THE SEMIMARTINGALE DECOMPOSITION OF ONE-DIMENSIONAL QUASIDIFFUSIONS WITH NATURAL SCALE

G. BURKHARDT

Sektion Mathematik, Technische Universität Dresden, DDR-8027 Dresden, GDR

U. KÜCHLER

Sektion Mathematik, Humboldt-Universität Berlin, DDR-1086 Berlin, GDR

Received 12 March 1985 Revised 30 June 1986

Quasidiffusions (with natural scale) are semimartingales obtained as time changed Wiener processes. Examples are diffusions and birth- and death-processes. In general, quasidiffusions are not continuous but they are skip-free. In this note we determine the continuous and the purely discontinuous martingale part of all such quasidiffusions.

quasidiffusions * semimartingales * local times

1. Introduction

Let $W = (W_t, \mathcal{F}_t, P_x)$ $(t \ge 0, x \in R)$ be a standard Wiener process on the real line R and $l^w(t, x)$ its (continuous) local time normalized such that

$$\int_0^t f(W_s) \, \mathrm{d}s = 2 \int_R l^W(t, x) \, \mathrm{d}x \quad (f \text{ bounded}, t \ge 0).$$

It is well known that $l^{W}(\cdot, x)$ increases at t if and only if $W_{t} = x$. Assume m to be a nondecreasing extended real-valued function on R and introduce the closed set $E_{m} \coloneqq \{x \in R \mid m(x-\varepsilon) < m(x+\varepsilon) \forall \varepsilon > 0\}$. Then $R \setminus E_{m}$ is the union of mutually disjoint open intervals $I_{k} = (a_{k}, b_{k})$, the "gaps" of E_{m} . Thereby k runs through a subset K of the set N of all non-negative integers. We shall suppose $0 \in K$ (resp. $1 \in K$) if and only if $b_{0} \coloneqq \inf E_{m} > -\infty$ $(a_{1} \coloneqq \sup E_{m} < \infty \text{ resp.})$ and $I_{0} \coloneqq (-\infty, b_{0})$, $I_{1} \coloneqq (a_{1}, \infty), K' \coloneqq K \setminus \{0, 1\}$. Define

$$S_t \coloneqq \int_R l^W(t, x) m(\mathrm{d}x) \quad (t \ge 0)$$

and

$$T_t := \inf\{u > 0 \mid S_u > t\} \quad (t \ge 0).$$

0304-4149/87/\$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

Then $T \coloneqq (T_t, t \ge 0)$ is a strictly increasing, right-continuous family of \mathscr{F} -stopping times with $T_0 = 0$ a.s. This means T is a change of time with respect to \mathscr{F} . Define

$$X_t \coloneqq W_{T_t}, \quad \mathscr{G}_t \coloneqq \mathscr{F}_{T_t} \qquad (t \ge 0). \tag{1.1}$$

Then $X = (X_t, \mathcal{G}_t, P_x)$ $(t \ge 0, x \in E_m)$ turns out to be a standard Markov process on E_m . We call it a *quasidiffusion with speed measure m* (and canonical scale p(x) = x). In general X is not continuous. But it is *skip-free* in the following sense:

$$(\min(X_{t-}, X_t), \max(X_{t-}, X_t)) \cap E_m = \emptyset \quad (t > 0).$$

Thus, if $X_t \neq X_{t-}$, then $\min(X_{t-}, X_t) = a_k$ and $\max(X_{t-}, X_t) = b_k$ for some $k \in K'$.

In particular, if m is strictly increasing, then X is a diffusion, and if m increases in isolated points only, then X is a birth-and-death-process.

Now suppose $0 \in E_m$ and put $P = P_0$. In the following we restrict ourselves to P. As a time changed Wiener process (X_i, \mathscr{G}_i) is a semimartingale. We shall construct the decomposition of X into its continuous martingale part M^c , the purely discontinuous martingale part M^d and a continuous locally bounded variation process A.

The decomposition is more explicit than the results from [7], where general time changed martingales are considered.

2. Notations and results

Denote by $\mathcal{M}_{loc}(\mathscr{G})$ the set of all local \mathscr{G} -martingales, by $\mathcal{M}_{loc}^2(\mathscr{G})$ the set of all locally square integrable local \mathscr{G} -martingales (all with respect to P). Let $\mathbb{I}_B(\cdot)$ be the indicator function of the set B.

