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ABSTRACT 

Let H 1, H 2 be two Hilbert spaces over the same field, and let T : H l -+ H 2 be a 
bounded linear operator with closed range. We give a complete description of the 
perturbation analysis for the least squares solution to the operator equation Tx = y, 
where x ~H~, y ~ H  2. 

1. I N T R O D U C T I O N  

Let H 1 and H e be two Hilbert  spaces, let T : H  1 --+ H 2 be a b o u n d e d  
linear operator with closed range, and let y ~ H2, x ~ Hp Consider  the 
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minimum norm least squares problem 

min Ilxll subject to II y - Zxll = rain Ily - Tzl[, (1)  
z E H  I 

where 11" ]l is the norm of  H~ or H.2 induced by its inner product  ( - , ' ) .  
The  problem (1) has many applications (cf. [1, 4]). Error  estimate for the 

perturbation of (1) in the finite dimensional case has been discussed in 
literature such as [5], [6], [7], and [8]. In the infinite dimensional case, error 
estimate of (1) is ment ioned in [4, 2]. The  authors of  [2] presented an error 
estimate of  (1) when T is injective or surjective, or the perturbation of T 
does not change the null space or the range of  T. 

In this paper, we will give an error estimate of the problem (1) for T 
when the perturbation of  T is type I or type II (for definitions, see Section 
3), which is a general condition that the perturbation of T satisfy. This means 
that the problem of  error  estimate in Hilbert  spaces for the perturbation of 
the problem (1) has been completely solved. 

2. P R E L I M I N A R I E S  

Throughout  this paper  we assume that H 1, H 2 are Hilbert  spaces over the 
same field. Let  L(HI ,  H 2) denote  the Banach space of  all bounded  linear 
operators T : H 1 ~ H 2 with the operator  norm lIT[[ = sup{llrxll : Iixll = 1}. 

Let  T ~ L ( H  1, H2). We denote the range and null space of T by R ( T )  
and Ker(T),  respectively. According to [4], T ~ L ( H  I, H 2) with R ( T )  closed 
has a generalized inverse T +, namely, T + is the unique solution for the four 
Moore-Penrose equations 

TT+T = T,  T+TT += T +, ( T T + )  * = TT +, ( T + T )  * = T+T,  

in which T* denotes the adjoint operator  of  T. 
For  T ~ L ( H  1, H2), the reduced minimum module of T, denoted r (T) ,  

is as follows: 

r ( T )  = inf{ IITxll: dis t (x ,  Ker T )  = 1), (3)  

where dist(x, Ker T)  = min y ~ K~r r [I X -- yl[. 
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According to [3], R(T)  is closed if and only if r (T)  > 0, and by [2, 
L e m m a  4.1], IIT+II = r (T)  - l  if r (T)  > O. 

Let X be a Banach space, and let V ( X )  denote the set of  all closed 
subspaces of  X. Define  a function a : V ( X )  × V ( X )  ~ B + as follows. For  
any two elements  M, N ~ V(X) ,  we set (cf. [3]) 

~ ( M ,  N )  = sup{dis t (u ,  N ) :  Ilull = 1, u E M}.  (4) 

LEMMA 2.1. Let p, q be the projections (i.e. p,2 = P, q2 = q) of X onto 
M, N, respectively. Then 

8 ( M ,  N )  ~ lip - qll. (5)  

Proof. For  any u ~ M with IIull = 1, we have 

dis t (u ,  N )  4 Ilu - qull = I [ ( P  - q ) u l l  4 l ip  - qH. 

This shows that 8 (M,  N )  ~< II p - q[]. • 

LEMMA 2.2. Let T ~ L (H  l, H 2) with R(T)  closed, and f = T + 6T 
L(H> H 2) with R(T)  closed. Then 

r ( T )  . 8 ( R ( T ) ,  R ( f ) )  ~ IlaT[I. (6)  

