{Id(\mathcal{V})}$, for some coefficients $x_i \in F$ not all zero.

Let us make the substitutions $y_1 = z^2$ and $y_3 = z_3 z_4$, then from the identity $\alpha(b^2) = 0$ we obtain

$$\sum x_i \sum_{\sigma \in S_2} z^2 y_1^{\sigma(1)} y_1^{\sigma(2)} (z_3 z_4) y_2^{\sigma(1)} y_2^{\sigma(2)} y_1^{q-i}$$

$$- \sum x_i \sum_{\sigma \in S_2} z^2 y_1^{\sigma(1)} y_1^{\sigma(2)} (z_3 z_4) y_2^{\sigma(1)} y_2^{\sigma(2)} y_1^{q-i}$$

$$+ \sum x_i \sum_{\sigma \in S_2} z^2 y_1^{\sigma(1)} y_1^{\sigma(2)} (z_3 z_4) y_2^{\sigma(1)} y_2^{\sigma(2)} y_1^{q-i} = 0.$$

By part (b) of Remark 5.3, it follows that

$$\sum x_i z^2 y_1^{\sigma(1)} y_1^{\sigma(2)} (z_3 z_4) y_2^{\sigma(1)} y_2^{\sigma(2)} y_1^{q-i} = 0. \quad (5.1)$$

Let s be the least integer such that $x_s \neq 0$.

Substitute $z = z_1 z_2 y_1 \cdots y_1 (p+q-s+1) + y_1, y_2 = y_21 + \cdots + y_2(p+1)$ and $y_1 = y_1 + y_2(p+2) + \cdots + y_2(p+q-s+1)$.

Look at the multilinear part on all variables except y_1 and alternate $y_1 j$ with $y_2 j$ for $j = 1, \ldots, (p + q - s + 1)$. By Remark 5.3 the relation (5.1) becomes

$$x_s z_1 z_2 y_1^{p+s+2} \frac{y_1 y_1 (p+q-s+1) (z_3 z_4) y_22 (p+q-s+1)}{p+q-s+1} = 0.$$

Since right multiplication is a derivation we can rewrite this element in the following form:

$$(z_1 z_2 y_1^{p+s+2} \frac{y_1 y_1 (p+q-s+1) (z_3 z_4) y_22 (p+q-s+1)}{p+q-s+1}) = 0.$$

Let us substitute $z_4 = y_2(p+q+3), z_3 = z_3 z_4 y_2(p+q-s+2) \cdots y_2(p+q+2)$ and $y_1 = y_1(p+q-s+2) + \cdots + y_1(p+q+3)$. Take the multilinear part and alternate it by the pairs $y_1 j, y_2 j$ for $j = (p + q - s + 2), \ldots, (2p + q + 3)$.

Finally by Remark 5.3 we get

$$(z_1 z_2 \frac{y_1 y_1 (p+q-s+1)}{z_3 z_4 \frac{y_22 (p+q-s+1)}{m}}) = 0 \pmod{Id(\mathcal{V})}. \quad (5.2)$$
for $m = 2p + q + 3$. But then, by Lemma 5.4, \mathcal{V}' has polynomial growth and we are done in this case.

A proof similar to the one given above, works also in case λ has one of the other allowed shapes.

For instance, if $\lambda = (p + q + 2, p + 2, 2)$, then the polynomials

$$\tilde{B}^{(i)}_{p,q}(y_1, y_2, y_3, y_4) = \tilde{y}_3 y_1 \tilde{y}_1 \cdots \tilde{y}_1 y_1 y_2 y_3 \tilde{y}_2 \cdots \tilde{y}_2 y_1^{q-i}$$

constructed in Lemma 4.2 must be linearly dependent mod $Id(\mathcal{V})$. Let $\sum_i a_i \tilde{B}^{(i)}_{p,q} = 0$ (mod $Id(\tilde{V}_1)$), for some not all zero coefficients a_j and make the substitution $y_3 = z^2 + y_3$.

Then we obtain

$$\sum_i a_i z^2 y_1 y_1 \cdots \tilde{y}_1 y_1 y_2 y_3 \tilde{y}_2 \cdots \tilde{y}_2 y_1^{q-i} = 0.$$

If we now substitute y_3 with $z_3 z_4$, we have

$$\sum_i a_i z^2 y_1 y_1 \cdots \tilde{y}_1 (z_3 z_4) \tilde{y}_2 \cdots \tilde{y}_2 y_1^{q-i} = 0.$$

This is a relation similar to (5.1) and we proceed as in the previous case. \square

References