

Perturbation Analysis of the Least Squares Solution in Hilbert Spaces

Guoliang Chen* and Musheng Wei* *Department of Mathematics East China Normal University Shanghai 200062, China*

and

Yifeng Xue *Institute of Fundamental Education Easf China University of Science and Technology Shanghai 200037, China*

Submitted by Richard A. Brualdi

ABSTRACT

Let H_1, H_2 be two Hilbert spaces over the same field, and let $T: H_1 \rightarrow H_2$ be a bounded linear operator with closed range. We give a complete description of the perturbation analysis for the least squares solution to the operator equation $Tx = y$, where $x \in H_1$, $y \in H_2$.

1. INTRODUCTION

Let H_1 and H_2 be two Hilbert spaces, let $T: H_1 \rightarrow H_2$ be a bounded linear operator with closed range, and let $y \in H_2$, $x \in H_1$. Consider the

* Snpported by the National Natural Sciences Foundation, P.R. China.

LINEAR ALGEBRA AND ITS APPLICATIONS 244:69-80 (1996)

[©] Elsevier Science Inc., 1996 0024-3795/96/\$15.00 655 Avenue of the Americas, New York, NY 10010 SSDI 0024-3795(94)00210-5

minimum norm least squares problem

min ||x|| subject to
$$
||y - Tx|| = \min_{z \in H_1} ||y - Tz||,
$$
 (1)

where $\|\cdot\|$ is the norm of H_1 or H_2 induced by its inner product (\cdot,\cdot) .

The problem (1) has many applications (cf. [1, 4]). Error estimate for the perturbation of (1) in the finite dimensional case has been discussed in literature such as [5], [6], [7], and [8]. In the infinite dimensional case, error estimate of (1) is mentioned in [4, 2]. The authors of [2] presented an error estimate of (1) when T is injective or surjective, or the perturbation of T does not change the null space or the range of T.

In this paper, we will give an error estimate of the problem (1) for T when the perturbation of T is type I or type II (for definitions, see Section 3), which is a general condition that the perturbation of T satisfy. This means that the problem of error estimate in Hilbert spaces for the perturbation of the problem (1) has been completely solved.

2. PRELIMINARIES

Throughout this paper we assume that H_1 , H_2 are Hilbert spaces over the same field. Let $L(H_1, H_2)$ denote the Banach space of all bounded linear operators $T: H_1 \to H_2$ with the operator norm $||T|| = \sup{||Tx|| : ||x|| = 1}.$

Let $T \in L(H_1, H_2)$. We denote the range and null space of T by $R(T)$ and Ker(T), respectively. According to [4], $T \in L(H_1, H_2)$ with $R(T)$ closed has a generalized inverse T^+ , namely, T^+ is the unique solution for the four Moore-Penrose equations

$$
TT^{+}T = T, \qquad T^{+}TT^{+} = T^{+}, \qquad (TT^{+})^{*} = TT^{+}, \qquad (T^{+}T)^{*} = T^{+}T, \tag{2}
$$

in which T^* denotes the adjoint operator of T.

For $T \in L(H_1, H_2)$, the reduced minimum module of T, denoted $r(T)$, is as follows:

$$
r(T) = \inf\{|Tx\| : \text{dist}(x, \text{Ker } T) = 1\},\tag{3}
$$

where dist(x, Ker T) = $\min_{y \in \text{Ker } T} ||x - y||$.

According to [3], $R(T)$ is closed if and only if $r(T) > 0$, and by [2, Lemma 4.1], $||T^+|| = r(T)^{-1}$ if $r(T) > 0$.

