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Quasidiffusions (with natural scale) are semimartingales obtained as time changed Wiener 
processes. Examples are diffusions and birth- and death-processes. In general, quasidiffusions are 
not continuous but they are skip-free. In this note we determine the continuous and the purely 
discontinuous martingale part of all such quasidiffusions. 

quasidiffusions * semimartingales * local times 

1. Introduction 

Let W = ( W~, ~:t, Px) (t/> 0, x ~ R) be a standard Wiener process on the real line 
R and lW(t, x) its (continuous) local time normalized such that 

Io I f(Ws) ds=2 lW(t,x) dx ( f b o u n d e d ,  t ~> 0). 
R 

It is well known that lW( • , x) increases at t i f  and only if  IV, = x. Assume m to be 
a nondecreasing extended real-valued function on R and introduce the closed set 
E m : = { x e R I m ( x - e ) < m ( x + e ) V e > O } .  Then R\E,,, is the union of mutually 
disjoint open intervals Ik = (ak, bk), the "gaps" of Era. Thereby k runs through a 
subset K of the set N of all non-negative integers. We shall suppose 0 e K (resp. 
1 ~ K)  i f  and only if  bo := infEm > -oo (a~ := sup Em <oo resp.) and Io := (-oo, bo), 
I~ := (a~, 0o), K ' : =  K\{0,  1}. Define 

St:=IRlW(t ,x)m(dx) (t>~O) 

and 

Tt:=inf{u>OlS.> t} (t~>O). 
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Then T := (7",, t/> 0) is a strictly increasing, right-continuous family of ~:-stopping 
times with To = 0 a.s. This means T is a change of time with respect to ~. Define 

x,:= wT,, (1.1) 

Then X =  (Xt, ~,, Ix) (t>~O, x~  E,,) turns out to be a standard Markov process on 
E,,,. We call it a quasidiffusion with speed measure m (and canonical scale p(x)  = x). 
In general X is not continuous. But it is skip-free in the following sense: 

( m i n ( X , _ , X , ) , m a x ( X , _ , X , ) ) ~ E , , = O  ( t >  0). 

Thus, if Xt ~ X,_, then min(X~_, X,) = ak and max(X,_, X~) = bk for some k e K'.  
In particular, if m is strictly increasing, then X is a diffusion, and if m increases 

in isolated points only, then X is a birth-and-death-process. 
Now suppose 0 ~ E,, and put P = Po. In the following we restrict ourselves to P. 
As a time changed Wiener process (X,, ~,) is a semimartingale. We shall construct 

the decomposition of X into its continuous martingale part M c, the purely discon- 
tinuous martingale part M d and a continuous locally bounded variation process A. 

The decomposition is more explicit than the results from [7], where general time 
changed martingales are considered. 

2. Notations and results 

Denote by .,ffioc(fg) the set of all local %martingales, by .,ff2oc(~) the set of all 
locally square integrable local Y-martingales (all with respect to P). Let ~B(" ) be 
the indicator function of the set B. 

2.1. We shall start with some notions necessary for the formulations of the theorem 
below. Let Ak.i (resp. Bkj) be the time of the i-th jump of X from ak to bk (resp. 
from bk to ak) if this jump occurs, let it be equal to ~ otherwise. For k ~ K '  put 

Define 

Ak(t) := )-'. ~tA~,.oo)(t), Bk(t) := ~ ~ts~,.o~)(t) (t~>O). 
i=1  i=1  

l ( t , x ) : = l W ( T , x )  (t>~O, x~Em)  

to be the local time of X. Then l ( - , - )  is continuous and it holds a.s. that 

f (Xs )  ds= l ( t , x ) f (x )m(dx)  ( fbounded ,  t~>0). 
m 

Moreover, l ( . ,  x) increases at t if and only if T, < T~ := limsl,~ T~ and Xt 
Xt_ = x. By U := ( U,),~o we denote the continuous local martingale 

(2.1) 

= X  o r  

fo Ut: = ~E,, (Ws) d W~ (t >~ 0). 
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2.2. Theorem. The quasidiffusion (3(,, (gt) defined by (1.1) is a semimartingale and 
admits the representation X = MC+ M d +  A, where 