2.1. We shall start with some notions necessary for the formulations of the theorem below. Let $A_{k,i}$ (resp. $B_{k,i}$) be the time of the *i*-th jump of X from a_k to b_k (resp. from b_k to a_k) if this jump occurs, let it be equal to ∞ otherwise. For $k \in K'$ put

$$A_k(t) \coloneqq \sum_{i=1}^{\infty} \mathbb{I}_{[A_{k,i},\infty)}(t), \quad B_k(t) \coloneqq \sum_{i=1}^{\infty} \mathbb{I}_{[B_{k,i},\infty)}(t) \qquad (t \ge 0).$$

Define

$$l(t, x) \coloneqq l^{W}(T_{t}, x) \quad (t \ge 0, x \in E_{m})$$

to be the local time of X. Then $l(\cdot, \cdot)$ is continuous and it holds a.s. that

$$\int_0^t f(X_s) \, \mathrm{d}s = \int_{E_m} l(t, x) f(x) m(\mathrm{d}x) \quad (f \text{ bounded}, t \ge 0). \tag{2.1}$$

Moreover, $l(\cdot, x)$ increases at t if and only if $T_t < T_{\infty} \coloneqq \lim_{s \uparrow \infty} T_s$ and $X_t = x$ or $X_{t-} = x$. By $U \coloneqq (U_t)_{t \ge 0}$ we denote the continuous local martingale

$$U_t \coloneqq \int_0^t \mathbb{1}_{E_m}(W_s) \,\mathrm{d} W_s \quad (t \ge 0).$$

2.2. Theorem. The quasidiffusion (X_t, \mathcal{G}_t) defined by (1.1) is a semimartingale and admits the representation $X = M^c + M^d + A$, where

(a) (M_t^c, \mathcal{G}_t) is the continuous local martingale given by

$$M_t^c \coloneqq U_{T_t} = \int_0^{T_t} \mathbb{1}_{E_m}(W_s) \, \mathrm{d} W_s$$

and having the characteristic

$$\langle M^c \rangle_t = T_t^c \coloneqq T_t - \sum_{s \leq t} \Delta T_s \quad (t \geq 0)$$

with $\Delta T_s \coloneqq T_s - T_{s-}$ (s>0),

(b) (M_t^d, \mathcal{G}_t) is the purely discontinuous locally square integrable local martingale defined by

$$M_t^{d} := \sum_{k \in K'} \left(\left[(b_k - a_k) A_k(t) - l(t, a_k) \right] - \left[(b_k - a_k) B_k(t) - l(t, b_k) \right] \right) \quad (t \ge 0),$$

(c) (A_t, \mathcal{G}_t) is the adapted continuous process with locally integrable variation given by

$$A_t \coloneqq l(t, b_0) - l(t, a_1) \quad (t \ge 0).$$

We have $l(t, b_0) \equiv 0$ if and only if b_0 is inaccessible or absorbing (i.e. $|b_0| + |\int_{b_0}^0 m(x) dx| = \infty$ or $|m(b_0-)| = +\infty$). This holds analogously for $l(\cdot, a_1)$. Thus the Theorem implies:

2.3. Corollary. The quasidiffusion X is a local martingale if and only if $b_0 = \inf E_m$ and $a_1 = \sup E_m$ are inaccessible or absorbing boundaries of the state space E_m .

As a counterpart to (2,1) we get

2.4. Corollary. If f is bounded, then

$$\int_0^t f(X_s) \,\mathrm{d}\langle M^c \rangle_s = 2 \int_{E_m} f(x) l(t, x) \,\mathrm{d}x \quad (t \ge 0). \tag{2.2}$$

One could ask if the continuous local martingale M° turns out be a diffusion. But this is not the case. It is shown by

2.5. Corollary. Assume $E_m = [0, 1] \cup [2, 3]$ and dm(x) = h(x) dx with $h(x) = \sigma_1^{-2} \mathbb{1}_{(0,1)}(x) + \sigma_2^{-2} \mathbb{1}_{(2,3)}(x)$ for some $\sigma_1, \sigma_2 > 0$, $\sigma_1 \neq \sigma_2$. Put $\sigma(x) = \sigma_1 \mathbb{1}_{[0,1]}(x) + \sigma_2 \mathbb{1}_{[2,3]}(x)$. Then there exists a Wiener process \tilde{W} adapted to \mathcal{G} such that

$$M_t^c = \int_0^t \sigma(X_s) \,\mathrm{d}\,\tilde{W}_s \quad (t \ge 0).$$

In particular, M^c is not Markovian.