Proof. For  a n y u  ~ R ( T )  with Ilull = 1, take x ~ H 1 such that u = Tx. 
Then  x ~ 0 and for any z ~ Ker T, 

dis t (u,  R ( T ) ) ~ < [ l u -  T ( x - ~ ) 1 1  =llT(x-  )11 

IlaZllllx - zll 

This means that dist(u, R(7~)) ~< IlaTII dist(x, K e r r ) .  Since 

1 = Ilull = Ilrxll >1 r ( Z )  (list( x, Ker T ) ,  

it follows that 

r (T)  • a ( R ( T ) ,  R ( f ) )  ~ IlaTII. • 
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LEMMA 2.3. Let T ~ L(Hj,  H 2) with R(T) closed, and let T = T + 8T  
E L(Hx,  He). Then 

r ( T )  6(Ker  T, Ker T) < II ~TII. (7) 

r (7  ~) > / r ( T ) [ 1  - 3 (KerT ,KerT~) ]  -I]~TII .  (s) 

Proof. (7): For any u ~ Ker 7 ~ with Ilull = 1, we have Tu = (T - 6 T ) u  
= - ( ~ T ) u .  Thus 

II~TII ~ I I ( ~ T ) ~ I I  = IlZull ~ r ( T ) d i s t ( u , K e r T ) ,  

SO 

r ( T )  6 (Ker  7 ~, Ker T) 4 II 8TII. 

(8): According to the definition of r(7~), we can choose x n ~ (Ker 7~) l 
with IIx,,ll = 1 such  that 117~xr, II ~ r (7  ~) for n ~ ~.  Then we can choose 
y,, ~ K e r T  such that d i s t ( x , , K e r T )  = IIx,, - ynLI, and choose ~, ~ Ker7 ~ 
such that dist(y,,, Ker T) = II y,, - 0,~11. Therefore we have 

IITx.II =llZx,, + ( ~ T ) x . l l  > / I l Z x . I I -  118TII 

>i r ( T )  dist( x,,, Ker T) - 118Tll 

= r (T) l l xn  - ynH -II~TII  

>1 r ( T ) [ l l x n  - ~,,1[- Ily. - Q.II] - I I~TII  

>7 r ( T ) [ d i s t ( x , , , K e r  T )  - dist( y,,, Ker T)] -118TI[ 

>/ r ( T ) [ 1  - g (Ker  T, Ker T)]  - I[ST[I, (9) 

in which we have used the fact that dist(x n, Ker T) = [Ix. - y.II and IIx.II = 
1, Ily,,ll -<< 1 Vn. So if y,  = 0, then 

0 = d i s t (yn ,Ker  7 ~) ~< ~(Ker  T , K e r  T) ;  (lOa) 
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if y,, ~s 0, then 

• [Y" f)  dist( y,,, Ker 7 ~) = H y,,ll dlst[ ~ ,  Ker 

~< ]l y,,l l6(Ker T, Ker 7 ~) 

6 (Ker  T, Ker 7~). (10b) 

From the definition of  {%,}, letting n ~ 0c in (9), we get 

r (7  ~) >~ r ( Z ) [ l  - 6 (Ker  Z , K e r  7~)] -116Zll.  • 

COROLLARY 2.1. Let T ~ L( H l, H e) with closed range and let T = 7" + 
6 T  ~ L(Ha,  H 2) such that Ker T = Ker 7 ~. Then 

] r ( T )  - r ( T ) [  ~< ll6Zlr. (11) 

Proof. When Ker T = Ker T, then the inequali b, (S) becomes 

r ( T )  - r ( T )  <~ 116TII. 

By interchanging the roles of  r ( T )  and r(7 ~) we obtain 

r (7  ~) - r ( T )  ~ l laTll, 

so that 

[ r ( T )  - r(7~) [ ~< [t6TII. • 

REMARK. Corollary 2.1 is the same as [2, Lemma 4.2], which is a special 
case of Lemma 2.3. 

3. T H E  ESTIMATE OF I1~+11 FOR T H E  P E R T U R B A T I O N  
O P E R A T O R  7 ~ 

Suppose T ~ L ( H  1, H2) with R ( T ) c l o s e d  and T = T + 6 T  ~ L ( H  l, H,2). 
In this section we will derive the bound for 117~+11 with respect to IIT+II and 
tlaTII. We  first define 
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DEFINITION 3.1. Let  T ~ L(H1, H e) with R(T)  closed, and let 7 ~ = T 
+ 6T ~ L (H  1, H 2) be the per turbat ion version of T. 