(a) (M~, ~t) is the continuous local martingale given by 

M~:= Ur, = IIE=(W~) d W, 

and having the characteristic 

(M~),= T~:= 7",- E AT~ (t~>0) 

with ATs: = T s -  T~_ ( s > 0 ) ,  
(b) (Mdt, ~t) is the purely discontinuous locally square integrable local martingale 

defined by 
Mdt: = ~ ([ (bk- -ak)Ak( t ) - - l ( t ,  ak)]- -[(bk--ak)Bk( t ) - - l ( t ,  bk)]) (t~>0), 

k ~ K '  

(c) ( A,, ~t) is the adapted continuous process with locally integrable variation given 

by 
At:=l( t ,  bo) - l ( t ,a~)  (t>~O). 

We have l(t, bo)=-O if and only if bo is inaccessible or absorbing (i.e. Ib0[+ 
I~°o m(x)  dxl =oo or Im(bo-)l = +oo). This holds analogously for 1(., a~). Thus the 
Theorem implies: 

2.3. Corollary. The quasidiffusion X is a local martingale i f  and only if bo = inf Em 
and al = sup E= are inaccessible or absorbing boundaries o f  the state space Era. 

As a counterpart to (2,1) we get 

2.4. Corollary. I f  f is bounded, then 

f(x ) = 2 f(x)l(t,x)dx 
m 

(t~>0). (2.2) 

One could ask if the continuous local martingale M c turns out be a diffusion. 
But this is not the case. It is shown by 

2.5. Corollary. Assume Em= [0, 1] u [2, 3] and dm(x)  = h(x)  dx  with h(x)  = 
o-12~(o,1)(x) + tr22~(:,3)(x) for  some trl, tr 2 > O, tr I # tr 2. Put tr(x) = 
trl~to,ll(x ) + tr2~E:,31(x ). Then there exists a Wiener process ITV adapted to ~ such that 

M~= ~(X~) d l~¢r~ (t >~0). 

In particular, M c is not Markovian. 

An analogous integral representation for M c under  weak assumptions on m only 
is given in [6]. 
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3.  P r o o f s  

We shall prove the Theorem step by step and start with the following 

3.1. Lemma. There exist a locally square integrable local (g-martingale M and a 

continuous (g-adapted process A with locally integrable variation such that Mo = Ao = 0 

and X = M + A hold. 

Proof. For every n t> 1 define D,  := inf{t>0llX,[/> n}. Then the stopped process 
X °" := (Xo,^ , ,  (gon^,) is a bounded semimartingale. This follows from the skip- 

freeness of X. Indeed, we have Ix ,  I < n ( t < Dn) and 

c, := sup(Era n ( - ~ ,  - n ) )  ~< )(on <~ inf(Em n (n, oo)) =: d, 

with c, := - n  if Em= I -n ,  ~) ,  d, := n if E~ c (-oo, n]. Moreover, from the skip- 
freeness of X it follows that the only jumps of X °" are the jumps over intervals Ik 
with Ik n [--n, n] ~ 0 (k  e K') .  Consequently, the jumps of X °n are bounded. This 
implies (see [2, Chapter VII.2]) that X °n is a special semimartingale. Since the set 
of all special semimartingales is closed under localization, X is a special semimartin- 
gale. This means that X is the sum of a local martingale (Mr, ~gt) with Mo = 0 and 
a predictable (g-adapted process (A,, (g,),~>o having locally integrable variation and 

satisfying Ao = 0. 
As a standard process X is quasi-left-continuous and therefore A is continuous. 
Put c :=inf{t>ollx, l+lA, Then the stopped process M c~ is a bounded 

martingale. This follows from the skip-freeness of X and the continuity of A. 
(Compare the argument for the boundedness of X °~ above.) Now the local square 

integrability of M is obvious. [] 

The purely discontinuous part M d of M is equal to the sum of the compensated 
jumps of M (see [2, p. 367]). Because of the continuity of A the jumps of M and 
X coincide, and therefore in order to determine M d it remains to calculate the 
compensators of the processes Ak(" ), Bk(" ) (k  e K' ) .  This will be done as the next 
step. Let Ak, w be the time at which the i-th upcrossing of W over Ik is finished 

( k e K ' , i > ~ l ) .  

