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Quasidiffusions (with natural scale) are semimartingales obtained as time changed Wiener
processes. Examples are diffusions and birth- and death-processes. In general, quasidiffusions are
not continuous but they are skip-free. In this note we determine the continuous and the purely
discontinuous martingale part of all such quasidiffusions.

quasidiffusions * semimartingales * local times

1. Introduction

Let W=(W, %, P,) (t=0, x € R) be a standard Wiener process on the real line
R and 1Y (4, x) its (continuous) local time normalized such that

J‘tf(Ws) ds=2 J I¥(t,x)dx (fbounded,t=0).
0 R

It is well known that /¥ (-, x) increases at ¢ if and only if W, =x. Assume m to be
a nondecreasing extended real-valued function on R and introduce the closed set
E,={xeR|m(x—¢)<m(x+e)Ve>0}. Then R\E,, is the union of mutually
disjoint open intervals I, = (ay, by), the “gaps” of E,,. Thereby k runs through a
subset K of the set N of all non-negative integers. We shall suppose 0€ K (resp.
1€ K) if and only if by:=inf E,, > - (a,:=sup E,, < resp.) and I,:= (-, b,),
I,=(a;,©), K''= K\{0, 1}. Define

S, = J IY(t,x)m(dx) (t=0)

and

T, =inf{u>0|S,>1t} (¢=0).
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Then T:=(T,, t=0) is a strictly increasing, right-continuous family of %-stopping
times with T,=0 a.s. This means T is a change of time with respect to %. Define

X, = WT,s Y, = g;T, (t?O)- (11)

Then X =(X,, %, P,) (t=0, xe E,,) turns out to be a standard Markov process on
E,.. We call it a quasidiffusion with speed measure m (and canonical scale p(x) = x).
In general X is not continuous. But it is skip-free in the following sense:

(min(Xt——, Xt)a max(Xt—s Xt)) N Em = Q (t > O)'

Thus, if X, # X,_, then min(X,_, X,) = a, and max(X,_, X,)= b, for some ke K'.
In particular, if m is strictly increasing, then X is a diffusion, and if m increases
in isolated points only, then X is a birth-and-death-process.
Now suppose 0€ E,, and put P = P,. In the following we restrict ourselves to P.
As a time changed Wiener process (X,, 4,) is a semimartingale. We shall construct
the decomposition of X into its continuous martingale part M°, the purely discon-
tinuous martingale part M and a continuous locally bounded variation process A.
The decomposition is more explicit than the results from [7], where general time
changed martingales are considered.

2. Notations and results

Denote by ,..(%) the set of all local %4-martingales, by #7.(%) the set of all
locally square integrable local ¥-martingales (all with respect to P). Let 15(-) be
the indicator function of the set B.

2.1. We shall start with some notions necessary for the formulations of the theorem
below. Let A;; (resp. By ;) be the time of the i-th jump of X from a; to by (resp.
from b, to a,) if this jump occurs, let it be equal to c© otherwise. For k€ K’ put

A= T ao(0), BulD)= T Tp®)  (120).

Define
I(t, x)=1"(T,,x) (t=0, xeE,,)
to be the local time of X. Then I(-, -) is continuous and it holds a.s. that

J”f(Xs) ds= J’ I(t, x)f(x)m(dx) (fbounded, t=0). (2.1)

Moreover, I(-, x) increases at t if and only if T, < Ty '=limge T; and X,=x or
X,_=x. By U= (U,),»0 we denote the continuous local martingale

U,:=J 1, (W) dW, (120).
4]
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2.2. Theorem. The quasidiffusion (X,, 4,) defined by (1.1) is a semimartingale and
admits the representation X = M°+ M®+ A, where

(a) (M3, 4,) is the continuous local martingale given by
T

M= UT,=j 15, (W,) AW,

0

and having the characteristic

(M, =T;=T,— L AT, (1=0)

s<t

with AT, = T,— T,_ (s>0),
(b) (M, 9,) is the purely discontinuous locally square integrable local martingale
defined by

M{= Y ([(be—a)Ac(t)—I(t, ax)]1—[(bx — ax) Bi(t) = I(1, b)]) (1=0),

keK’

(c) (A,, %) is the adapted continuous process with locally integrable variation given

by
At = l(t’ bO)_l(ts al) (tBO)

We have I(t, b,)=0 if and only if b, is inaccessible or absorbing (i.e. |bo|+
|j§’,o m(x) dx| =0 or |m(b,—)| = +00). This holds analogously for I(-, a,). Thus the
Theorem implies:

2.3. Corollary. The quasidiffusion X is a local martingale if and only if b,=inf E,,
and a, = sup E,, are inaccessible or absorbing boundaries of the state space E,,.

