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a b s t r a c t

We propose a polynomial time approximation algorithm for a novel maximum edge
coloring problem which arises from wireless mesh networks [Ashish Raniwala, Tzi-cker
Chiueh, Architecture and algorithms for an IEEE 802.11-basedmulti-channelwirelessmesh
network, in: INFOCOM 2005, pp. 2223–2234; Ashish Raniwala, Kartik Gopalan, Tzi-cker
Chiueh, Centralized channel assignment and routing algorithms formulti-channel wireless
mesh networks,Mobile Comput. Commun. Rev. 8 (2) (2004) 50–65]. The problem is to color
all the edges in a graphwithmaximum number of colors under the following q-Constraint:
for every vertex in the graph, all the edges incident to it are colored with no more than q
(q ∈ Z, q ≥ 2) colors. We show that the algorithm is a 2-approximation for the case q = 2
and a (1 + 4q−2

3q2−5q+2
)-approximation for the case q > 2 respectively. The case q = 2 is

of great importance in practice. For complete graphs and trees, polynomial time accurate
algorithms are found for them when q = 2. The approximation algorithm gives a feasible
solution to channel assignment in multi-channel wireless mesh networks.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Graph coloring problems occupy an important place in graph theory. There are two types of coloring: vertex coloring
and edge coloring. For vertex coloring, Brooks states that χ(G) ≤ 1(G) for any graph G except complete graphs Kn and odd
circles C2k+1, where chromatic number χ(G) is the minimum number of colors needed in a vertex coloring of G [3]. Karp
proves that to compute χ(G) is an NP-hard problem [4]. Garey and Johnson point out that there is even no polynomial time
approximation algorithm with ratio 2 for the problem if P 6= NP holds [5]. However, Turner designs an algorithm of time
complexity O(|V | + |E| log k)with probability almost 1 to color any given k-colorable graph with k colors when k is not too
large relative to |V | [6]. For edge coloring, Vizing states that for any graph G, either χ ′(G) = 1(G) or χ ′(G) = 1(G) + 1,
where chromatic index χ ′(G) is the minimum number of colors needed in an edge coloring of G [7]. Holyer proves that it
is also an NP-hard problem to determine χ ′(G) [8]. If the coloring solution is not necessary to be optimal, the proof of the
Vizing Theorem yields an algorithm which can find an edge coloring solution using1(G)+ 1 colors. Uriel Feige et al. study
the problem of maximum edge t-coloring in multigraphs [9]. It colors as many edges as possible using t colors, such that
no two adjacent edges are colored with the same color. They show that the problem is NP-hard and design constant factor
approximation algorithms for it.
All the above problems are traditional coloring problems, in the sense that they aim to find aminimum number of colors

with some constraints. However, we propose a maximum edge coloring problem in this paper, which aims to color all the
edges in a graph using as many colors as possible, with the q-Constraint: for every vertex in the graph, all the edges incident

∗ Corresponding author.
E-mail address: fengws@pku.edu.cn (W. Feng).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.10.035

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82625783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:fengws@pku.edu.cn
http://dx.doi.org/10.1016/j.tcs.2008.10.035


W. Feng et al. / Theoretical Computer Science 410 (2009) 1022–1029 1023

to it are coloredwith nomore than q (q ∈ Z, q ≥ 2) colors. Two adjacent edges are not necessary to be coloredwith different
colors, i.e. they can be colored with the same color.