Let X be a Banach space, and let $V(X)$ denote the set of all closed subspaces of X. Define a function $\delta: V(X) \times V(X) \to R^+$ as follows. For any two elements $M, N \in V(X)$, we set (cf. [3])

$$
\delta(M, N) = \sup \{ \text{dist}(u, N) : ||u|| = 1, u \in M \}. \tag{4}
$$

LEMMA 2.1. Let p, q be the projections (i.e. $p^2 = p$, $q^2 = q$) of X onto *M, N, respectively. Then*

$$
\delta(M, N) \leq \|p - q\|. \tag{5}
$$

Proof. For any $u \in M$ with $||u|| = 1$, we have

$$
dist(u, N) \le ||u - qu|| = ||(p - q)u|| \le ||p - q||.
$$

This shows that $\delta(M, N) \le ||p - q||$.

LEMMA 2.2. *Let* $T \in L(H_1, H_2)$ *with* $R(T)$ *closed, and* $\tilde{T} = T + \delta T \in$ $L(H_1, H_2)$ with $R(\tilde{T})$ closed. Then

$$
r(T) \cdot \delta(R(T), R(\tilde{T})) \le \|\delta T\|.\tag{6}
$$

Proof. For any $u \in R(T)$ with $||u|| = 1$, take $x \in H_1$ such that $u = Tx$. Then $x \neq 0$ and for any $z \in \text{Ker } T$,

$$
dist(u, R(\tilde{T})) \le ||u - \tilde{T}(x - z)|| = ||T(x - z) - \tilde{T}(x - z)||
$$

$$
\le ||\delta T|| ||x - z||
$$

This means that dist(u, $R(\tilde{T}) \leq \|\delta T\|$ dist(x, Ker T). Since

$$
1 = ||u|| = ||Tx|| \ge r(T) \operatorname{dist}(x, \operatorname{Ker} T),
$$

it follows that

$$
r(T) \cdot \delta(R(T), R(T)) \leq \|\delta T\|.
$$

LEMMA 2.3. Let $T \in L(H_1, H_2)$ with $R(T)$ closed, and let $\tilde{T} = T + \delta T$ $\in L(H_1, H_2)$. Then

$$
r(T)\,\delta(\text{Ker } \tilde{T}, \text{Ker } T) \leq \|\delta T\|.\tag{7}
$$

$$
r(\tilde{T}) \geqslant r(T) \big[1 - \delta \left(\operatorname{Ker} T, \operatorname{Ker} \tilde{T} \right) \big] - \| \delta T \|.
$$
 (8)

Proof. (7): For any $u \in \text{Ker } \tilde{T}$ with $||u|| = 1$, we have $Tu = (\tilde{T} - \delta T)u$ $= -(\delta T)u$. Thus

$$
\|\delta T\| \geq \left\| (\delta T)u \right\| = \|Tu\| \geq r(T) \operatorname{dist}(u, \operatorname{Ker} T),
$$

SO

$$
r(T)\,\delta(\mathrm{Ker\,}\tilde{T},\mathrm{Ker\,}T)\leq \|\delta T\|.
$$

(8): According to the definition of $r(T)$, we can choose $x_n \in (\text{Ker } T)^{\perp}$ with $||x_n|| = 1$ such that $||Tx_n|| \rightarrow r(T)$ for $n \rightarrow \infty$. Then we can choose $y_n \in \text{Ker } T$ such that dist($x_n, \text{Ker } T$) = $||x_n - y_n||$, and choose $\tilde{y}_n \in \text{Ker } T$ such that dist(y_n , Ker T) = $||y_n - \tilde{y}_n||$. Therefore we have

$$
\|\tilde{T}x_n\| = \|Tx_n + (\delta T)x_n\| \ge \|Tx_n\| - \|\delta T\|
$$

\n
$$
\ge r(T) \text{ dist}(x_n, \text{Ker } T) - \|\delta T\|
$$

\n
$$
= r(T) \|x_n - y_n\| - \|\delta T\|
$$

\n
$$
\ge r(T) \Big[\|x_n - \tilde{y}_n\| - \|y_n - \tilde{y}_n\|\Big] - \|\delta T\|
$$