As a counterpart to (2:1) we get

2.4. Corollary. If f is bounded, then

J’tf(Xs) dM),=2 J J(x)l(t,x)dx (¢=0). (2.2)
0 E,

One could ask if the continuous local martingale M° turns out be a diffusion.
But this is not the case. It is shown by

2.5. Corollary. Assume E, =[0,11U[2,3] and dm(x)=h(x)dx with h(x)=
07 001)(X) +02%1a5(x)  for some 0,,0,>0, oy#o,. Put o(x)=
o11i0.13(X) + 0512 31(x). Then there exists a Wiener process W adapted to § such that

Mf=J o(X,)dW, (:=0).

0

In particular, M° is not Markovian.

An analogous integral representation for M° under weak assumptions on m only
is given in [6].
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3. Proofs
We shall prove the Theorem step by step and start with the following

3.1. Lemma. There exist a locally square integrable local §-martingale M and a
continuous 9-adapted process A with locally integrable variation such that My= A;=0
and X =M+ A hold.

Proof. For every n=1 define D, :=inf{t>0||X,|=n}. Then the stopped process
XPn = (Xp,rt> 9p,4:) is a bounded semimartingale. This follows from the skip-
freeness of X. Indeed, we have | X,|<n (t<D,) and

= sup(Em N (—oo, —n)) = XD,, Slnf(Em M (n, (D)) = dn

with ¢,=—n if E,,<[—n,0), d,:=n if E, c (-0, n]. Moreover, from the skip-
freeness of X it follows that the only jumps of X P+ are the jumps over intervals I,
with I, n[—n, n]# @ (ke K’). Consequently, the jumps of X are bounded. This
implies (see [2, Chapter VIL2]) that X P is a special semimartingale. Since the set
of all special semimartingales is closed under localization, X is a special semimartin-
gale. This means that X is the sum of a local martingale (M,, ¥,) with M;=0 and
a predictable 9%-adapted process (A,, %)= having locally integrable variation and
satisfying A, =0.

As a standard process X is quasi-left-continuous and therefore A is continuous.

Put C,:=inf{t>0||X,|+|A, = n}. Then the stopped process M~ is a bounded
martingale. This follows from the skip-freeness of X and the continuity of A.
(Compare the argument for the boundedness of X °= above.) Now the local square
integrability of M is obvious. [l

The purely discontinuous part M? of M is equal to the sum of the compensated
jumps of M (see [2, p. 367]). Because of the continuity of A the jumps of M and
X coincide, and therefore in order to determine M 4 it remains to calculate the
compensators of the processes A, (), Bi(-) (k€ K’). This will be done as the next
step. Let A,tvi be the time at which the i-th upcrossing of W over I, is finished
(keK',i=1).

3.2. Lemma. For every k€ K’ the process

x
Al()=Y T™a¥, anc)(t)  (1=0)
i=1
is a Poisson process with intensity Ay = (b, — a,)”.

Proof. IW(A,‘:;, a,) is exponentially distributed with the parameter A, (see [4,
Chapter 2.8]). Now use the independence of the variables
IY (A, @) — 1Y (AL, i) = IV (AR ° Oy, a) (i=0)

with A, =0 and the strong Markov property of W. [
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3.3. Lemma. For every ke K' we have
A=A (I, @) (£=0).

Proof. Assume ke K'. Firstly remark that

A= T Ta () (120)

with i :=sup{i=1| A, ; <co}.

It is easy to see that {A,; =0} ={T,< Az} holds. Put o :=inf{t> T,.| W, = a;}
on {T,<oco}. By virtue of Wy_=b, or =a, on {T,, <0} we have T,<a <A}, on
{AL; =}. Since I"(-, a) increases at o we have

IW(Tw, ax) <1V (AL, @) on {Ar; =0}
This implies
T a¥, apoy(I” (T a)) =0 (i> iy, 1=0). (3.1)

Now assume i<i. Then X, _=a, and X, = b.. Thus I(-, a;) increases at Ay;
and I(Ay;, ai) = I(Ay; + m, a;) for some 7 >0 because of the right continuity of X.
Consequently we have I(t, a,) <I(Ay;, a;) if and only if t <A, ;. In particular it
follows that

Al(t) = % Tuay a0, @) (1=0).
i=1

By virtue of Ax;=Ta,, (i<i) and (3.1) we get the assertion. [
3.4. Lemma. (Ak(t) _l\kl(t, ak)),aoe Juloc(g) (k € K’).

Proof. Fix k€ K’ and put
L(t)=inf {s>0|I% (s, a)>1} (t=0).