1.1. Motivation

In 2005, Ashish Raniwala and Tzi-cker Chiueh [1] proposed a multi-channel wireless mesh network architecture (called
Hyacinth) that equips each mesh network node with multiple 802.11 network interface cards (NICs). They point out that
intelligent channel assignment is critical to Hyacinth’s performance. A series of experiments have been carried out and
the results show that with 2 NICs on each node, it may improve the network throughput by a factor of 6 to 7 compared
with the conventional single-channel ad hoc network architecture [1,2]. In such kind of channel assignment problem in
multi-channel wireless mesh networks, a novel computational problem is involved. ‘‘Howmany channels can be used in the
network at most from the mathematical point of view?’’ The value provides an upper bound on the number of channels the
mesh network can hold. This bound is an important parameter for wireless mesh network designers.
Let VN be the set of mesh routers in a mesh network, EN be the set of pairs of mesh routers which can communicate

directly, q be the number of network interface cards each node owns. Awirelessmesh network can bemodeled as a network
graph GN = (VN , EN , q). Clearly, GN is a connected undirected simple graph and the number of channels assigned to each
node cannot exceed the number of its NICs: q. We formulate the problem as an edge coloring problem with the name
‘‘maximum edge coloring problem’’.

Maximum edge coloring problem: Given a connected undirected simple graph G = (V , E) and a positive integer q ≥ 2,
how to color all the edges of E with maximum number of colors under the q-Constraint: for every vertex in V , all the edges
incident to it are colored with no more than q colors?
We would like to say a few more sentences about the two restrictions in the above definition. First, the input graph is

restricted to be connected in the definition. Unconnected graphs can also be solved if a solution to any connected graph can
be found. Secondly, q ≥ 2 is required in the definition. In fact, if q = 1, then every edge must be colored with the same color
because of the connectivity of the graph. This case is trivial.
In this paper, notations are used in a standard way. For example, ALG(G) is used to denote the number of colors used

in the solution given by our algorithm on the input graph G; OPT (G) to denote the number of colors used in an optimal
coloring solution of G.1(G) is the maximum degree of the vertices in G, also called the degree of G. Please refer to [10] for
more details on approximation algorithms.
The rest of the paper is organized as follows. In Section 2 two important properties of the problem are introduced. In

Sections 3 and 4, we discuss the approximation algorithm and the approximation ratios for the case q = 2 and the case
q > 2 respectively. Because the mesh routers in a wireless mesh network often have two network interface cards, the case
q = 2 is very important. In Section 5, maximum edge coloring in complete graphs and trees for the case q = 2 is discussed.
In Section 6, we conclude the paper with possible future research direction.

2. Preliminaries

Given a connected graph G = (V , E), let OPT (G) = m, i.e. optimal coloring solutions of G usem colors: 1, 2, . . . ,m. Based
on the color of each edge, E can be divided into m subsets: E1, E2, . . . , Em, where Ei is the set of edges colored with color i
(1 ≤ i ≤ m). A character subgraph of G is a subgraph induced by e1, e2, . . . , em, where ei is chosen from Ei (1 ≤ i ≤ m).

Lemma 1. Let H be a character subgraph of a connected graph G = (V , E), then
(1) 1(H) ≤ q;
(2) H consists of paths and cycles, if q = 2;
(3) OPT (G) ≤ |V |, if q = 2.

Proof. (1) Because the colors of the edges in H are different from each other and the optimal solution satisfies the q-
Constraint, the degree of each vertex v in H satisfies 1 ≤ dH(v) ≤ q. It yields1(H) ≤ q.

(2) If q = 2, it is clear that H is a set of paths and cycles, i.e. each connected component of H is either a path or a cycle.
(3) According to (2), OPT (G) = m = |E(H)| ≤ |V (H)| ≤ |V |. �

Lemma 2. Given a vertex cover V ∗ of a graph G = (V , E) with |V ∗| = k, let H be the subgraph induced by V ∗ in G. Then:
(1) OPT (G) ≤ kq;
(2) If H has a matching of size m, then OPT (G) ≤ kq−m;
(3) If q = 2 and H is connected, then OPT (G) ≤ k+ 1;
(4) If q = 2 and H has l connected components (1 ≤ l ≤ k), then OPT (G) ≤ k+ l.