An analogous integral representation for M° under weak assumptions on m only is given in [6].

3. Proofs

We shall prove the Theorem step by step and start with the following

3.1. Lemma. There exist a locally square integrable local G-martingale M and a continuous G-adapted process A with locally integrable variation such that $M_0 = A_0 = 0$ and X = M + A hold.

Proof. For every $n \ge 1$ define $D_n \coloneqq \inf\{t > 0 | |X_t| \ge n\}$. Then the stopped process $X^{D_n} \coloneqq (X_{D_n \land t}, \mathscr{G}_{D_n \land t})$ is a bounded semimartingale. This follows from the skip-freeness of X. Indeed, we have $|X_t| < n$ $(t < D_n)$ and

$$c_n \coloneqq \sup(E_m \cap (-\infty, -n)) \leq X_{D_n} \leq \inf(E_m \cap (n, \infty)) = d_n$$

with $c_n := -n$ if $E_m \subset [-n, \infty)$, $d_n := n$ if $E_m \subset (-\infty, n]$. Moreover, from the skipfreeness of X it follows that the only jumps of X^{D_n} are the jumps over intervals I_k with $I_k \cap [-n, n] \neq \emptyset$ ($k \in K'$). Consequently, the jumps of X^{D_n} are bounded. This implies (see [2, Chapter VII.2]) that X^{D_n} is a special semimartingale. Since the set of all special semimartingales is closed under localization, X is a special semimartingale. This means that X is the sum of a local martingale (M_t , \mathcal{G}_t) with $M_0 = 0$ and a predictable \mathcal{G} -adapted process $(A_t, \mathcal{G}_t)_{t\geq 0}$ having locally integrable variation and satisfying $A_0 = 0$.

As a standard process X is quasi-left-continuous and therefore A is continuous. Put $C_n := \inf\{t > 0 | |X_t| + |A_t| \ge n\}$. Then the stopped process M^{C_n} is a bounded martingale. This follows from the skip-freeness of X and the continuity of A. (Compare the argument for the boundedness of X^{D_n} above.) Now the local square integrability of M is obvious. \Box

The purely discontinuous part M^d of M is equal to the sum of the compensated jumps of M (see [2, p. 367]). Because of the continuity of A the jumps of M and X coincide, and therefore in order to determine M^d it remains to calculate the compensators of the processes $A_k(\cdot)$, $B_k(\cdot)$ ($k \in K'$). This will be done as the next step. Let $A_{k,i}^W$ be the time at which the *i*-th upcrossing of W over I_k is finished ($k \in K', i \ge 1$).

3.2. Lemma. For every $k \in K'$ the process

$$A_k^W(t) \coloneqq \sum_{i=1}^\infty \mathbb{1}_{[l^W(A_{k,i}^W, a_k), \infty]}(t) \quad (t \ge 0)$$

is a Poisson process with intensity $\lambda_k := (b_k - a_k)^{-1}$.

Proof. $l^{W}(A_{k,1}^{W}, a_{k})$ is exponentially distributed with the parameter λ_{k} (see [4, Chapter 2.8]). Now use the independence of the variables

$$l^{W}(A_{k,i+1}^{W}, a_{k}) - l^{W}(A_{k,i}^{W}, a_{k}) = l^{W}(A_{k,1}^{W} \circ \Theta_{A_{k,i}^{W}}, a_{k}) \quad (i \ge 0)$$

with $A_{k,0}^W = 0$ and the strong Markov property of W. \Box

3.3. Lemma. For every $k \in K'$ we have

$$A_k(t) = A_k^{\mathsf{w}}(l(t, a_k)) \quad (t \ge 0).$$

Proof. Assume $k \in K'$. Firstly remark that

$$A_k(t) = \sum_{i=1}^{t_k} \mathbb{I}_{[A_{k,i},\infty)}(t) \quad (t \ge 0)$$

with $i_k \coloneqq \sup\{i \ge 1 \mid A_{k,i} < \infty\}$.