Then L(-) is a change of time for &. Define #, = %, (,, (t=0). By virtue of
{IY(AL, a)y<ty={L(t)= A} (1=0)

we have
A¥ ()= Y Tare(L() (120).
i=1

Thus A} () is #-adapted. Moreover, IV (-, a;) forms a continuous change of time
with respect to H. Thus, from Lemma 3.2 and [5, p. 26], it follows that

ATV (L a)) - AdY (L ar) (1=0)
forms a local martingale with respect to #,w. ,,,. Because of L(l Y(t, a,)) =t we have

Fi S H¥ (a9 (1=0).



242 G. Burkhardt, U. Kiichler /| Quasidiffusions

Consequently, (T,) is a time change also with respect to . ,,,. We know that
I%(-, a;) is constant on (T,_, T;) (t>0), i.e. (T,) is I™(-, a;)-continuous in the
sense of [5]. Therefore, from [5, p. 26], it follows that

ALY (I (T, a)) = Ad Y (T, a) = A(8) —Ad(L @) (¢120)

is a local #. ,, )-martingale. Now use ¥, < #(,,,) (=0) and the %-adaptedness of
A(-)—Ad(-, a;) to get the assertion. [

Analogously to Lemma 3.4 one can show that
(Bi(t) = Ad(t, b)) =o€ Mioc(9) (ke K').
Now part (b) of the Theorem is obvious.

3.5. Lemma. Ur=(Ur,, %),=0 is a continuous local martingale having the charac-
teristic

<UT>z =(U>T, = Tf-

Proof. We have W, e R\E,, on (T,_, T;) (t>0). Thus (U) and therefore also U is
constant on (T,_, T,) for every t >0 (see e.g. [3]). This implies U-continuity of the
change of time T, and consequently Ur is a continuous local martingale with respect
to ¥ (see [5]). By the same arguments T is (U?~{(U))-continuous, and therefore
U%-(U)r is a continuous local martingale with respectto ¥. This implies(U)+ = (Uz)
and by using

U (Tu-, T,)={s<T,|W,e R\E,}

O<u=t

we obtain the equation

<UT>t=(U>T,=J' 'n}s,,,("Vs) ds= Tt__[ ,“R\Em(“{c) ds

0 0
=T‘1_Z (Tu—Tu—)=:T$ (IZO)- O

us<st

3.6. Consider the function ¢, (k€ K) and ¢ defined by

er(x) = r 1, (u) du (ke K)

0

and

e(x)= % ‘Pk(x)=J‘ 1]R\ls,,,(u) du (xeR). (3.2)

ke K 0

Using Tanaka’s formula we can derive (put " (z, x) =0 if |x| = c0)

t

¢(m)=J Tr\g, (W) dW,+ ¥ (Y (1, a) =17 (1, b))

0 keK’

—1Y(t, b)) +1%(t,a;) (:=0). (3.3)
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Remark that

ei(X:) = (b — ac)(Ax(1) — Bi(t)) (ke K',t=0)

and

o(X))=0 (k=0,1;t=0).
Thus we get from (3.2) and (3.3), for t=0,
Y (b~ ax)(Ak(t) — Bi(t)) = o(X,) = @(Wr)

keK’

=Wr,—Ur+ ¥ (I(t,a) -1, by))

keK’

—1(t, b))+ (¢, a,).

This means (use part (b) of the Theorem)
Wr — Ur,=M{+1(1, by)—I(t,a;) (t=0).

Now (a) and (¢) of the Theorem follow immediately. [

3.7. To prove (2.2) we remark (see point 3.5) that

jtf(Xs) d(Ur); =2 .tf(Xs) J I"(dT,, x) dx
0 JO E

(T

=2 lf(Ws) J 1% (ds, x) dx

Em

Ep,

m

J AW (ds, x) dx

0

S, x)dx (¢=0).

3.8. Now we shall prove Corollary 2.5. It holds that

T!
t=ST'=.[ h(W,) ds =

0

0

J h(Wr,)ds (120).

243

(We have used that T =5 (s=0), W, £ E, for ue(s, Ts,) and therefore h(W,) =

h(Wr,) (s=0).) Thus we get
0

0

0

because of X, {0, 1, 2,3} if AT,> 0 and therefore h(X,) AT, =0. Put

t= jt h(X,)dT, = Jt h(X,)dT.+ ¥ h(X,) AT,

sst

=Jt h(X,)dT; (1=0)

h(x) = 07U0.13(x) + 05°15(x) (x€R).
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Then

It (h—h)(X,)dT;=2 J ~ I(t,x)dx=0
{h#=h}

0

and therefore

Jtﬁ(Xu)de,=t (1=0).

0

We obtain

1 du 1
T$=J ~——=J o’ (X,) du.
VX))o T )

Now introduce a continuous local %-martingale W by

W, = j” (A(X,)?dUr, (1=0).

0

This is a Wiener process. Indeed, we have

t

<W>,=j h(X,)dTS=t.

0

Now, by standard arguments it follows that

dM¢=dU; =0o(X,)dW, O
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