Proof. (1) Since V ∗ is a vertex cover, every edge in G is incident to a vertex of V ∗ at least. On the other hand, the edges
incident to V ∗ can be colored with |V ∗|q colors at most based on the q-Constraint. Thus, OPT (G) ≤ |V ∗|q = kq.

(2) Let MH be a matching in H of size m. E can be divided into two non-intersecting parts: MH and E − MH . It is clear that
E − MH can be colored with (k− 2m)q+ 2m(q− 1) = kq− 2m new colors at most, no matter howMH is colored. On
the other hand,MH can be colored withm colors at most. Thus, OPT (G) ≤ (kq− 2m)+m = kq−m.
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Fig. 1. Algorithm 1.

(3) Suppose H is colored with x colors. By Lemma 1, 1 ≤ x ≤ k. If H is connected, then there are at least x − 1 vertices in
V ∗ incident to two edges colored with different colors in H . Thus, E − E(H) can be colored with [k− (x− 1)](q− 1)+
(x− 1)(q− 2) = k− x+ 1 new colors at most. As a consequence, OPT (G) ≤ (k− x+ 1)+ x = k+ 1.

(4) Denote by c1, c2, . . . , cl (
∑l
i=1 ci = k) the number of vertices in the l connected components ofH respectively. According

to (3), OPT (G) ≤
∑l
i=1(ci + 1) = k+ l. �

3. Approximation algorithm

Clearly, if1(G) ≤ q, the number of colors used by an optimal solution is equal to |E|. Based on this fact, a greedy strategy
is adopted to design the following approximation algorithm. The main idea is that, first, we find a maximum subgraph H in
G with 1(H) ≤ q − 1, then assign a new color to each edge of the subgraph H . When dealing with the remaining edges,
we must be more careful, because this procedure may lead to conflict, which means the q-Constraint could be broken. To
avoid the conflict, a simple trick is employed as follows: delete the edges in H from the original graph G and just let every
non-isolated vertex connected component of the residual graph G′ share one new color.
The approximation algorithm is given in Fig. 1. A maximummatching can be found in O(|V |

1
2 |E|) time [11]. To show that

it is a polynomial time algorithm, the classical maximum b-matching problem is introduced.
Maximum b-matching problem: Given an undirected graph G = (V , E) and a function b: V → Z+ specifying an

upper bound for each vertex, the maximum b-matching problem asks for a maximum cardinality set Mb ⊆ E such that
∀ v ∈ V , dMb(v) ≤ b(v), where dMb(v) is the degree of v in the subgraph induced byMb.
The results onmatchings are strongly self-refining, as was pointed out by Tutte [12,13], Edmonds and Johnson [14,15]. By

applying splitting techniques to ordinary matchings, maximum b-matchings can be found in polynomial time too. Gabow
[16] designed an algorithmof complexityO(|V ||E| log |V |) for themaximum b-matching problem in 1983. As a consequence,
the time complexity of Algorithm 1 is O(|V ||E| log |V |).

4. Analysis

In this section, we will analysis the performance ratio of Algorithm 1 and show that it is a 2-approximation for the case
q = 2 and (1+ 4q−2

3q2−5q+2
)-approximation for the case q > 2.

4.1. Case q = 2

It can be seen that, if the graph is chosen to be a bipartite graph, Algorithm 1 is a factor 2 approximation algorithm. Since
in bipartite graphs, there exists the equationmaxmatching M |M| = minvertex cover U |U|, combined with Lemma 2, we have

OPT (G)
ALG(G)

≤
2|Umin|
|Mmax|

≤ 2. (1)

In fact, the ratio also stands in general graphs.

Theorem 1. For any connected graph, Algorithm 1 achieves an approximation factor of 2 when q = 2.

Proof. Given a connected graph G = (V , E)with OPT (G) = m, let H be a character subgraph of G. By Lemma 1, H is a set of
paths and cycles. The theorem is proved by two steps:

(1) Construct a matching in Gwith size≥ bm2 c based on H .