7 ~ is called a type I per turbat ion of T if 

R(f )  n R(T) = {0), (12) 

in which R(7  ~) is the closure of  R(7~). T is called a type II  per turbat ion of  T 
if 

K e r T ~  ( K e r T )  = {0}. (13) 

REMARK. From Definition 3.1, if R ( ~ T ) G  R(T),  then 7 ~ is a type I 
per turbat ion of T. I f  Ker T G Ker 3T,  then 7 ~ is a type II  per turbat ion of  T. 
These  special cases have been  discussed in [2]. It  is easy to construct an 
example from Corollary 3.1 below such that T is a type I per turbat ion of T 
but  R ( 6 T )  ~ R(T).  

LEMMA 3.1. Let T ~ L (H  1, H 2) with R(T)  closed, and let T = T + 8T 
L (H  1, H2). We have 

(i) I f  ~(R(T),  R ( T ) )  < 1, then R(T)  fq R(7~) ± = {0}; 
(ii) I f  ~(R(T),  R(T))  < 1, then R(T)  • R(T)  ~ = {0}; 

(iii) (a) 7 ~ is a type I perturbation of T if and only if T* is a type II 
perturbation o fT*;  (b) T is a type t t  perturbation o f T  if and only if T* is a 
type I perturbation of T*. 

Proof. (i): I f  R(T)  A R(T)  ± 4: O, we choose u ~ R(T)  f~ R(T)  l with 
Ilull  = 1 .  Then  8(R(T) ,  -R--(-~) >~ dist(u, R(7~)) = I lu l l  = 1 .  This contradicts 
the assumption. 

(ii): Using the same method  as in the proof  of  (i), we obtain (ii). 
(iii): Note that Ker A = R(A*)  ± and (Ker  A) ± = R ( A * )  for any A 

L(H  1, H 2) (of. [3]). Then  we can prove statements (a) and (b) easily. • 

COROLLARY 3.1. Let T ~ L ( ~ " ,  ~"~) and T = T + 8T ~ L ( ~ " ,  ~ ' ) .  I f  
IIT+II II ~TII < 1 and rank T = rank T, then T is a type I perturbation of T. 

Proof. ,  When  rank 7 ~ = rank T = 0, the s ta tement  is trivial. Now assume 
that rank T = rank T > 0. Obviously R(T)  is closed. F rom (6) in Lemina  2.2, 

~( R ( T ) ,  R ( T )  ) <~ r (T ) - t l l~TI I  = IIT+II II~TII < 1; 
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thus R ( T )  (q R(7:) ± = {0}. Since JR(7:) 71R(T)± ]  ± _D R(7:) ± + R ( T ) ,  it fol- 
lows that 

m > dim [ R ( 7 : ) ¢ ) R ( T ) ± I ±  > d i m [ R ( 7 : )  ± + R ( T ) I  

= dim R ( T )  * + dim R ( T )  = m - dim R(7:)  + dim R ( T )  

= m -  rank 7 : +  r a n k T =  m. 

This implies that R(7:) C3 R ( T )  ± = {0}. 

In the following, we will consider the estimation of 117:+11 when 7: satisfies 
(12) or (13). First, we give an est imate of  6(Ker  T, Ker 7:). 

TttEOREM 3.1. Let T ~ L ( H  l, H 2) with R (T )  closed, and let f = T + 

6T  ~ L ( H  l, H2) with Ilr+ll IlaTII < 1. Assume that 7: is a type I perturba- 
tion o f  r or dim Ker 7: = dim Ker T < :c. Then 

IIT+II IlaTII 
6(KerT,KerT:)  ~< i -IIT+[I IlaTIl' (14) 

Proof. Notice that from the conditions of  the theorem,  I + T + aT is 
invertible. Set S = 1 - ( I +  T + a T )  IT+7:. Since T + 7 : =  T+T + T + aT,  it 

follows that S = ( I  + T + 6 T ) - 1 ( I  - T+T) .  
Since ( I  - T + T ) ( I  + T + 6 T )  = I - T+T,  also ( I  - T + T ) ( I  + 

T + a T )  i = I - T+T, we have S 2 = S. From the definition of S, Ker 7: _c 
R(S).  

I f  7: is a type I per turbat ion of T, then Vx ~ R ( S ) ,  there is a y ~ H 1 
such that ( I  + T + aiT) 1 ( I -  T + T ) y  = x ,  that is, ( I -  T + T ) y  = ( I  + 

T + 6 T ) x .  Hence,  0 = T ( I  - T + T ) y  = T ( I  + T + a T ) x ,  which implies that 
TT+(T + 6 T ) x  = 0, i.e., TT+Tx = 0. Thus, 7:x ~ R(7:) ¢~ R(T )  ± = {0}, so 
x ~ Ker 7: and R(S)  c_ Ker 7:. 

