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1. INTRODUCTION 

In this paper we study the structure of A-groups, finite groups all of whose 
Sylow subgroups are abelian. We use the recent results of Walter [7], 
classifying the simple groups with abelian Sylow 2-subgroups, to extend the 
work of Taunt [6], who studied the structure of solvable A-groups. 

We prove the following: 

THEOREM. Let G be an A-group. Then there exist subgroups H, S, and K, 
of G satisfying: 

i) HSK=G,(H/ISIjKI =jG/. 

ii) H a G, K < N(S). 
(i.e. HSK is a triple semi-direct product) 

iii) H and K are solvable, S is semi-simple. 

Furthermore, by adding appropriate conditions we insure that S, K, and 
SK are determined up to conjugacy (and H is uniquely determined) and, if 
N 4 G, then N = (N n H)(N n S)(N n K). 

2. NOTATION 

Our notation is standard and follows, for the most part, that of Huppert [4]. 
The following items may be unusual: 

Let G be a finite group, then, 
G@) denotes n G(i), the intersection of the members of the derived series 

for G (i.e. the “last” member of the derived series). 
Sol(G) denotes the maximal normal solvable subgroup of G. 

Unless otherwise stated, all groups we consider are finite. 
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3. A-GROUPS 

DEFINITION 3.1. An A-group is a finite group, all of whose Sylow 
subgroups are abelian. 

THEOREM 3.2. (Walter) Let G be a simple, non-abelian, A-group. Then G 
is isomorphic to J(1 l), the Janko group (see Janko [5]), or G is isomorphic to 
L,(q) for q > 3 and q = 0,3, or 5 (mod 8). 

Proof. By Walter [7] a simple, non-abelian, group with abelian Sylow 2- 
subgroup is isomorphic to J(l I), L,(q) (for q > 3 and q = 0,3 or 5 (mod 8)), 
or G is of Ree type. Since groups of Ree type have non-abelian Sylow 3- 
subgroups (see Ward [S]), the result follows. 

LEMMA 3.3. Let G be a simple, non-abelian, A-group. Let OL be an r-auto- 
morphism of G for some prime r with r 1 / G 1. Assume 01 centralizes a Sylow r- 
subgroup of G. Then 01 induces an inner automorphism of G. 

Proof. By Theorem 3.2 we may assume G is J(11) or L,(q). For J(1 I) 
the result is trivial since, by Janko [5], the outer automorphism group of 
J(11) is 1. So we may assume G = L,(q), q > 3, q = 0,3 or 5 (mod S), 
and let q = pn, for some prime p. 

From Gorenstein [3, p. 4621 we see that the automorphism group of L,(q) 
is the semi-direct product @a) PGL(2, q), where /I,, is induced by a field 
automorphism of GF(q) of order n and the elements of PGL(2, q) act by 
conjugation. Thus we shall assume: 

a : X ---f B-IXeB 

for some B E PGL(2, q), fi E (@. 
However, for r f 2, or for r = 2 = p, any Sylow r-subgroup of 

<PO> PGW 4) lies in <&>Ldq). S o we may assume (in these cases) that 
B EL2(q). Furthermore, if (8) is a Sylow r-subgroup of (&) and (6) nor- 
malizes R, a Sylow r-subgroup of L,(q), th en some L,(q) conjugate of OL lies 
in (S) R, hence must normalize, and by hypothesis centralize, R. So we 
may assume, without loss of generality, 01 E (6) < (PO), and 

OL : X -+ X6 (in case r # 2 or r = 2 = p). 

During the remainder of this proof we will perform certain matrix calcu- 
lations. The matrices used-although written in GL(2, q)-will represent 
cosets of Z(GL(2, q)), i.e. elements of PGL(2, q) or of L,(q). 
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A. r=p 

A Sylow r-subgroup of L,(q) is given by: 

01 clearly normalizes, hence must centralize R. Thus 

r:, ‘;I” = I:, 71. 
Hence 9 = x for all x E GF(q). Hence /3 = 1. 

