NORTH- HOLLAND

Perturbation Analysis of the
Least Squares Solution in Hilbert Spaces

Guoliang Chen* and Musheng Wei*

Department of Mathematics
East China Normal University
Shanghai 200062, China

and

Yifeng Xue

Institute of Fundamental Education
East China University of Science and Technology
Shanghai 200037, China

Submitted by Richard A. Brualdi

ABSTRACT

Let H,, Hy be two Hilbert spaces over the same field, and let T: H, = H, be a
bounded linear operator with closed range. We give a complete description of the
perturbation analysis for the least squares solution to the operator equation Tx = y,
where x € H), y € H,.

1. INTRODUCTION

Let H, and H, be two Hilbert spaces, let T: H, —» H, be a bounded
linear operator with closed range, and let y € H,, x € H,. Consider the
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minimum norm least squares problem

min || x| subjectto |ly — Tx|l = min |ly — Txl|, (1)
€H,

where || || is the norm of H, or H, induced by its inner product (-, - ).

The problem (1) has many applications (cf. [1, 4]). Error estimate for the
perturbation of (1) in the finite dimensional case has been discussed in
literature such as [5], [6], [7], and [8]. In the infinite dimensional case, error
estimate of (1) is mentioned in [4, 2]. The authors of [2] presented an error
estimate of (1) when T is injective or surjective, or the perturbation of T
does not change the null space or the range of T.

In this paper, we will give an error estimate of the problem (1) for T
when the perturbation of T is type I or type II (for definitions, see Section
3), which is a general condition that the perturbation of T satisfy. This means
that the problem of error estimate in Hilbert spaces for the perturbation of
the problem (1) has been completely solved.

2. PRELIMINARIES

Throughout this paper we assume that H,, H, are Hilbert spaces over the
same field. Let L(H,, H,) denote the Banach space of all bounded linear
operators T : H, = H, with the operator norm [|T|| = sup{l|Tx||: [|x]l = 1}.

Let T € L(H,, H,). We denote the range and null space of T by R(T)
and Ker(T), respectively. According to [4], T € L(H,, H,) with R(T) closed
has a generalized inverse T*, namely, T* is the unique solution for the four
Moore-Penrose equations

TT*T =T, T'TT*=T*, (IT*)*=TT*, (T'T)* =TT,
(2)

in which T* denotes the adjoint operator of T.
For T € L(H,, H,), the reduced minimum module of T, denoted +(T),
is as follows:

r(T) = inf{|ITx|l: dist(x, Ker T) = 1}, (3)

where dist(x, Ker T) = min , ¢ g, ollx — yll.
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According to [3], R(T) is closed if and only if r(T)> 0, and by [2,
Lemma 4.1}, |[T*]| = r(T)™' if #(T) > 0.

Let X be a Banach space, and let V(X) denote the set of all closed
subspaces of X. Define a function &:V(X) X V(X) —» R" as follows. For
any two elements M, N € V(X), we set (cf. [3])

8(M,N) = sup{dist(u, N) :llull = l,u e M}. (4)

LemMA 2.1, Let p, g be the projections (i.e. p*>=p. > =q) of X onto
M, N, respectively. Then

8(M,N) <llp —gll (5)
Proof. For any u € M with [lull = 1, we have
dist(u, N) <llu — qull =[(p — g)ull <llp — 4l
This shows that 8(M, N) < |lp — gl u

Lemma 22, Let T € L(H,, H,) with R(T) closed, and T = T + 8T €
L(H,, H,) with R(T) closed. Then

r(T) - 8(R(T), R(T)) < II8TI. (6)

Proof. For any u € R(T) with [lull = 1, take x € H, such that u = Tx.
Then x # 0 and for any = € Ker T,

dist(u, R(T)) <llu = T(x = 2)| =T(x = 2) = T(x - 2)|
<18T{llx — =l
This means that dist(u, R(T)) < 8T || dist(x, Ker T). Since
1 = llull = ITxll = r(T) dist( x, Ker T),
it follows that

r(T) - 8(R(T), R(T)) < I8TIL. n
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LEmMA 2.3, Let T € L(H,, H,) with R(T) closed, and let T=T+8T
€ L(H,, H,). Then

r(T)8(Ker T,Ker T) < ||8T]l. (7)
r(T) > r(T)[1 — 8(Ker T.Ker T)] — 18Tl (8)