On the other  hand, if dim Ker 7: = dim Ker T < m, then from the defini- 
tion of S, we get that 

dim R( S) = dim[ R( (  / + T + ~ T ) - I ( I  - r+r))] = d i m [ R ( / -  T + T ) I  

= dim Ker T = dim Ker  7: < oc. 

Since Ker 7: c R(S),  it follows that Ker 7: = R(S).  
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Finally, applying Lemma 2.1 to Ker T and Ker 7 ~, we get that 

~(Ker T, Ker 7 ~) 

 <ll(I- T + T )  - s l l  = l i t , -  T + T )  - ( I  + T + ~ T ) - I (  I - T+T)[I 

 llx - ÷ T+ II 
tlT+II II~TII 

1 - I]T+IIIIOTII" 
i! 

COROLLARY 3.2. Let T ~ L(H l, H 2) with R(T) closed, and let T = T + 
1 3T ~ L(H 1, H 2) with lIT+It 118TID < ~. Suppose that T is a type I perturba- 

tion of T or 

dim Ker 7 ~ = dim Ker T < ~. 

Then T is a type II perturbation of T. 
Moreover, T is a type I perturbation of T if and only if T is a type II 

perturbation of T. 

Proof. By Theorem 3.1, IIT+tl IlaTII < ½ implies that 

tlT+II II~TII 
~ (KerT ,  K e r T )  ~< 1 -IIT+I111~TIt < 1. 

From [3, p. 201, Theorem 2.9], 

3 ( R ( f ' * ) ,  R(T*)) = ~((Ker ~ ) l ,  (Ker T) ±) = ~(Ker T,Ker  7 z) < 1, 

it follows from (ii), (iii) of Lemma 3.1 that T is a type II perturbation of T. 
Replacing T by T* and 7 ~ by 7 ~*, we obtain that T is a type I 

perturbation of T if and only if 7 ~ is a type II perturbation of T. • 

The following theorem is the main result of this section. 

THEOBEM 3.2. Let T E L(H1, H z) with R(T) closed, and let T = T + 
6T ~ L(H1, H 2) with IIT+II [l~Zll < ½(3 - v~ )  ( <  ½). Assume that f is a 
type 1 perturbation of T. Then T has generalized inverse T+ with 

IIT+II 
117~+11 ~< 1 - }(3 + ~/-5)IIT+II tld~TII " (15) 
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Pro@ By applying Lemma 2.3(ii) and Theorem 3.1, we get that 

1 [ ]IT+IIIlaTII ] 
r ( T )  > ~ 1 -  1 - 1 t r + l I I l a r l l  - l ]8T l l  

1 - 3IIT+II I laTII + IIT+II211aTII 2 

I IT+It( I  - IIT+II I laTH) 
(16)  

Thus, if IIT+II [taTII < }(3 - x/75), then r (T)  > 0, so T has the generalized 
inverse T + with 

1 
IIT+II - ,-(f) 

IIT+II(i -IIT+II IlaTII) 

1 - 311T-IIIlaTII + IIT+II2IlaTI[ ~ 
(17) 

1 I Clearly, if IIZ+ll IlaTII < ~(3 - v~)  < > then 

1 -IIT+II I laTII 1 

1 - 311T+II I laTII + IIT+II211aT[I 2 ~ 1 - .'2(3 + f a ) l l T  + IlaT[l" 
(is) 

Thus from (17) and (18), 

IIT+[I 
liT+l[ ~ • 

1 - ~ (3  + fa)l lT+ll  I l aTl l  

4. PERTURBATION ANALYSIS 

According to [1], for T E L(HI,  H2) with R(T)  closed, x = T÷y is the 
unique solution of the problem (1). Now, let T = T + 8T ~ L(HI,  H 2) be a 
type I perturbation of T with IIT+ll IlaTII < ½(3 - f - g ) .  T h e n  by Theorem 
3.1, T has generalized inverse T +. Let y ¢ H 2 ,  and let ~ = y  + ~y ~ H 2 
be the perturbation of y. Consider the least squares problem 

rain Ilxl{ subject to Ily - Txi] = rain lly -- Tz]l. (19 )  
: ~ f t  I 

Then (19) has a unique solution ~7 = T + 0" We now estimate lIT + - T + I [ / l lT + II 
and II~ - xll/llx[I. The condition number  of T is defined by K = I[TII IIT+ll. 
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THEOREM 4.1. Let T ~ L(H l, H 2) with R(T) closed. Let T = T + 8T 
1 L(H 1, H 2) be a type I perturbation of T with [LT+II [[6Tl[ < 7(3 - ~/-5), 

and set e r = II~TII/IITII. Then 

Ill ÷ -  T÷II < v~ll~TIImax{llZll 2, I[rl12}, 

iiZ+ll < e rK 1 + [1 - ½(3 + ~/ '5)erK] 2 " 