B. r#p,r#2,rIq--1 

Let j G jr = rm. Then rm 1 q - 1 and there is x E GF(q) satisfying xrrn = 1, 
XTm-l # 1. A Sylow r-subgroup of L2(q) is given by: 

There exists an integer s such that, for all y E GF(q) yB = ~2”. Hence 01 
normalizes, and, thus, centralizes R. Thus 

[; ,“-1]” = [; x!1]* 

In L,(q) this means 9 = fx. If 9 = --x then xs2 = x and, since /3 is a 
r-element with r odd, 9 = X. Hence we may assume 9 = x, i.e. x1?* = x, 
or xp 

s-1 
= 1. Let /3 have order @. We have: 

F jp” - 1, n 1 SY~, nfs+‘, P Ip’” - 1, rm+lfpn - 1. 

Thus there are integers a, b, and c, satisfying: 

brm + 1 = ps, an = srk, (a, r) = 1, cP + 1 = pn, (c, r) = 1. 

Hence, pan = (crm + 1)” = dlP + 1, for some integer dr with (di , Y) = 1. 
But p”” z P”‘~ = (bym + 1)” = dzrm + 1, for some integer da with 
(d,,r)=r,unlessrk=1.Hencer”=l,and/3=1. 

c. ~#P,r#&rIq+l 

Since GF@) < GF(q2), L,(q) < L2(q2). Since I L2(q)l, = I L2(q2)/, , a 
Sylow r-subgroup of L,(q) is a Sylow r-subgroup of L2(q2). Since /3 can be 
extended to a field automorphism, B*, of GF(q2) satisfying t I(&] = I( 
where t = I or 2, we may regard ~8 as an automorphism of L2(q2) satisfying 
our hypotheses. But, now, Y I q2 - 1, so we may apply the proof of B. to 
assert /?*t = 1. But for either t = 1 or t = 2 this implies ,kI = 1, as desired. 
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D. r=2,p#2 

Since n must be odd (q = pn E 3 or 5 (mod 8)), OL : X--f B-lXB for 
some B E PGL(2,q). But if 01, hence B, is a 2-element centralizing a Sylow 2- 
subgroup of L,(q), and if B @L,(q), then PGL(2, q) contains an abelian 2- 
subgroup of order 8. But the Sylow 2-subgroups of PGL(2, q) are dihedral 
of order 8 (see Carter and Fong [I]). Hence B EL,(~), as desired. 

Remark. The structure of L,(q) is discussed in Huppert [4, pp. 191-2141. 

L,(q) = pwz 9). 

LEMMA 3.4. Let G = GI x G, x ..’ x Gk, with each Gi a simple, 
non-abelian, A-group. Let OL be an r-automorphism of G for some prime r with 
r 1 ( G, 1, all i. A ssume that 01 centralizes a Sylow r-subgroup of G. Then c( induces 
an inner automorphism of G. 

Proof. By the Krull-Schmidt theorem (see Huppert [4, I Sate 12.3]), 
01 induces a permutation of the Gi . If this permutation were non-trivial 
a: would not centralize a Sylow r-subgroup of G. Hence, for all i, Gia = Gi . 
By Lemma 3.3 01 induces an inner automorphism on each Gi, hence on G. 

LEMMA 3.5. Let G be an A-group. Let Sol(G) be the maximal normal 
subgroup of G. Then G/Sol(G) is an extension of a semi-simple group by a 
(solvable) group of odd order. 

Proof. Without loss of generality assume Sol(G) = 1. Any minimal 
normal subgroup of G is semi-simple. Let N be the maximal semi-simple 
normal subgroup of G (i.e. N = sockel of G). Then, by Feit and 
Thompson [2] and Lemma 3.4, any a-element of G induces an inner auto- 
morphism of IV. Thus, if G/N has even order, I < C(N) a G. But then 
C(N) n N = I would contradict N = sockel of G. 

COROLLARY 3.6. Let G be an A-group. Then G(“)/Sol(G(“’ is semi-simple. 

Proof. By Lemma 3.5, the result is clear. 
We shall eventually prove that G splits over G(“r and that G@) splits over 

Sol(G’“‘). 

4. A-PAIRS 

DEFINITION 4.1. Let G be a normal subgroup of G, . If for every prime p, 
with p 1 1 G /, a Sylow p-subgroup of GO is abelian, then we call (G,, , G) an 
A-pair. 