(2) According to the result in (1), we can easily draw the conclusion:

OPT (G)
ALG(G)

≤ 2. (2)



W. Feng et al. / Theoretical Computer Science 410 (2009) 1022–1029 1025

Step (1): A path of odd(even) length is called an odd(even) path. Similarly, a cycle of odd(even) length is called an
odd(even) cycle. Let p1, p2, c1 and c2 be the number of odd paths, even paths, odd cycles and even cycles in H . Denote
all the odd paths in H by OPi (1 ≤ i ≤ p1), all the even paths by EPj (1 ≤ j ≤ p2), all the odd cycles by OCs (1 ≤ s ≤ c1)
and all the even cycles by ECt (1 ≤ t ≤ c2). Use l(OPi) (1 ≤ i ≤ p1), l(EPj) (1 ≤ j ≤ p2), l(OCs) (1 ≤ s ≤ c1) and
l(ECt) (1 ≤ t ≤ c2) to denote the lengths of OPi, EPj, OCs and ECt respectively. Clearly, for the paths or cycles of even length
2k, the size of their maximummatchings is k. For the paths of odd length 2k+ 1, the size is k+ 1, and for the cycles of odd
length 2k+ 1, the size is k. Letm be the number of edges in H , then:

m =
p1∑
i=1

l(OPi)+
p2∑
j=1

l(EPj)+
c1∑
s=1

l(OCs)+
c2∑
t=1

l(ECt). (3)

And the size of a maximummatchingMH in H is:

|MH | =
p1∑
i=1

1
2
[l(OPi)+ 1] +

p2∑
j=1

1
2
l(EPj)+

c1∑
s=1

1
2
[l(OCs)− 1] +

c2∑
t=1

1
2
l(ECt). (4)

Case 1: Clearly, if c1 = 0, then |MH | ≥ bm2 c.MH is the matching to be constructed.
Case 2:When c1 = 1, there is only one odd cycle, OC1, in H . We can construct a matchingM ′ with |M ′| ≥ bm2 c as follows:
If G = H = OC1, then the original graph is just an odd cycle. We can let M ′ be a maximum matching of OC1. Clearly,

|M ′| ≥ bm2 c.
If OC1 is a real subgraph of G, then there is at least one vertex v ∈ V and v 6∈ V (OC1), since there is no other edge among

the vertices of OC1 in G. Clearly, there is no edge in G among those nonadjacent 2-degree vertices in H . For each 1-degree
node of a path in H , it cannot be adjacent to two nonadjacent 2-degree vertices in H . Otherwise, it will contradict the fact
that the optimal coloring solution is feasible. Because G is connected and G 6= OC1, we can always find a vertex v1 in OC1
and v1 is a neighbor of an outside vertex v2, which is not in the cycle. Based on the above facts, v2 must belong to one of
the following three sets: V1 = {the vertices not in H}; V2 = {the 1-degree vertices in even paths in H}; V3 = {the 1-degree
vertices in odd paths in H}. Now, it is time to constructM ′.
(1) If v2 ∈ V1, construct a maximum matching MC of OC1 leaving v1 as an unsaturated vertex. Let M ′C = MC ∪ {e =

(v1, v2)}. Clearly, |M ′C | =
1
2 [l(OC1)− 1] + 1 >

1
2 l(OC1).

(2) If v2 ∈ V2, construct a maximum matching MC of OC1 leaving v1 as an unsaturated vertex and find a maximum
matching MP of the even path EP1 leaving v2 as an unsaturated vertex. Let M ′C = MC ∪ MP ∪ {e = (v1, v2)}. Clearly,
|M ′C | =

1
2 [l(OC1)− 1] +

1
2 l(EP1)+ 1 >

1
2 [l(OC1)+ l(EP1)].

(3) If v2 ∈ V3, construct maximum matchingsMC andMP of OC1 and the odd path OP1 respectively. LetM ′C = MC ∪ MP .
Clearly, |M ′C | =

1
2 [l(OC1)− 1] +

1
2 [l(OP1)+ 1] =

1
2 [l(OC1)+ l(OP1)].