Proof. (7): Forany u € Ker T with |lull = 1, we have Tu = (T — 8T)u
= —(8T)u. Thus

18T = I(8T)ul = Tull > r(T) dist(u, Ker T),
SO
r(T)S(Ker’f,Ker T) < 8T\

(8): According to the definition of r(T) we can choose x, € (Ker T)*
with ||x, |l = 1 such that ||Tx | = r(T) for n — . Then we can choose
y, € Ker T such that dist(x,,Ker T) = |lx, — y,|l, and choose 7, € Ker T
such that dist(y,, Ker T) = H Y, — §,ll. Therefore we have

|1 Tx,l = || Tx, + (8T)x, | > ITx, |l = 6T
> r(T)dist(x,,Ker T) — [I8T||
=r(T)lx, =yl = 8Tl
> r(T)[llx, = 7.l = Iy, — 1] — 1871
> r(T)|[dist(x,. Ker T) — dist(y,.Ker )| — 18Tl
> r(T)[1 - 8(Ker T, Ker T)] — I8TI, (9)

in which we have used the fact that dist(x,,, Ker T) = |lx, — y,|l and ||z, || =
Lyl < 1Vn. Soif y, =0, then

0= dist( Yy, Ker f) < 6(Ker T, Ker 7:) (10a)
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it y, # 0, then

dist( y, . Ker 7:) = || y”||dist( m Ker T)

< lly,I6(Ker T, Ker T)
< 8(KerT.KerT). (10b)

From the definition of {x,}, letting n — % in (9), we get
r(T) > r(T)[1 — 8(Ker T, Ker T)| — II8T]. .

CoroLLaRY 2.1. Let T € L(H,, H,) with closed range and let T=T+
8T € L(H,, H,) such that Ker T = Ker T. Then

|~(T) ~ r(T)] < I18T1. (11)
Proof. When Ker T = Ker T. then the inequality (8) becomes
r(T) — r(T) < I8TIl.
By interchanging the roles of r(T) and r(T) we obtain
r(T) = r(T) <1187,
so that
|r(T) = ~(T)] < 16Tl .

REMARK. Corollary 2.1 is the same as [2, Lemma 4.2], which is a special
case of Lemma 2.3.

3. THE ESTIMATE OF IT *| FOR THE PERTURBATION
OPERATOR T

Suppose T € L(H,, H,) with R(T) closedand T = T + 8T € L(H,, H,).
In this section we will derlve the bound for |77 ]| with respect to ||T+|| and
18T|. We first define
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DEFINITION 3.1. Let T € L(H,, H,) with R(T) closed, and let T = T
+ 8T € L(H,, H,) be the perturbation version of T.
T is called a type I perturbation of T if

R(T) nR(T)" = {0}, (12)

in which R(T) is the closure of R(T). T is called a type I perturbation of T
if

Ker T N (Ker’f)l= {0}. (13)

REMARK. From Definition 3.1, if R(8T) € R(T), then T is a type I
perturbation of T. If Ker T € Ker 8T, then Tisa type II perturbation of T.
These special cases have been discussed in [2]. It is easy to construct an
example from Corollary 3.1 below such that T is a type I perturbation of T
but R(8T) ¢ R(T).

LEMMA 3.1. Let T € L(H,, H,) with R(T) closed, and let T = T + 8T
€ L(H,, H,). We have

@ If 8(R(T), R(T)) < 1, then R(T) N R(T)* = {0},
(i) If 8(R(T), R(T)) < 1, then R(T) N R(T)* = {0);
(iii) @) T is a type I perturbation of T if and only if T* is a type II
perturbation of T*; (b) T is a type II perturbation of T if and only if T* is a
type I perturbation of T*.

Proof. (): If R(T) N R(T)l # 0, we choose u € R(T) N R(T)* with
[lull = 1. Then 8(R(T), R(T)) dlst(u R(T)) = |lull = 1. This contradicts
the assumption.

(ii): Using the same method as in the proof of (i), we obtain (ii).

(iii): Note that Ker A = R(A*)* and (Ker A)* = R( A*) for any A €
L(H,, H,) (cf. [3]). Then we can prove statements (a) and (b) easily. [ |

COROLLARY 3.1. Let T € (", ™) and T = T + 8T € L(&", &™). If
NT*|I 18Tl < 1 and rank T = rank T, then T is a type I perturbation of T.