It is easy to see that $\{A_{k,i} = \infty\} = \{T_{\infty} < A_{k,i}^{W}\}$ holds. Put $\sigma \coloneqq \inf\{t > T_{\infty} | W_t = a_k\}$ on $\{T_{\infty} < \infty\}$. By virtue of $W_{T_{\infty}} = b_0$ or $= a_1$ on $\{T_{\infty} < \infty\}$ we have $T_{\infty} < \sigma < A_{k,i}^{W}$ on $\{A_{k,i} = \infty\}$. Since $l^{W}(\cdot, a_k)$ increases at σ we have

$$l^{W}(T_{\infty}, a_{k}) < l^{W}(A_{k,i}^{W}, a_{k}) \text{ on } \{A_{k,i} = \infty\}.$$

This implies

$$\mathbb{I}_{[l^{W}(A_{k,i}^{W}, a_{k}), \infty)}(l^{W}(T_{i}, a_{k})) = 0 \quad (i > i_{k}, t \ge 0).$$
(3.1)

Now assume $i \le i_k$. Then $X_{A_{k,i}} = a_k$ and $X_{A_{k,i}} = b_k$. Thus $l(\cdot, a_k)$ increases at $A_{k,i}$ and $l(A_{k,i}, a_k) = l(A_{k,i} + \eta, a_k)$ for some $\eta > 0$ because of the right continuity of X. Consequently we have $l(t, a_k) < l(A_{k,i}, a_k)$ if and only if $t < A_{k,i}$. In particular it follows that

$$A_{k}(t) = \sum_{i=1}^{i_{k}} \mathbb{I}_{[l(A_{k,i},a_{k}),\infty)}(l(t, a_{k})) \quad (t \ge 0).$$

By virtue of $A_{k,i}^{W} = T_{A_{k,i}}$ $(i \le i_k)$ and (3.1) we get the assertion. \Box

3.4. Lemma. $(A_k(t) - \lambda_k l(t, a_k))_{t \ge 0} \in \mathcal{M}_{loc}(\mathcal{G}) \ (k \in K').$

Proof. Fix $k \in K'$ and put

$$L(t) \coloneqq \inf \{s > 0 \mid l^W(s, a_k) > t\} \quad (t \ge 0).$$

Then $L(\cdot)$ is a change of time for \mathscr{F} . Define $\mathscr{H}_t \coloneqq \mathscr{F}_{L(t)}$ $(t \ge 0)$. By virtue of

$$\{l^{W}(A_{k,i}^{W}, a_{k}) \leq t\} = \{L(t) \geq A_{k,i}^{W}\} \quad (t \geq 0)$$

we have

$$A_k^{\mathbf{W}}(t) = \sum_{i=1}^{\infty} \mathbb{I}_{[A_{k,i,\infty}^{\mathbf{W}})}(L(t)) \quad (t \ge 0).$$

Thus $A_k^W(\cdot)$ is \mathcal{H} -adapted. Moreover, $l^W(\cdot, a_k)$ forms a continuous change of time with respect to H. Thus, from Lemma 3.2 and [5, p. 26], it follows that

$$A_k^W(l^W(t, a_k)) - \lambda_k l^W(t, a_k) \quad (t \ge 0)$$

forms a local martingale with respect to $\mathscr{H}_{l^{W}(\cdot,a_{k})}$. Because of $L(l^{W}(t,a_{k})) \geq t$ we have

$$\mathscr{F}_t \subseteq \mathscr{H}_{l^{\mathsf{w}}(t,a_k)} \quad (t \ge 0).$$

Consequently, (T_t) is a time change also with respect to $\mathscr{H}_{l^w(\cdot,a_k)}$. We know that $l^w(\cdot,a_k)$ is constant on (T_{t-}, T_t) (t>0), i.e. (T_t) is $l^w(\cdot, a_k)$ -continuous in the sense of [5]. Therefore, from [5, p. 26], it follows that

$$A_{k}^{W}(l^{W}(T_{t}, a_{k})) - \lambda_{k}l^{W}(T_{t}, a_{k}) = A_{k}(t) - \lambda_{k}l(t, a_{k}) \quad (t \ge 0)$$

is a local $\mathscr{H}_{l(\cdot,a_k)}$ -martingale. Now use $\mathscr{G}_t \subseteq \mathscr{H}_{l(t,a_k)}$ $(t \ge 0)$ and the \mathscr{G} -adaptedness of $A_k(\cdot) - \lambda_k l(\cdot, a_k)$ to get the assertion. \square

Analogously to Lemma 3.4 one can show that

$$(B_k(t) - \lambda_k l(t, b_k))_{t \ge 0} \in \mathcal{M}_{\text{loc}}(\mathscr{G}) \quad (k \in K').$$

Now part (b) of the Theorem is obvious.