For the remaining connected components in H , find one maximummatchingMR in them. LetM ′ = MR ∪M ′C . Obviously,
|M ′| ≥ bm2 c,M

′ is the matching to be constructed.
Case 3: When c1 > 1, we construct a new graph G/H by shrinking every connected component Hi of H into a new vertex

vi (1 ≤ i ≤ p1 + p2 + c1 + c2). Clearly, G/H has vertex set (V/V (H)) ∪ {v1, v2, . . . , vp1+p2+c1+c2}. For each edge e in G, an
edge of G/H is obtained from e by replacing any end point in Hi by the new vertex vi. (Here we ignore loops and multiple
edges that may arise.) Obviously, G/H is also connected. If there is an edge in G/H between an original vertex v that is not
in H but in G and a new vertex coming from Hi, then there must be an edge in G between v and a vertex in Hi. If there is an
edge in G/H between a new vertex from Hi and another new vertex from Hj, then there is an edge in G between a vertex in
Hi and a vertex in Hj.
There are no edges among the new vertices from cycle components in G/H and each such vertex is only adjacent to

vertices which are either new vertices from path components or original vertices. For convenience, new vertices from path
components and original vertices are called compatible vertices. For each compatible vertex, it can be adjacent to two new
vertices from cycle components at most. For one new vertex from a path component, if it is a neighbor of two new vertices
from cycle components in G/H , then it must be that each of its two 1-degree nodes connects to a vertex in one of the two
cycle components in G respectively.
Denote by U = {u1, u2, . . . , uc1} the set of new vertices from odd cycles. The following procedure is used to extract a set

of compatible vertices from G/H which can dominate U . The graph output by the procedure is called matching graph B. (See
Fig. 2)

(1) B = ∅;
(2) while (U 6= ∅)
{

1) Take an element u from U , scan its neighbors in G/H;
2) if (u is adjacent to a compatible vertex v by edge e and v is not adjacent to any other new vertex from an odd cycle)
then
{ Add u, v and e into B, U = U − {u}; }
else if (u is adjacent to a compatible vertex v by edge e and v is also a neighbor of another new vertex from an odd cycle
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Fig. 2.Matching graph B: the filled vertices are new vertices from odd cycles, the empty ones correspond to compatible vertices.

which has been added into B)
then
{ Add u, v and e into B, U = U − {u}; }
else (in this case, umust be only adjacent to those compatible vertices which connect to two elements which are still in
U at this time)
{ Suppose u is adjacent to a compatible vertex v by edge e1 and v is also adjacent to another new vertex u′ in U by edge
e2.
Add u, u′, v and e1, e2 into B, U = U − {u, u′}. }
}

(3) output B.

For ui in a path of length 1 in B, the case is similar to the case c1 = 1. We pay more attention to the case of ui in a path of
length 2 in B. In this case, two new vertices from odd cycles are adjacent to the same compatible vertex. Denote by OC1 and
OC2 the two odd cycles. Now, let us discuss how to constructM ′.
(1) If the compatible vertex is an original vertex, say v, thenwe can always find v1 inOC1, v2 inOC2, which are neighbors of

v in G. Construct a maximummatchingMC of OC1 and OC2 leaving v1 as an unsaturated vertex. LetM ′C = MC ∪{e = (v, v1)}.
Clearly, |M ′C | =

1
2 [(l(OC1)− 1)+ (l(OC2)− 1)] + 1 =

1
2 [l(OC1)+ l(OC2)].