\n
$$
\ge r(T) \Big[\text{dist}\Big(x_n, \text{Ker } \tilde{T}\Big) - \text{dist}\Big(y_n, \text{Ker } \tilde{T}\Big)\Big] - \|\delta T\|
$$

\n
$$
\ge r(T) \Big[1 - \delta \big(\text{Ker } T, \text{Ker } \tilde{T}\big)\Big] - \|\delta T\|,
$$
 (9)

in which we have used the fact that dist(x_n , Ker T) = $||x_n - y_n||$ and $||x_n||$ = 1, $||y_n|| \le 1 \forall n$. So if $y_n = 0$, then

$$
0 = dist(y_n, \text{Ker } \tilde{T}) \le \delta(\text{Ker } T, \text{Ker } \tilde{T});
$$
 (10a)

if $y_n \neq 0$, then

$$
\text{dist}\left(y_n, \text{Ker }\tilde{T}\right) = \|y_n\| \text{dist}\left(\frac{y_n}{\|y_n\|}, \text{Ker }\tilde{T}\right)
$$

$$
\leq \|y_n\| \delta(\text{Ker }T, \text{Ker }\tilde{T})
$$

$$
\leq \delta(\text{Ker }T, \text{Ker }\tilde{T}). \tag{10b}
$$

From the definition of $\{x_n\}$, letting $n \to \infty$ in (9), we get

$$
r(\tilde{T}) \geqslant r(T) \Big[1 - \delta \big(\operatorname{Ker} T, \operatorname{Ker} \tilde{T} \big) \Big] - \| \delta T \|.
$$

COROLLARY 2.1. *Let* $T \in L(H_1, H_2)$ with closed range and let $T = T + T$ $\delta T \in L(H_1, H_2)$ such that $\text{Ker } T = \text{Ker } T$. *Then*

$$
\left| r(T) - r(\tilde{T}) \right| \leq \|\delta T\|.
$$
 (11)

Proof. When Ker $T = \text{Ker } \tilde{T}$, then the inequality (8) becomes

$$
r(T) - r(\tilde{T}) \leq \|\delta T\|.
$$

By interchanging the roles of $r(T)$ and $r(\tilde{T})$ we obtain

$$
r(\tilde{T}) - r(T) \leq \|\delta T\|,
$$

so that

$$
|r(T) - r(\tilde{T})| \leq \|\delta T\|.
$$

REMARK. Corollary 2.1 is the same as [2, Lemma 4.2], which is a special case of Lemma 2.3.

3. THE ESTIMATE OF $\|\tilde{T}^+\|$ for the perturbation OPERATOR \tilde{T}

Suppose $T \in L(H_1, H_2)$ with $R(T)$ closed and $T = T + \delta T \in L(H_1, H_2)$. In this section we will derive the bound for $||T^*||$ with respect to $||T^*||$ and $\|\delta T\|$. We first define

DEFINITION 3.1. Let $T \in L(H_1, H_2)$ with $R(T)$ closed, and let $\tilde{T} = T$ $f \in L(H_1, H_2)$ be the perturbation version of T. \tilde{T} is called a type I perturbation of T if

$$
\overline{R(\tilde{T})} \cap R(T)^{\perp} = \{0\},\tag{12}
$$

in which $R(\tilde{T})$ is the closure of $R(\tilde{T})$. \tilde{T} is called a type II perturbation of T if

$$
\text{Ker } T \cap \left(\text{Ker } \tilde{T} \right)^{\perp} = \{0\}. \tag{13}
$$

REMARK. From Definition 3.1, if $R(\delta T) \subseteq R(T)$, then \tilde{T} is a type I perturbation of T. If Ker $T \subseteq \text{Ker } \delta T$, then \tilde{T} is a type II perturbation of T. These special cases have been discussed in [2]. It is easy to construct an example from Corollary 3.1 below such that \tilde{T} is a type I perturbation of T but $R(\delta T) \nsubseteq R(T)$.