3.5. Lemma. $U_T := (U_{T_t}, \mathscr{G}_t)_{t \ge 0}$ is a continuous local martingale having the characteristic

$$\langle U_T \rangle_t = \langle U \rangle_{T_t} = T_t^c$$

Proof. We have $W_s \in R \setminus E_m$ on (T_{t-}, T_t) (t > 0). Thus $\langle U \rangle$ and therefore also U is constant on (T_{t-}, T_t) for every t > 0 (see e.g. [3]). This implies U-continuity of the change of time T, and consequently U_T is a continuous local martingale with respect to \mathscr{G} (see [5]). By the same arguments T is $(U^2 - \langle U \rangle)$ -continuous, and therefore $U_T^2 - \langle U \rangle_T$ is a continuous local martingale with respect to \mathscr{G} . This implies $\langle U \rangle_T = \langle U_T \rangle$ and by using

$$\bigcup_{0 < u \leq t} (T_{u-}, T_u) = \{ s \leq T_t \mid W_s \in \mathbb{R} \setminus E_m \}$$

we obtain the equation

$$\langle U_T \rangle_t = \langle U \rangle_{T_t} = \int_0^{T_t} \mathbb{1}_{E_m}(W_s) \, \mathrm{d}s = T_t - \int_0^{T_t} \mathbb{1}_{R \setminus E_m}(W_s) \, \mathrm{d}s$$
$$= T_t - \sum_{u \leq t} (T_u - T_{u-}) \eqqcolon T_t^c \quad (t \geq 0). \qquad \Box$$

3.6. Consider the function φ_k ($k \in K$) and φ defined by

$$\varphi_k(x) = \int_0^x \mathbb{1}_{I_k}(u) \, \mathrm{d} u \quad (k \in K)$$

and

$$\varphi(x) = \sum_{k \in K} \varphi_k(x) = \int_0^x \mathbb{1}_{R \setminus E_m}(u) \, \mathrm{d}u \quad (x \in R).$$
(3.2)

Using Tanaka's formula we can derive (put $l^{W}(t, x) = 0$ if $|x| = \infty$)

$$\varphi(W_t) = \int_0^t \mathbb{1}_{R \setminus E_m}(W_s) \, \mathrm{d} \, W_s + \sum_{k \in K'} \left(l^W(t, a_k) - l^W(t, b_k) \right) \\ - l^W(t, b_0) + l^W(t, a_1) \quad (t \ge 0).$$
(3.3)

Remark that

$$\varphi_k(X_t) = (b_k - a_k)(A_k(t) - B_k(t)) \quad (k \in K', t \ge 0)$$

and

$$\varphi_k(X_t) \equiv 0 \quad (k=0,1; t \ge 0).$$

Thus we get from (3.2) and (3.3), for $t \ge 0$,

$$\sum_{k \in K'} (b_k - a_k) (A_k(t) - B_k(t)) = \varphi(X_t) = \varphi(W_{T_t})$$
$$= W_{T_t} - U_{T_t} + \sum_{k \in K'} (l(t, a_k) - l(t, b_k))$$
$$- l(t, b_0) + l(t, a_1).$$

This means (use part (b) of the Theorem)

$$W_{T_t} - U_{T_t} = M_t^d + l(t, b_0) - l(t, a_1) \quad (t \ge 0).$$

Now (a) and (c) of the Theorem follow immediately. \Box

3.7. To prove (2.2) we remark (see point 3.5) that

$$\int_0^t f(X_s) \, \mathrm{d} \langle U_T \rangle_s = 2 \int_0^t f(X_s) \int_{E_m} l^W (\mathrm{d}T_s, x) \, \mathrm{d}x$$
$$= 2 \int_0^{T_t} f(W_s) \int_{E_m} l^W (\mathrm{d}s, x) \, \mathrm{d}x$$
$$= 2 \int_{E_m} \int_0^{T_t} f(W_s) l^W (\mathrm{d}s, x) \, \mathrm{d}x$$
$$= 2 \int_{E_m} f(x) l(t, x) \, \mathrm{d}x \quad (t \ge 0).$$