(2) If the compatible vertex is a new vertex from an even path EP1, then we can always find v1 in OC1 and v2 in OC2 such
that they are adjacent to the two1-degree nodes, sayv3 andv4, in EP1 inG respectively. Construct amaximummatchingMC of
OC1 andOC2 leaving v1, v2 as unsaturated vertices and find themaximummatchingMP in EP1 leaving v3 as a saturated vertex.
LetM ′C = MC ∪MP ∪ {e1 = (v1, v3)}. Clearly, |M

′

C | =
1
2 [(l(OC1)−1)+(l(OC2)−1)]+

1
2 l(EP1)+1 =

1
2 [l(OC1)+l(OC2)+l(EP1)].

(3) If the compatible vertex is a new vertex from an odd path OP1, then we can always find v1 in OC1 and v2 in OC2 such
that they are adjacent to the two 1-degree nodes, say v3 and v4, in OP1 in G respectively. Construct amaximummatchingMC
of OC1 and OC2 leaving v1, v2 as unsaturated vertices and find themaximal matchingMP in OP1 leaving v3, v4 as unsaturated
vertices. LetM ′C = MC ∪ MP ∪ {e1 = (v1, v3), e2 = (v2, v4)}. Clearly, |M

′

C | =
1
2 [(l(OC1)− 1)+ (l(OC2)− 1)] +

1
2 [l(OP1)−

1] + 2 > 1
2 [l(OC1)+ l(OC2)+ l(OP1)].

Thus we can always construct a matchingM ′ of Gwith size≥ bm2 c as follows:

(1) Construct a character subgraph H in G;
(2) if (c1 = 0) then { letM ′ = MH ; }

else if ( G is an odd cycle)
then { letM ′ be a maximummatching of G; }
else {
1) shrink G into G/H;
2) extract the matching graph B from G/H;
3) for each connected component in B, constructM ′C as above;
4) for the remaining connected components in H , which is not in B, construct a maximummatchingMR in them;
5) letM ′ = (

⋃
M ′C ) ∪MR;

}

Step (2): SinceM is a maximummatching of G, thus

OPT (G)
ALG(G)

≤
m

|M| + 1
≤

m
|M ′ | + 1

≤
m

b
m
2 c + 1

≤
m
m
2

= 2. (5)

Here, we assume that the residual graph G′ = G − M has at least one edge. If G′ has no edge, then M = G. Thus,
ALG(G) = OPT (G) = |E|, Theorem 1 follows immediately. �

The graph shown in Fig. 3 gives a tight example for the case q = 2.

Example 1. In the graph shown in Fig. 3, the set of vertical edges is a maximummatching of G. On the other hand, G can be
colored with 2m colors at most. Thus, ALG(G) = m+ 1, OPT (G) = 2m.
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Fig. 3. Tight example for the case q = 2.

4.2. Case q > 2

Theorem 2. For any connected graph G, Algorithm 1 achieves an approximation factor of 1+ 4q−2
3q2−5q+2

when q > 2.

Proof. According to Lemma 1, the number of edges in the maximum subgraph Hq with1(Hq) ≤ q in G is an upper bound of
OPT (G), i.e. |E(Hq)| ≥ OPT (G). On the other hand, the number of edges in themaximumsubgraphHq−1with1(Hq−1) ≤ q−1
is a lower bound of ALG(G), i.e. ALG(G) ≥ |E(Hq−1)|. Suppose Hq has s vertices of degree q: v1, v2, . . . , vs. Let MD be a
maximummatching in the subgraph D induced by {v1, v2, . . . , vs} in Hq and |MD| = t . Then we can pick out all the t edges
inMD to turn the 2t saturated vertices of degree q into 2t vertices of degree q−1. For each of the remaining s−2t unsaturated
vertices of degree q in Hq, pick out one edge incident to it. Thus we pick out s− t edges from Hq totally and get a subgraph
H with1(H) ≤ q− 1. Obviously, |E(Hq)| − (s− t) = |E(H)| ≤ |E(Hq−1)| and |E(Hq)| ≥ 1

2 sq. Thus, the approximation ratio
satisfies:

OPT (G)
ALG(G)