Remark. If (GO , G) is an A-pair, then G is an A-group. 
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LEMMA 4.2. Let (G, N) be an A-pair. Assume that N is a homogeneous 
semi-simple group (i.e. a direct product of isomorphic, non-abelian, simple groups). 
Then there exists a complement, K, of N in G, with C(N) < K, and all such 
complements are conjugate. 

Proof. We proceed by induction on 1 G 1. If C(N) # 1, (G/C(N), 
NC(N)/C(N)) satisfies our hypotheses, and, by induction, we get a 
complement K/C(N). Clearly, KN = G, and K n N < K n NC(N) n N < 
C(N) n N = 1. So we may assume C(N) = 1. Hence, by Lemma 3.4 
(I G : N /, 1 N I) = 1. Application of the Schur-Zassenhaus theorem (see 
Huppert [4, I Hauptsatz 18.1, 18.21) yields the desired result. (Note that 

CG/,~NWYC(W = 1 .I 

LEMMA 4.3. Let (GO, G) be an A-pair. If Gem) is semi-simple (i.e. 
Sol(G(“)) = 1) and non-trivial, then there exists a non-trivial, homogeneous 
semi-simple subgroup N of G, with N a G,, . (Hence, by Lemma 4.3, N is 
complemented in GO). 

Proof. Choose N to be a minimal normal subgroup of G, contained in 
G’“‘. 

The usefulness of the following transfer theorem was brought to our 
attention by M. Isaacs. 

THEOREM 4.4. Let G be a group with abelian Sylow p-subgroup. Then 
p~rlG’nZ(G)j. 

Proof. See Huppert [4, IV Sate 2.21. 

COROLLARY 4.5. Let G be an A-group. Then G’ n Z(G) = 1. Inparticular, 
;fG’ = G, Z(G) = 1. 

COROLLARY 4.6. Let Ha G, H a solvable A-group. Let N be a relative 
system normalizer, in G, of a Sylow system of H. Then H’N = G, H’ n N = 1. 

Proof. By the Frattini argument HN = G. Hence, it will suffice to show 
H’Ne = H, H’ n NO = 1 where N,, = N n H is a system normalizer of H. 
Now apply Huppert [4, VI Sate 14.41. 

Remark. Corollaries 4.5 and 4.6 where proved for G solvable by Taunt [6]. 
By Corollary 4.6 a system normalizer of an A-group is abelian. 

LEMMA 4.7. Let (G, H) be an A-pair with H < Z(G). Assume G/H is 
semi-simple. Then G’H = G, G’ n H = 1 (hence G = G’ x H). 

Proof. By Theorem 4.4 G’ n H = 1. And G/H = (G/H)’ = G’HIH; 
thus G’H = G. 
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LEMMA 4.8. Let (G, H) be an A-pair with H abelian and G/H semi-simple. 
Then His complemented in G and all its complements are conjugate. 

Proof. We shall proceed by induction on 1 G I. 
Let p be a prime with p ( j H I. Let H, be a Sylow p-subgroup of H. 

The A-pair (G/H,, H/H,) satisfies our hypotheses and, hence, H/H, has a 
complement, L/H,, in G/H, and all such complements are conjugate. If 
H, # H then the A-pair (L, H,) satisfies our hypotheses and, by induction, 
H, has a complement K in L and all such complements are conjugate. Then 
K will be a complement to H in G. Let KO be another complement to H in G. 
Then K,H,/H, is a complement to H/H, in G/H,. Hence K,,H, is conjugate 
to L and K, is, therefore, conjugate to a complement of H, in L (noting 
H, g G); and, thus, K, is conjugate to K. Consequently, we may assume 
H = H, . 

If H # C(H) then, by Lemma 4.7, C(H) = H x S, where S = C(H)’ 4 G. 
The A-pair (G/S, HS/S) satisfies our hypotheses and, by induction, we 
find a complement K/S of HS/S in G/S. Thus KH = G; and 
KnH<KnHSnH<SnH=l.Hence,KisacomplementforH 
in G. Let K,, be another such complement. Then C(H) = H(C(H) n KO) = 
H x (C(H) n K,,). Thus S = C(H)’ = (C(H) n K,,)‘, SO S < KO . By 
induction, K,,jS is conjugate to K/S, hence K,, is conjugate to K. Conse- 
quently, we may assume H = C(H). 