3.8. Now we shall prove Corollary 2.5. It holds that

$$t = S_{T_t} = \int_0^{T_t} h(W_s) \, \mathrm{d}s = \int_0^{T_t} h(W_{T_{S_s}}) \, \mathrm{d}s \quad (t \ge 0).$$

(We have used that $T_{S_s} \ge s$ $(s \ge 0)$, $W_u \notin E_m$ for $u \in (s, T_{S_s})$ and therefore $h(W_s) = h(W_{T_{S_s}})$ $(s \ge 0)$.) Thus we get

$$t = \int_0^t h(X_u) \, \mathrm{d}T_u = \int_0^t h(X_u) \, \mathrm{d}T_u^c + \sum_{s \le t} h(X_s) \, \Delta T_s$$
$$= \int_0^t h(X_u) \, \mathrm{d}T_u^c \quad (t \ge 0)$$

because of $X_s \in \{0, 1, 2, 3\}$ if $\Delta T_s > 0$ and therefore $h(X_s) \Delta T_s = 0$. Put

$$\tilde{h}(x) \coloneqq \sigma_1^{-2} \mathbb{1}_{[0,1]}(x) + \sigma_2^{-2} \mathbb{1}_{[2,3]}(x) \quad (x \in \mathbb{R}).$$

Then

$$\int_0^t (\tilde{h} - h)(X_u) \, \mathrm{d} T_u^c = 2 \int_{\{\tilde{h} \neq h\}} l(t, x) \, \mathrm{d} x = 0$$

and therefore

$$\int_0^t \tilde{h}(X_u) \, \mathrm{d} T_u^c = t \quad (t \ge 0).$$

We obtain

$$T_t^{\rm c} = \int_0^t \frac{\mathrm{d}u}{\tilde{h}(X_u)} = \int_0^t \sigma^2(X_u) \,\mathrm{d}u.$$

Now introduce a continuous local \mathscr{G} -martingale \tilde{W} by

$$\tilde{W}_{t} = \int_{0}^{t} (\tilde{h}(X_{u}))^{1/2} \,\mathrm{d} U_{T_{u}} \quad (t \ge 0).$$

This is a Wiener process. Indeed, we have

$$\langle \tilde{W} \rangle_t = \int_0^t \tilde{h}(X_u) \, \mathrm{d} T_u^c = t.$$

Now, by standard arguments it follows that

$$\mathrm{d}M_t^{\mathrm{c}} = \mathrm{d}U_{T_t} = \sigma(X_t) \,\mathrm{d}\,\tilde{W}_t. \qquad \Box$$

Acknowledgment

We want to express our gratitude to Dr. Wolfgang Schmidt (Jena) and the referees for valuable hints on a first version of this note.

References

- [1] G. Burkhardt, Über Quasidiffusionen als Zeittransformationen des Wienerschen Prozesses, Diss. A, Technische Universität Dresden (1983).
- [2] C. Dellacherie and P.A. Meyer, Probabilités et potentiel, Chap. V à VIII, Théorie des Martingales (Hermann, Paris, 1980).
- [3] R.K. Getoor and M. Sharpe, Conformal martingales, Invent. Math. 16 (1972) 274-308.
- [4] K. Itô and H.P. McKean, Diffusion Processes and their Sample Paths (2nd printing, Springer, Berlin, 1974).
- [5] N. Kazamaki, Changes of time, stochastic integrals and weak martingales, Zeitschr. Wahrsch. Verw. Geb. 22 (1972) 25-32.
- [6] U. Küchler and W. Schmidt, Stochastic differential equations for a class of quasidiffusions with natural scale, Preprint No. 98 (1985), Humboldt-Universität Berlin, Sektion Mathematik.
- [7] Y. Le Jan, Martingales et Changement de Temps, Lecture Notes in Math. 721 (Springer, Berlin, 1978), pp. 385-399.