Proof. When rank T = rank T = 0, the statement is trivial. Now assume
that rank T = rank T > 0. Obviously R(T) is closed. From (6) in Lemma 2.2,

8(R(T), R(T)) < r(T) MI8TI = IT*I 18Tl < 1;
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thus R(T) N R(T)* = {0}. Since [R(T) N R(T)*]* 2 R(T)* +R(T). it fol-
lows that

m > dim [R(T) A R(T)*]" > dim| R(T) " +R(T)

— dim R(T) " +dim R(T) = m — dim R(T) + dim R(T)

m — rank T + rank T = m.

This implies that R(T) N R(T)* = {0}. [ ]

In the following, we will consider the estimation of |T*|| when T satisfies

(12) or (13). First, we give an estimate of 8(Ker T, Ker T).

TugoreM 3.1, Let T € L(H,, H,) with R(T) closed, and let T = T +
6T € I(H,, H,) with~||T+I| 18T < 1. Assume that T is a type I perturba-
tion of T or dimKer T = dim Ker T < . Then

I8l

aKerT,Kerf <‘-———
( ) < Tt

(14)

Proof. Notice that from the conditions of the theorem, I + T* 8T is
invertible. Set S =1 — (I + T+ 8T) 'T*T. Since T"T = T*T + T* 8T, it
follows that S = (I + TT 8T)™'(I — T7T).

Since (I —T*TXI +TY8T)=1—-T"T, also (I — T"TXI +
T*8T) ' =1— T*T, we have §% = S. From the definition of S, Ker T C
R(S). _

If T is a type I perturbation of T, then Vx € R(S), there is a y € H,
such that (I + T 8T) '(I - T "T)y =x, that is, (I —=T"T)y =(I +
T* 8T)x. Hence, 0 = T(I — T*T)j =T(] +T* 8T )x, which implies that
T (T + 8T)x =0, ie., TT+Tr = 0. Thus, Tx € R(T) N R(T)* = {0}, so
x € Ker T and R(S) C KerT

On the other hand, if dim Ker T = dim Ker T < o, then from the defini-
tion of S, we get that

dim R(S) = dim[R((I + T* 8T) "'(1 = 7°T))| = dim[R(1 - T*T)]

= dimKer T = dimKer T < oc.

Since Ker T C R(S), it follows that Ker T = R(S).
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Finally, applying Lemma 2.1 to Ker T and Ker T, we get that

8(Ker T,Ker T)
<l(r-rrry = sh =l -171) - (1+ 17 87) (1 - T 1Y
T8l

-1
<ll1=(r+71*871) "<m+—||n_5ﬂ' -

CoRrROLLARY 3.2. Let T € L(H,, H,) with R(T) closed, and let T=T+
8T € L(H,, H,) with IT*|| 18Tl < 1 . Suppose that Tisa type 1 perturba-
tion of T or

dimKer T = dimKer T < co.

Then Tis a type I perturbation of T.
Moreover, T is a type I perturbation of T if and only if T is a type I
perturbation of T.

Proof. By Theorem 3.1, IT*|| [|8THl < 5 implies that

TS

8 KerT,Kerf  — <
( ) < T e T

From {3, p. 201, Theorem 2.9],
5(R(T~*) , R(T*)) = 8((Ker 1’:)i , (Ker T)l) = 8(KerT,KerT) < 1,

it follows from (ii), (ii) of Lemma 3.1 that Tisa type II perturbation of T.
Replacing T by T* and T by T* we obtain that T is a type 1
perturbation of T if and only if Tisa type II perturbation of T. -

The following theorem is the main result of this section.

THEOREM 3.2. Let T € L(H,, H,) with R(T) closed, and let T = T +
8T € L(H,, H,) with |IT|| ”5T|| < 33 - V5) (< ! 1). Assume that Tisa
type 1 perturbatzcm of T. Then T has generaltzed inverse T+ with

i

Il < .
L N S TR Y]

(15)
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Proof. By applying Lemma 2.3(ii) and Theorem 3.1, we get that

1 T8 Tl

"D > = 1 T e

— 18T

_ 1= 3T+ TP T §
ITHI = ITr 8Ty (16)

Thus, if ITTII8T] < (3 - V5). then r(T) > 0, so T has the generalized

inverse Tt with

T = N7 I8 Tl

1T = —— < - - (17)
r(T) 1 =37 8T+ T II*8TI*
Clearly, if IT*|[18TI < 43 = V5) < L, then
L= T 18T 1 (1)
: 5 < .
L= 3ITIISTI + IT*IPN8TI> 1 — 5(3 + VBT I 8Tl
Thus from (17) and (18),
. Iz~
T < [ |