LEMMA 3.1. Let $T \in L(H_1, H_2)$ with $R(T)$ closed, and let $\tilde{T} = T + \delta T$ $\in L(H_1, H_2)$. We have

(i) If $\delta(R(T), \overline{R(\tilde{T})}) < 1$, then $R(T) \cap R(\tilde{T})^{\perp} = \{0\};$

(ii) *If* $\delta(R(\tilde{T}), R(T)) < 1$, then $R(\tilde{T}) \cap R(T)^{\perp} = \{0\};$

(iii) (a) \tilde{T} *is a type I perturbation of T if and only if* \tilde{T}^* *is a type II perturbation of* T^* ; (b) \tilde{T} is a type II perturbation of T if and only if \tilde{T}^* is a *type I perturbation of T*.*

Proof. (i): If $R(T) \cap R(\tilde{T})^{\perp} \neq 0$, we choose $u \in R(T) \cap R(\tilde{T})^{\perp}$ with $||u|| = 1$. Then $\delta(R(T), \overline{R(T)}) \geq \text{dist}(u, \overline{R(T)}) = ||u|| = 1$. This contradicts the assumption.

(ii): Using the same method as in the proof of (i), we obtain (ii).

(iii): Note that Ker $A = R(A^*)^{\perp}$ and $(Ker A)^{\perp} = \overline{R(A^*)}$ for any $A \in$ $L(H_1, H_2)$ (cf. [3]). Then we can prove statements (a) and (b) easily.

COROLLARY 3.1. *Let* $T \in L(\mathcal{C}^n, \mathcal{C}^m)$ and $\tilde{T} = T + \delta T \in L(\mathcal{C}^n, \mathcal{C}^m)$. If $||T^+|| ||\delta T|| < 1$ and rank $\tilde{T} = \text{rank } T$, then \tilde{T} is a type I perturbation of T.

Proof. When rank $\tilde{T} = \text{rank } T = 0$, the statement is trivial. Now assume that rank $\tilde{T} = \text{rank } T > 0$. Obviously $R(\tilde{T})$ is closed. From (6) in Lemma 2.2,

$$
\delta(R(T), R(\tilde{T})) \leq r(T)^{-1} \|\delta T\| = \|T^+\| \|\delta T\| < 1;
$$

thus $R(T) \cap R(\tilde{T})^{\perp} = \{0\}$. Since $[R(\tilde{T}) \cap R(T)^{\perp}]^{\perp} \supset R(\tilde{T})^{\perp} + R(T)$, it follows that

$$
m \ge \dim \left[R(\tilde{T}) \cap R(T)^{\perp} \right]^{\perp} \ge \dim \left[R(\tilde{T})^{\perp} + R(T) \right]
$$

= $\dim R(\tilde{T})^{\perp} + \dim R(T) = m - \dim R(\tilde{T}) + \dim R(T)$
= $m - \operatorname{rank} \tilde{T} + \operatorname{rank} T = m$.

This implies that $R(\tilde{T}) \cap R(T)^{\perp} = \{0\}.$

In the following, we will consider the estimation of $\|\tilde{T}^+\|$ when \tilde{T} satisfies (12) or (13). First, we give an estimate of δ (Ker T, Ker T).

THEOREM 3.1. *Let* $T \in L(H_1, H_2)$ with $R(T)$ closed, and let $\tilde{T} = T + T$ $\delta T \in L(H_1, H_2)$ with $||T^+|| ||\delta T|| < 1$. Assume that \tilde{T} is a type I perturba*tion of T or* dim Ker $\tilde{T} = \dim \text{Ker } T < \infty$. *Then*

$$
\delta\big(\operatorname{Ker} T, \operatorname{Ker} \tilde{T}\big) \leqslant \frac{\|T^+\| \|\delta T\|}{1 - \|T^+\| \|\delta T\|}.
$$
 (14)

Proof. Notice that from the conditions of the theorem, $I + T^+ \delta T$ is invertible. Set $S = I - (I + T^* \delta T)^{-1}T^* \tilde{T}$. Since $T^* \tilde{T} = T^*T + T^* \delta T$, it follows that $S = (I + T^* \delta T)^{-1}(I - T^*T)$.