3.2. Lemma. For every k e K '  the process 

oo 

A W ( t ) :  = ~ ~[,W(A~,ak),oo](t) (t>~O) 
i = l  

is a Poisson process with intensity Ak := (bk -- ak) -1. 

P r o o f .  w w I (Ak,~, ak) is exponentially distributed with the parameter Ak (see [4, 
Chapter 2.8]). Now use the independence of the variables 

W W W W l (Ak, ,  lW(A~l  ° (i>~O) 1 (Ak, i+l, ag)-- ak) = OA~.,, ak) 

with A~o = 0 and the strong Markov property of W. [] 
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3.3. Lemma. For every k ~ K'  we have 

Ak( t )=AW(l ( t ,  ak)) (t>~O). 

Proof. Assume k s K' .  Firstly remark that 

i k 

Ak( t )= ~, ~tA~,oo)(t) (t~>0) 
i = l  

with ik := sup{/>i 1 [ Ak, i < o0}. 
It is easy to see that {Ak, i =oo} ={T~o<A~} holds. Put tr:= inf{ t> Too[ W~ = ak} 

on { To~ < ~}. By virtue of  WT~ = b0 or = al on { Too < ~} we have Too < cr < Ak, w on 
{Ak, i = o0}. Since /w( . ,  ak) increases at cr we have 

lW(Too, ak)< w w I (Ak, i, ak) on {Ak.i = ~}. 

This implies 

~EtW(A~,,ak)oo)(lW(Tt, ak))=O ( i >  ik, t>~O). (3.1) 

NOW assume i<~ ik. Then XA~,-= ak and XA~., = bk. ThUS l ( . ,  ak) increases at Ak,~ 

and l(Ak.i, ak) = l(Ak.~ + *l, ak) for some 7/> 0 because of the right continuity of X. 
Consequently we have l(t, ak) < l(Ak.~, ak) if  and only if  t < Ak.i. In particular it 
follows that 

i k 

Ak( t )= ~ ~tl(A~,.,,k),oo)(l(t, ak)) (t>-O). 
i = 1  

By virtue of  Ak. w =  TA~., (i<~ ik) and (3.1) we get the assertion. [] 

3.4. Lemma. (Ak(t)--Akl(t, ak))t~>0~./gloc(~d) (k~ K') .  

Proof. Fix k ~ K '  and put 

L(t):=inf{s>OllW(S,  ak)>t}  (t>~O). 

Then L(. ) is a change of time for ~:. Define ~t  := ~L~t) (t >t 0). By virtue of 

{ l  w w (Ak.,,ak),<~t}={L(t)>~A~} (t~>0) 

we have 

0{3 

AW(t) = ~, ~tA~,oo)(L(t)) (t>-O). 
i = l  

Thus AkW( • ) is ~-adapted.  Moreover , /w( . ,  ak) forms a continuous change of time 

with respect to H. Thus, from Lemma 3.2 and [5, p. 26], it follows that 

A~'(lW(t, ak))--AklW(t, ak) (t>~O) 

forms a local martingale with respect to ~P"e,,~k)- Because of L(lW(t, ak)) I> t we have 
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Consequently, (Tt) is a time change also with respect to ~tw~. ~k). We know that 
lW( ", ak) is constant on (T~_, Tt) ( t > 0 ) ,  i.e. (T~) is lW( ., ak)-continuous in the 
sense of [5]. Therefore, from [5, p. 26], it follows that 

A~'(lW(Tt, ak))--AklW(Tt, ak)=Ak(t)--Akl(t, ak) (t>~O) 

is a local ~1(. ,~k)-martingale. Now use (g, G ~z(,,~k) (t t> 0) and the (g-adaptedness of 
Ak( ' ) - -Akl( ' ,  ak) to get the assertion. [] 

Analogously to Lemma 3.4 one can show that 

(Bk( t ) - ; td( t ,  bk)),~>o~dt~oc(~) (k~K' ) .  

Now part (b) of the Theorem is obvious. 