In this case the hypotheses imply (I G : H I, j H I) = 1. The result now 
follows from the Schur-Zassenhaus theorem. 

THEOREM 4.9. Let (G,, , G) be an A-pair, with G non-abelian. Then there 
exists a non trivial subgroup, N, of G, normal in GO , satisfying: 

i) N is either a (abelian) p-group for some prime p or N is a homo- 

geneous semi-simple group. 

ii) N is complemented in GO . 

Furthermore, we may choose a complement K of N such that for any 
primep, with pl/NI, every p-element of K centralizes N. And, if N is 
semi-simple, C(N) < K. 

Proof. If G@‘) = 1, let the derived length of G be k(# 1). Let iVl = Gck-l). 
Then, by Corollary 4.6, M is complemented in GO (by a relative system 
normalizer of Gtke2)). Any non-trivial Sylow subgroup of M will serve as N. 

If Gfm) # 1, but Sol(G@‘)) = 1, the result follows from Lemma 4.3. 
If L = Sol(G(“)) has derived length k > 1, then L(“-l) is complemented 

in G, (by a relative system normalizer of L(k-2)). Again, any non-trivial 
Sylow subgroup of Lo-l) will serve as N. 
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If L = Sol(G@)) is abelian and non-trivial, then Lemma 4.8 applied to the 
A-pair (G@), L) implies that L has a complement, K, in G(“) and that all 
such complements are conjugate. By the Frattini argument GO = N(K)L. 
It will suffice to show that N,(K) = 1 (for th en a non-trivial Sylow subgroup 
of L will serve as N). But N,(K) = C,(K) < Z(LK) = Z(G(“)). But 
Z(G(“)) = 1, by Corollary 4.5. 

5. STRUCTURE THEOREMS 

THEOREM 5.1. Let (G, , G) b e an A-pair. Let H = Sol(G(“)). Then there 
exist subgroups S, of G, and K, of GO , satisfying: 

i) HS = GtCC); 

ii) HSK=G,,/H1ISjIKI=IG,/; 

iii) K < N(S); 

iv) SK normalizes a Sylow system of H; 

v) If M < S, &i’ 4 SK, then C,(M) < K. 

Furthermore if S, , Kl satisfy conditions i)-v) then there exists x E GO such 
that SIX = S, K,x = K. 

Remark. Condition i), together with Lemmas 3.5 and 3.6, implies that S 
is semi-simple and K n G is solvable. 

Proof. We proceed by induction on / G,, I. 
First, let us assume H # 1. By Theorem 4.9 there is a non-trivial p-group 

N a GO , N < H, which is complemented in G,, , say G,, = NT, N n T = 1. 
By our inductive hypothesis T = H,SK, where HI = Sol(Ti”)), 
(Tl = T n G), and HI , S, K satisfy i)-v). We readily find that G,, = HSK 
is the desired factorization. 

Now we may assume H = 1. We must have S = G(O”). If S = I the result 
is trivial, so let us assume S f 1. In this case Theorem 4.9 asserts that there 
is a minimal normal subgroup, N, of GO , such that N < S and N is com- 
plemented in G, by a group T with C(N) < T. By induction T = S,,K; and 
S = N x SO (where S, = (T n G)(“’ = C,(N)). Now G, = SK, and 
S, K satisfy conditions i)-iv). To verify v) let M < S, M 4 SK. If 
M n N = 1, then M < S, and we are done by induction. So we may assume 
M = N x N,, for some NO < GO. Now C,,,,,(M) < C,,(N,) = 
NC,O,(N,,) < NK (by induction). But C,,(M) < C(N) < T = S,,K. 
Thus C,,(M) < NK n S,K = K. 