Since $(I - T^+T)(I + T^+ \delta T) = I - T^+T$, also $(I - T^+T)(I +$ $T^+ \delta T)^{-1} = I - T^+ T$, we have $S^2 = S$. From the definition of S, Ker $\tilde{T} \subseteq$ $R(S)$.

If \tilde{T} is a type I perturbation of T, then $\forall x \in R(S)$, there is a $y \in H_1$ such that $(I + T^+ \delta T)^{-1}(I - T^+ T)y = x$, that is, $(I - T^+ T)y = (I + T^+ T)^{-1}$ T^+ δT)x. Hence, $0 = T(I - T^+T)y = T(I + T^+ \delta T)x$, which implies that $TT^{+}(T + \delta T)x = 0$, i.e., $TT^{+}T_{X} = 0$. Thus, $\tilde{T}_{X} \in R(\tilde{T}) \cap R(T)^{\perp} = \{0\}$, so $x \in \text{Ker } \tilde{T} \text{ and } R(S) \subseteq \text{Ker } \tilde{T}.$

On the other hand, if dim Ker $\tilde{T} = \dim \text{Ker } T < \infty$, then from the definition of S, we get that

$$
\dim R(S) = \dim \left[R \left(\left(I + T^+ \delta T \right)^{-1} \left(I - T^+ T \right) \right) \right] = \dim \left[R \left(I - T^+ T \right) \right]
$$
\n
$$
= \dim \operatorname{Ker} T = \dim \operatorname{Ker} \tilde{T} < \infty.
$$

Since Ker $\tilde{T} \subseteq R(S)$, it follows that Ker $\tilde{T} = R(S)$.

Finally, applying Lemma 2.1 to Ker T and Ker \tilde{T} , we get that

$$
\delta(\text{Ker }T, \text{Ker } \tilde{T})
$$

\n
$$
\leq ||(I - T^+T) - S|| = ||(I - T^+T) - (I + T^+ \delta T)^{-1}(I - T^+T)||
$$

\n
$$
\leq ||I - (I + T^+ \delta T)^{-1}|| \leq \frac{||T^+|| ||\delta T||}{1 - ||T^+|| ||\delta T||}.
$$

COROLLARY 3.2. Let $T \in L(H_1, H_2)$ with $R(T)$ closed, and let $\tilde{T} = T + T$ $\delta T \in L(H_1, H_2)$ with $||T^+|| ||\delta T|| < \frac{1}{2}$. Suppose that \tilde{T} is a type I perturba*tion of T or*

$$
\dim \operatorname{Ker} \tilde{T} = \dim \operatorname{Ker} T < \infty.
$$

Then T is a type II perturbation of T.

Moreover, T is a type I perturbation of T if and only if T is a type II perturbation of T.

Proof. By Theorem 3.1, $||T^+|| ||\delta T|| < \frac{1}{2}$ implies that

$$
\delta\big(\operatorname{Ker} T, \operatorname{Ker} \tilde{T}\big) \leqslant \frac{\|T^+\| \|\delta T\|}{1 - \|T^+\| \|\delta T\|} < 1.
$$

From [3, p. 201, Theorem 2.9],

$$
\delta\left(\overline{R(\tilde{T}^*)}, R(T^*)\right) = \delta\left(\left(\text{Ker }\tilde{T}\right)^{\perp}, \left(\text{Ker }T\right)^{\perp}\right) = \delta\left(\text{Ker }T, \text{Ker }\tilde{T}\right) < 1,
$$

it follows from (ii), (iii) of Lemma 3.1 that \tilde{T} is a type II perturbation of T. Replacing T by T^* and \tilde{T} by \tilde{T}^* , we obtain that \tilde{T} is a type I

perturbation of T if and only if \tilde{T} is a type II perturbation of T.