≤
|E(Hq)|

|E(Hq)| − (s− t)
= 1+

s− t
|E(Hq)| − (s− t)

= 1+
1

|E(Hq)|
s−t − 1

. (6)

Now, we need only consider the lower bound of |E(Hq)|s−t . It is easy to see that the s − 2t MD-unsaturated vertices form
an independent set in Hq. These unsaturated vertices are either neighbors of the left 2t saturated vertices of degree q or
neighbors of those vertices of degree≤ q−1 not in D but in Hq. We can imagine that if t is too small, then some of the s−2t
unsaturated vertices must be adjacent to the vertices of degree≤ q− 1, which is not in D but in Hq.
First, consider how many degrees the 2t saturated vertices can provide to connect to s − 2t unsaturated vertices at

most. Since MD is a maximum matching of the subgraph D, the MD-saturated vertices cannot connect to the unsaturated
vertices arbitrarily in order to avoid MD-augmenting paths. For the two end nodes of an edge e in MD, they can connect to
the unsaturated vertices in two ways only:

(1) Both of them are adjacent to the same unsaturated vertex, and they cannot connect to any other unsaturated vertex any
more. It follows that they can provide two degrees for unsaturated vertices.

(2) Only one of them is adjacent to some unsaturated vertices, and the other end node cannot connect to any other
unsaturated vertex any more. It yields that they can provide q− 1 degrees at most.

Noting that q > 2, we can conclude that for the two end nodes of e, they can provide q− 1 degrees at most. Thus the 2t
saturated vertices can provide t(q−1) degrees to connect to the unsaturated vertices at most. On the other hand, the s−2t
unsaturated vertices can provide (s− 2t)q degrees.
If t(q− 1) < (s− 2t)q, then there must be some of the s− 2t unsaturated vertices adjacent to other vertices of degree

≤ q− 1 in Hq. By solving the inequality t(q− 1) ≤ (s− 2t)q, we get t ≤
sq
3q−1 . It is natural for us to discuss the lower bound

of |E(Hq)|s−t according to the value of t ∈ [0, b
s
2c]:

Case 1: t ≥ sq
3q−1 . Clearly, |E(Hq)| ≥

1
2 sq. It is easy to see that the lower bound of

|E(Hq)|
s−t can be obtained at t =

sq
3q−1 :

|E(Hq)|
s− t

≥

1
2 sq
s− t

≥

1
2 sq

s− sq
3q−1

=
3q2 − q
4q− 2

. (7)

Case 2: t ≤ sq
3q−1 . In this case, t is so small that some of the s − 2t unsaturated vertices are adjacent to other

vertices of degree ≤ q − 1 in Hq. Thus we can give a larger lower bound of |E(Hq)|. It is not hard to get: |E(Hq)| ≥
1
2 sq+

1
2 [(s− 2t)q− t(q− 1)]. Thus,

|E(Hq)|
s− t

≥

1
2 sq+

1
2 [(s− 2t)q− t(q− 1)]

s− t
= f (t) =

sq− 3
2 tq+

1
2 t

s− t
. (8)

In order to find the minimum value of f (t) in the interval [0, sq
3q−1 ], we calculate the differential coefficient: f

′(t).

f ′(t) =
s− sq
2(s− t)2

< 0. (9)



1028 W. Feng et al. / Theoretical Computer Science 410 (2009) 1022–1029

Fig. 4. There are no k-cycles and k-paths (k ≥ 4) in H , nor multiple paths of length≥ 2.

Thus f (t) is a decreasing function. As a consequence, when t = sq
3q−1 , f (t) reaches its minimum value. We have

|E(Hq)|
s− t

≥ f (t) ≥ f
(

sq
3q− 1

)
=
3q2 − q
4q− 2

. (10)

As a result, the lower bound of |E(Hq)|s−t is always
3q2−q
4q−2 . The approximation ratio:

OPT (G)
ALG(G)

≤ 1+
1

|E(Hq)|
s−t − 1

≤ 1+
1

3q2−q
4q−2 − 1

= 1+
4q− 2

3q2 − 5q+ 2
. � (11)

5. Maximum edge coloring in complete graphs and trees

For complete graphs and trees,we can get an accurate solution for the case q = 2. Obviously,OPT (K3) = 3. ForKn (n ≥ 4),
Theorem 3 stands.