Pro@ According to Theorem 3.2, 7 % exists. From the identity (cf. [4, p. 
345, Theorem 3.10]) 

T + -  T +=  - 7  ~+ ~TT++ f + ( f + ) * ( S T ) * ( I  - TT+) 

+(I - T+T)(ST)*(T+)*T+,  (21) 

we then get, by applying the orthogonality of  the operators on the right side 
of  the above equality, 

Ill + -  T+II 2 < (llf÷ll IIr+ll II~rll) 2 + (lIf+II211~Zll) 2 + (IIT+II2118TII) 2. 

Therefore  it follows from Theorem 3.1 that 

ill ÷- T÷ll ( 
lIT+I[ ~< ~TK 1 + 

1 ) 
[ 1  - + 2 

COROLLARY 4.1 (The continuity of  T + in Hilbert  spaces). Let T 
L(H1, H 2) with generalized inverse T +, and let {T n} be a sequence of 
operators in L( H 1, H2). Let T, + be the generalized inverse ofT,, Vn. Suppose 

that 7", H T (with respect to the norm I1" l] on L(H1, H2)). Then T, + ~ T + if 
and only if  R(T,) C? R(T) " = {0} for n large enough. 

Proof. " ~  " part: By Lemma 2.2, 6(R(T,,), R(T)) ~ liT211 IIZ~ - Zll. 
Thus we have ~3(R(T,), R(r ) )  < 1 for n large enough. Then by Lemma 3.1, 
R(T,) • R(T) ± = {0} for n large enough. 
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" = "  part: For  n large enough, we have 

R ( T , , )  rq R ( T )  j- = 0 and IIT+II liT,, - TI I  < } ( 3  - ~ ) .  

Then by applying Theorem 4.1 we obtain that T,, + ~ T +. 

Combining Corollary 4.1 and Corolla D' 3.1, we deduce that in the finite 

dimensional ease, 7", + I1~ T+ if and only if rank T,, = rank T for n large 
enough. 

THEOREM 4.2. Suppose that T, T satisfy the conditions in Theorem 4.1, 
avid y, ~ = y + 8 y  ~ H e. Set ~T = 118TII/IITII and e!l = 116yll/llyll. Then 

11-'7 - xtl K 

Ilxll ~< 1 + - } (3  ¢ g ) ~ , ~  

I ly l l  e T K  I l y  - -  Txll 
X ~ ' +  %llTIIIIxlm-~ + 1--,~](3+~-5)~TK IITIIIIxll 

-{- E T K .  

) 
(22) 

Proof. From (21) we obtain that 

u~ - x t i  = II~+~ - ~+yit =11~ ÷ 8y + ( ~ + -  ~+),~[I 

~< 1fT~+l1118yll + 117~+ I1118TII Itxll 

+ 117~+112118TII Ily - Txll + tISWll IIY+ll Ilxll. 

Therefore  

I I~ -x l f  ( Ilyll 
I l x l ~  < I1~+11% I/~xll + 118711 + IIT+II 

~< 
K 

1 - ½(3 + ~ ) ~ .  

Ilyll 
x e~ + % IlZll Ilxll 

II y - Zxll 
I~HIIxH I + 118Yll IIT+II 

m +  
,fit K II y - r~ll  

+ ~,r K . • 
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COROLLARY 4.2. I f  in addition y ~ R(T)  in Theorem 4.2, then 

II; -x l l  K 

Ilxll ~< 1 -  ½(3 + ( g ) ~ , K  (% 
+ ~T) + 

~°T K . 

Proof. Since y ~ R(T), we have y = Tx and Ilyl[ ~ IITII Ilxll, • 

The authors are grateful to the referee for  useful comments and sugges- 
tions. 
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