The following theorem is the main result of this section.

THEOREM 3.2. Let $T \in L(H_1, H_2)$ with $R(T)$ closed, and let $\tilde{T} = T + T$ $\delta T \in L(H_1, H_2)$ with $||T^*|| ||\delta T|| < \frac{1}{2}(3 - \sqrt{5})$ ($\lt \frac{1}{2}$). Assume that *T* is *a type 1 perturbation of T. Then T has generalized inverse T+ with*

$$
\|\tilde{T}^{+}\| \leq \frac{\|T^{+}\|}{1 - \frac{1}{2}(3 + \sqrt{5})\|T^{+}\| \|\delta T\|}.
$$
 (15)

Proof. By applying Lemma 2.3(ii) and Theorem 3.1, we get that

$$
r(\tilde{T}) \ge \frac{1}{\|T^+\|} \left[1 - \frac{\|T^+\| \|\delta T\|}{1 - \|T^+\| \|\delta T\|} \right] - \|\delta T\|
$$

$$
= \frac{1 - 3\|T^+\| \|\delta T\| + \|T^+\|^2 \|\delta T\|^2}{\|T^+\| (1 - \|T^+\| \|\delta T\|)}.
$$
(16)

Thus, if $\|T^+\|\,\|\,\delta\,T\|<\frac12(3-\sqrt5\,),$ then $r(\tilde T)>0,$ so $\tilde T$ has the generalized inverse $\tilde T^+$ with

$$
\|\tilde{T}^{+}\| = \frac{1}{r(\tilde{T})} \leq \frac{\|T^{+}\| (1 - \|T^{+}\| \|\delta T\|)}{1 - 3\|T^{-}\| \|\delta T\| + \|T^{+}\|^2 \|\delta T\|^2}.
$$
 (17)

Clearly, if $||T^*|| ||\delta T|| < \frac{1}{2}(3 - \sqrt{5}) < \frac{1}{2}$, then

$$
\frac{1 - \|T^+\| \|\delta T\|}{1 - 3\|T^+\| \|\delta T\| + \|T^+\|^2 \|\delta T\|^2} \le \frac{1}{1 - \frac{1}{2}(3 + \sqrt{5})\|T^+\| \|\delta T\|}.
$$
 (18)

Thus from (17) and (18) .

$$
\|\tilde{T}^{+}\| \leq \frac{\|T^{+}\|}{1 - \frac{1}{2}(3 + \sqrt{5})\|T^{+}\| \|\delta T\|}.
$$

$\bf{4}$. PERTURBATION ANALYSIS

According to [1], for $T \in L(H_1, H_2)$ with $R(T)$ closed, $x = T^+ y$ is the unique solution of the problem (1). Now, let $\tilde{T} = T + \delta T \in L(H_1, H_2)$ be a
type I perturbation of T with $||T^+|| ||\delta T|| < \frac{1}{2}(3 - \sqrt{5})$. Then by Theorem 3.1, \tilde{T} has generalized inverse \tilde{T}^+ . Let $y \in \tilde{H}_2$, and let $\tilde{y} = y + \delta y \in H_2$ be the perturbation of y . Consider the least squares problem

$$
\min \|x\| \qquad \text{subject to} \quad \|\tilde{y} - \tilde{T}x\| = \min_{z \in H_1} \|\tilde{y} - \tilde{T}z\|. \tag{19}
$$

Then (19) has a unique solution $\tilde{x} = \tilde{T}^+ \tilde{y}$. We now estimate $\|\tilde{T}^+ - T^+\|/\|T^+\|$ and $\|\tilde{x} - x\|/\|x\|$. The condition number of T is defined by $\kappa = \|T\| \|T^+\|$.