Theorem 3. For a complete graph Kn (n ≥ 4), OPT (Kn) = b n2c + 1.

Proof. Case 1: n = 4 or 5. It is easy to verify that the number of colors used in an optimal coloring solution is 3, that is
b
n
2c + 1.
Case 2: n > 5. OPT (Kn) ≥ ALG(Kn) = b n2c+ 1. To prove the theorem, we need to show that OPT (Kn) ≤ b

n
2c+ 1. Let H be

a character subgraph of Kn with E(H) = m = OPT (Kn). We will show that H is either the union of a 2-path (path of length
2) andm− 2 discrete edges or the union of a 3-path (path of length 3) andm− 3 discrete edges.
First, we prove that there are no cycles in H . For cycles of length ≥4, it can be seen that, we cannot assign a color to the

diagonal. For cycles of length 3, it can be inferred that all the other edges in the complete graph must be colored with one
of the three colors. However, OPT (Kn) ≥ ALG(Kn) = b n2c + 1 > 3 (n > 5), a contradiction. As a consequence, there are no
cycles in H . Secondly, it can be proved that there is no k-path (k ≥ 4) in H and there is at most one 2-path or one 3-path in
H analogously. (See Fig. 4.)
Now, we are sure that H is either the union of a 2-path and m − 2 discrete edges or the union of a 3-path and m − 3

discrete edges. Thus, the size of amaximummatching inH: |MH | = m−1 = OPT (Kn)−1. Obviously, the size of amaximum
matching of the complete graph: |M| = b n2c. OPT (Kn) − 1 = |MH | ≤ |M| = b

n
2c, that is, OPT (Kn) ≤ b

n
2c + 1. As a result,

OPT (Kn) = b n2c + 1 = ALG(Kn). �

A vertex in a tree is called an internal vertex if and only if it is of degree at least two. If a tree is just an edge, then there
is no internal vertex in it.

Theorem 4. For any tree T , OPT (T ) = |Vin| + 1, where Vin is the set of internal vertices in T .

Proof. If T is just an edge, then Vin = ∅ and OPT (T ) = 1 = |Vin| + 1. Otherwise, the set of internal vertices, Vin, is a vertex
cover of T and the subgraph induced by Vin is also a tree, which is connected. By Lemma 2, OPT (T ) ≤ |Vin| + 1. In the
following, a simple algorithm is introduced which can give a solution with |Vin| + 1 colors. (See Figure 5 for an example.)

(1) For the edges incident to the root, assign to them two colors;
(2) Process the left internal nodes from top to down, from left to right.
For the current node, assign one new color to all the edges from it to its children;

(3) When all the internal nodes are processed, all the edges are colored. Output the solution.

It is easy to see that the algorithm outputs a feasible solution and ALG(T ) = |Vin| + 1. As a result, OPT (T ) ≥ ALG(T ) =
|Vin| + 1, OPT (T ) = |Vin| + 1. �
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Fig. 5. An example for tree coloring.

6. Conclusion

This paper investigates a novel maximum edge coloring problem which arises from wireless mesh networks. We have
designed a polynomial time approximation algorithm and shown that it is a 2-approximation for the case q = 2 and
(1 + 4q−2

3q2−5q+2
)-approximation for the case q > 2 respectively. However, we do not know the complexity of the problem.

The corresponding decision problem can be defined as:Maximum-edge-coloring= {(G, q, k)|(G, q) has a k-color solution}.
Obviously, it belongs to the NP class. We conjecture that it is NP-complete.
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