3.5. Lemma. Ur := (/-IT,, ~gt)t>>-O is a continuous local martingale having the charac- 
teristic 

( UT)t = ( U)r, = T~. 

Proof. We have W, ~ R\Em on (T,_, T,) (t > 0). Thus (U) and therefore also U is 
constant on (T,_, 7",) for every t >  0 (see e.g. [3]). This implies U-continuity of the 
change of time T, and consequently Ur is a continuous local martingale with respect 
to qd (see [5]). By the same arguments T is (uE- (u ) ) - cont inuous ,  and therefore 
U2-( U)T is a continuous local martingale with respect to ~. This implies ( U)r  = (/-Jr) 
and by using 

I,_.J (T,,_, T,,)={s<~ T, IW, eR \Em } 
O<u<~t 

we obtain the equation 

(Ur)t  = (U)r, = ~Em(Ws) ds = T t -  

= T , -  E (T , , -  T,,_)=: T~ (t~0). 
u~t  

~R\E, (Ws) ds 

[] 

3.6. Consider the function ~0 k ( k  ~ K) and q~ defined by 

~0k(X) = ~,k(U) du ( k ~ K )  

and 

tp(x) = k~K ~k(X) = ~R\nm(U) du (x e R). 

Using Tanaka's formula we can derive (put lW(t, x) = 0 if Ix[ = oo) 

~ ( W , ) =  ~Rxe.,(W~)dW~+ 2 (lW(t, ak)--lW(t, bk)) 
k~K' 

- lW(t ,  bo)+lW(t,a~) (t>~O). 

(3.2) 

(3.3) 



G. Burkhardt, U. Kiichler / Ouasidiffusions 

Remark that 

~Pk(Xt)=(bk--ak)(Ak(t)--Bk(t)) (k~K' ,  t>~O) 

and 

~Pk(Xt)=-----O (k=O, 1; t~>O). 

Thus we get from (3.2) and (3.3), for t I> 0, 

~, (bk--ak)(Ak(t)--Bk(t))=tP(Xt)=q~(WT,) 
k ~ K '  

= wTt - vT, + (/(t, ak)-  l(t, bk)) 

243 

k ~ K '  

- l ( t ,  bo) + l ( t ,  a~). 

This means (use part (b) of the Theorem) 

W r - U r = M ° t + l ( t ,  bo)-l(t, al) (t>~O). 

Now (a) and (c) of the Theorem follow immediately. [] 

3.7. To prove (2.2) we remark (see point 3.5) that 

fo fo L f(X~)d(Ur)~=2 f(X~) lW(dTs, x) dx 
m 

Io L =2  f(W~) lW(ds, x) dx 
m 

Lfo =2  f(W,)lW(ds, x) dx 
m I 

~ f ( x ) l ( t , x )dx  (t~O). =2  
J E  

m 

3.8. Now we shall prove Corollary 2.5. It holds that 

t = St, = h(W~)ds= h(WTss)ds ( t~o).  

(We have used that Tss >>- s (s >>- 0), W~ ~ E m for u E (S, Ts, ) and therefore h(W~) = 
h (Wrs~) (s ~> 0).) Thus we get 

Io Io t =  h(Xu) dT~ = 

=Io ~ 

h(Xu) d ~  + E h(Xs) a r s  
s e t  

h(X.,)dT~ (t>~O) 

because of Xs e {0, 1, 2, 3} if ATs > 0 and therefore h(X~) AT~ - O. Put 

/~(x) := o'~-2~t0,11(x) + 0"22~tE,31(x) (x ~ R). 
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Then 

fo (g-h)(X,,)dT~=2 l(t,x) dx=O 
g#h} 

and therefore 

fo g(X,,)dT~=t (t~O). 

We obtain 

Io Io t ~du tr2(X,,) du. 
h ( X . , )  = 

N o w  introduce a continuous local ~-martingale W by 

Io I,V,= (/~(X,,)) 1/2 dUT. (t>~O). 

This is a Wiener process. Indeed, we have 

= g ( x u )  d r y =  t. 

Now, by standard arguments it follows that 

dM~=dUr =o'(Xt) dI~'t. [] 
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