THEOREM 4.1. Let $T \in L(H_1, H_2)$ with $R(T)$ closed. Let $\tilde{T} = T + \delta T$ $\mathcal{I}_1 \in L(H_1, H_2)$ be a type I perturbation of T with $||T^+|| ||\delta T|| < \frac{1}{2}(3 - \sqrt{5})$, *and set* $\varepsilon_T = ||\delta T|| / ||T||$ *. Then*

$$
\|\tilde{T}^{+} - T^{+}\| \leq \sqrt{3} \|\delta T\| \max\{||T||^{2}, ||\tilde{T}||^{2}\},
$$

$$
\frac{\|\tilde{T}^{+} - T^{+}\|}{\|T^{+}\|} \leq \varepsilon_{T} \kappa \left(1 + \frac{1}{\left[1 - \frac{1}{2}(3 + \sqrt{5})\varepsilon_{T} \kappa\right]^{2}}\right).
$$
 (20)

Proof. According to Theorem 3.2, \tilde{T}^+ exists. From the identity (cf. [4, p. 345, Theorem 3.10])

$$
\tilde{T}^{+} - T^{+} = -\tilde{T}^{+} \delta T T^{+} + \tilde{T}^{+} (\tilde{T}^{+})^{*} (\delta T)^{*} (I - TT^{+})
$$

$$
+ (I - \tilde{T}^{+} \tilde{T}) (\delta T)^{*} (T^{+})^{*} T^{+}, \qquad (21)
$$

we then get, by applying the orthogonality of the operators on the right side of the above equality,

$$
\|\tilde{T}^{+}-T^{+}\|^{2} \leq (\|\tilde{T}^{+}\| \left\|T^{+}\right\| \left\|\delta T\right\|)^{2} + (\|\tilde{T}^{+}\|^{2} \|\delta T\|)^{2} + (\left\|T^{+}\right\|^{2} \|\delta T\|)^{2}.
$$

Therefore it follows from Theorem 3.1 that

$$
\frac{\|\tilde{T}^+ - T^+\|}{\|T^+\|} \leqslant \varepsilon_T \kappa \left(1 + \frac{1}{\left[1 - \frac{1}{2}(3 + \sqrt{5})\varepsilon_T \kappa\right]^2}\right).
$$

COROLLARY 4.1 (The continuity of T^+ in Hilbert spaces). Let $T \in$ $L(H_1, H_2)$ with generalized inverse T^+ , and let $\{T_n\}$ be a sequence of *operators in L(H₁, H₂). Let* T_n^+ *be the generalized inverse of* T_n $\forall n$ *. Suppose that* $T_n \to T$ (with respect to the norm $\|\cdot\|$ on $L(H_1, H_2)$). Then $T_n^+ \to T^+$ if *and only if* $R(T_n) \cap R(T)^{\perp} = \{0\}$ *for n large enough.*

Proof. " \Rightarrow " part: By Lemma 2.2, $\delta(R(T_n), R(T)) \leq ||T_n|| ||T_n - T||$. Thus we have $\delta(R(T_n), R(T)) < 1$ for *n* large enough. Then by Lemma 3.1, $R(T_n) \cap R(T)^{\perp} = \{0\}$ for *n* large enough.

" \Leftarrow " part: For *n* large enough, we have

$$
R(T_n) \cap R(T)^{\perp} = 0 \text{ and } ||T^+|| ||T_n - T|| < \frac{1}{2}(3 - \sqrt{5}).
$$

Then by applying Theorem 4.1 we obtain that $T_n^+ \stackrel{\|\cdot\|}{\to} T^+$.

Combining Corollary 4.1 and Corollary 3.1, we deduce that in the finite dimensional case, $T_n^+ \stackrel{\|\cdot\|}{\to} T^+$ if and only if rank $T_n = \text{rank } T$ for *n* large enough.