1= 13+ V5)IT I8t

4. PERTURBATION ANALYSIS

According to [1], for T € L(H,, H,) with R(T) closed, x = Ty is the
unique solution of the problem (1). Now let T=T+ 8T € L(H,, H,) be a
type 1 perturbation of T with ||T+l| 18T < $(3 ~ V5). Then by Theorem
3.1, T has generalized inverse T*. Let y € H2, and let § =y + 6y € H,
be the perturbation of y. Consider the least squares problem

min || x| subject to || — Txlf = mm g — T=I. (19)

Z€H,

Then (19) has a unique solution ¥ = f*g We now estimate ||T* — THI /T
and [ — x||/llxll. The condition number of T is defined by « = [T [ T|I.
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THEOREM 4.1. Let T € L(H,, H,) with R(T) closed. Let T = T + 8T

€ L(H,, H,) be a type I perturbation of T with |[T*|[16T| < 33 - V5),
and set g, = ||8T||/IIT||. Then

IT* — T+ < V38Tl max{IT 1%, 1T},

”f+_ T+“ . 1 (20)
— 0 < &7K + .
i (1= 16+ /) ern]

Proof. According to Theorem 3.2, T* exists. From the identity (cf. [4, p.
345, Theorem 3.10])

TH—Tt= —T* 8T T+ T(TH)*(8T)*(1 — TT")
+(I = T*T)(8T)*(T*)*T", (21)

we then get, by applying the orthogonality of the operators on the right side
of the above equality,

- - 2 ~ 2 2
1T+ = TN < (ITTIITH ST + (ITHPISTE) + (T IPI8T) .
Therefore it follows from Theorem 3.1 that

IT*— 17| - 1
— K 7K 5 |-
=i ! [1 - 33+ \/g)aTK]Z

CoROLLARY 4.1 (The continuity of T* in Hilbert spaces). Let T €
L(H,, Hy) with generalized inverse T*, and let {T,)} be a sequence of

operators in L(H,, H,). Let T,” be the generalized inverse of T, V¥n. Suppose
Il I
that T, = T (with respect to the norm || - || on L(H,, H,)). Then T, - T* if

and only if R(T,) N R(T)* = {0} for n large enough.

Proof. “= 7 part: By Lemma 2.2, 8(R(T,), R(T) < IT]IIIT, — Tl
Thus we have 8(R(T,), R(T)) < 1 for n large enough. Then by Lemma 3.1,
R(T,) N R(T)* = {0} for n large enough.
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“ <=7 part: For n large enough, we have

R(T)NR(T) =0 and [T*IIT, — Tl < (3 —V5).

M1
Then by applying Theorem 4.1 we obtain that T," — T". [ |

Combining Corollary 4.1 and Corollary 3.1, we deduce that in the finite
JI-11
dimensional case, T,” = T* if and only if rank T, = rank T for n large

enough.

THEOREM 4.2.  Suppose that T, T satisfy the conditions in Theorem 4.1,
andy, §j =y + 8y € Hy. Set &; = |8TI/ITI and &, = 18yl/llyll. Then

% — «ll K
< 1
[l ] 1-3(3+V5)erx

lo Iyl . er K ly — Txll
Er £
PUOITI = (3 + V5 )erk T

+ &, k. (22)
Proof. From (21) we obtain that
15 =2l =175 = 17yl =7 8y + (T~ 17)y]
< ITHI ISyl + TN ISTI fxll
+ T IPNSTI Iy — Tell + USTHNT Il Ml xll.

Therefore
£ —xll . ( llyll ly — Txl
<IIF* Il &, 7o + IS8T + [T = | + ST I IT*
<! (yu j 1T I
K
<
1= 3(3+V5)epx
o N Iyl N &K ly — Txll
£
TSI T 1= 53 + V5 )erx ITTIx]

+ &K, u
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COROLLARY 4.2.  If in addition y € R(T) in Theorem 4.2, then

% — «ll K

<
Il 1-3(3+V5)erk

(&, + &) + &rx.

Proof. Since y € R(T), we have y = Tx and llyll <IT]l [l x|l [ ]

The authors are grateful to the referee for useful comments and sugges-
tions.
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