Now assume S, , Kl satisfy conditions i)-v). Then there exist abelian sub- 
groups H,, and Hi of H such that H,SK and H,S,K, are relative system 
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normalizers, in G,, , of Sylow systems of H. Hence, there is y E H such that 
(H,SK)y = H,S,K, and H,,v = HI. Thus, without loss of generality 
we may assume H = H,, is abelian, and HSK = HS,K, = G,, . Now 
HS = HS, = G(“) and, by Lemma 4.8 there is x E H such that Sx = S, . 
Thus we may assume S = S, , HSK = HSK, = G,, . But, as in the proof 
of Theorem 4.9, SK = SK, = N(S). So we may assume G, = SK = SK,. 
Let N be a minimal normal subgroup of G, , contained in S. Let 
S = N x No, N,, a G,, . Then C(N) = N&‘,,(N) < N,,K. Similarly 
C(N) < N,K, . By Lemma 4.2 N,,K, is conjugate to N,,K (by an element of 
N, which fixes N,,). Hence, by induction, K is conjugate to Kl (by an element 
of NO) and the theorem follows. 

Remark. If we examine the inductive nature of the proofs of Theorems 4.9 
and 5.1 we find that, if G is an A-group, then 

G = HI . H, . ... . H, . S, . S, . ... . S, . Kl . Kz ... . K, , 

where each Hi and Ki is a p-group, for some (varying) prime p, and each 
Sk is a homogeneous semi-simple group. Furthermore each subgroup in the 
factorization normalizes each of the preceeding ones and: 

H=H,.H,..‘..H,, I HI = I HI I . If& I . ... . I f-f,. I> 
s = s, x s, x .‘. x s, 
K=K,.K,.....K,, I K I = I Kl I . I K, I . ... . I K, I, 
(H, S, K as in Theorem 5.1). 

This generalizes Taunt’s “Basis Theorem” [6, Theorem 7.11. 

THEOREM 5.2. Let (GO, G) be an A-pair, H = Sol(G(“)). Let G,, = HSK, 
where S and K satisfy conditions i)-v) of Theorem 5.1. Let N 4 GO . Then 

N = (N n H)(N n S)(N n K). 

Proof. We proceed by induction on 1 GO /. 

A. First let us assume H = 1. Without loss of generality we may assume 
S # 1. If N n S = 1, N < C(S) and, by condition v), N < K, as desired. 
Let S, = N n S and let S,, x S, = S. Then N < C(S,,) = SICsOK(S,,) < 
S,K. Thus N = S,(N n K) = (N n S)(N n K). 

B. Assume K = I. Without loss of generality we may assume H # 1, 
S f 1. Let Ni = H n N. If Ni f 1 consider GO/N, = H/N1 * SN,/N, . 
By induction N/N, = (N n SNJN, , and, thus, N = (N n S) Nl as 
desired. So we may assume H n N = 1. 

481/17/I-6 
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Let H1 < H be chosen such that HIS is a relative system normalizer, 
in GO, of a Sylow system of H. Since N < C(H), N < HIS. Now 
NH, = H,(NN, n S). Hence N and NH, n S are complements of HI 
in NH, and, by Lemma 4.8, N = NH, n S. Thus N < S, as desired. 

C.Assume H#l, Sfl, Kfl. Let N,=NnH. If N,$;l 
consider GO/N, = H/N, . SNJN, 3 KN,/N, . By induction 

N = (N n SN,)(N n KN,) = (N n H)(N n S)(N n K). 

Thus, we may assume H n N = 1. By part A. it will suffice to show N < SK. 
Let HI < H be chosen such that H,SK is a relative system normalizer, 

in G,, , of a Sylow system of H. Since N < C(H), N < H,SK. But 
[S, N] < N n HIS = (by part B.) (N n H,)(N n S) = N n S. Thus 

N < N,l,(S). B ut as in the proof of Theorem 4.9, NHISK(S) = SK. Thus 
N < SK, as desired. 

Remark. If G is an A-group, and N a G, and 

G zx HI. H, ’ ... . H, . S, . S, . ‘.. . St. KI. KS ’ .a. . K, 

(as discussed in the previous remark) then Theorem 5.2, together with a 
result of Taunt [6, Theorem 5.11, shows that: 

N = (N n HI) . ..- .(NnHJ.(NnS,).... 

-(NnS,).(NnK,).....(Nn K,). 
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