THEOREM 4.2. Suppose that T , \tilde{T} satisfy the conditions in Theorem 4.1, and y, $\tilde{y} = y + \delta y \in H_2$. Set $\varepsilon_T = ||\delta T||/||T||$ and $\varepsilon_n = ||\delta y||/||y||$. Then

$$
\frac{\|\tilde{x} - x\|}{\|x\|} \le \frac{\kappa}{1 - \frac{1}{2}(3 + \sqrt{5})\varepsilon_r \kappa} \times \left(\varepsilon_r + \varepsilon_y \frac{\|y\|}{\|T\| \|x\|} + \frac{\varepsilon_r \kappa}{1 - \frac{1}{2}(3 + \sqrt{5})\varepsilon_r \kappa} \frac{\|y - Tx\|}{\|T\| \|x\|}\right) + \varepsilon_r \kappa.
$$
\n(22)

Proof. From (21) we obtain that

$$
\|\tilde{x} - x\| = \|\tilde{T}^+ \tilde{y} - T^+ y\| = \left\|\tilde{T}^+ \delta y + (\tilde{T}^+ - T^+) y\right\|
$$

$$
\leq \|\tilde{T}^+\| \|\delta y\| + \|\tilde{T}^+\| \|\delta T\| \|x\|
$$

$$
+ \|\tilde{T}^+\|^2 \|\delta T\| \|y - Tx\| + \|\delta T\| \|T^+\| \|x\|.
$$

Therefore

$$
\frac{\|\tilde{x} - x\|}{\|x\|} \le \|\tilde{T}^+\| \left(\varepsilon_y \frac{\|y\|}{\|x\|} + \|\delta T\| + \|\tilde{T}^+\| \frac{\|y - Tx\|}{\|T\| \|x\|} \right) + \|\delta T\| \|T^+\|
$$

$$
\le \frac{\kappa}{1 - \frac{1}{2}(3 + \sqrt{5})\varepsilon_T \kappa}
$$

$$
\times \left(\varepsilon_T + \varepsilon_y \frac{\|y\|}{\|T\| \|x\|} + \frac{\varepsilon_T \kappa}{1 - \frac{1}{2}(3 + \sqrt{5})\varepsilon_T \kappa} \frac{\|y - Tx\|}{\|T\| \|x\|} \right)
$$

$$
+ \varepsilon_T \kappa.
$$

 \blacksquare

COROLLARY 4.2. *If in addition* $y \in R(T)$ *in Theorem 4.2, then*

$$
\frac{\|\tilde{x} - x\|}{\|x\|} \le \frac{\kappa}{1 - \frac{1}{2}(3 + \sqrt{5})\varepsilon_T \kappa} (\varepsilon_y + \varepsilon_T) + \varepsilon_T \kappa.
$$

Proof. Since $y \in R(T)$, we have $y = Tx$ and $||y|| \le ||T|| ||x||$.

The authors are grateful to the referee for useful comments and suggestions.

REFERENCES

- 1 A. Ben-Israel and T. N. E. Greville, *Generalized Inverse: Theory and Applications,* Wiley, New York, 1974.
- 2 J. Ding and L. J. Huang, On the perturbation of the least squares solution in Hilbert spaces, *Linear Algebra Appl.* 212/213:487-500 (1994).
- 3 T. Kato, *Perturbation Theory for Linear Operators,* Springer-Verlag, New York, 1984.
- 4 M.Z. Nashed, *Generalized Inverse and Applications,* Academic, New York, 1976.
- 5 G.W. Stewart, On the continuity of the generalized inverse, *SIAM J. Appl. Math.* 17:35-45 (1968).
- 6 P-A. Wedin, Perturbation Theory and Condition Number for Generalized and Constrained Least Squares Problem, Tech. Rep. S-901-87, Inst. of Information Processing, Univ. of UMET, 1987.
- 7 M. Wei, The perturbation of consistent least squares problems, *Linear Algebra Appl.* 112:231-245 (1989).
- 8 M. Wei, On the error estimate for the projection of a point onto a linear manifold, *Linear Algebra Appl.* 133:53-75 (1990).

Received 7 June 1994; final manuscript accepted 10 September 1994