
ELSEWIER 

DISCRETE 
APPLIED 
MATHEMATICS 

Discrete Applied Mathematics 66 (1996) 109-133 

On the structure of trapezoid graphs 

F. Cheah”, D.G. Corneilb,* 

a Teleride Sage Ltd., 156 Front St. W., Toronto, Ont., Canada 

b Department of Computer Science, University of Toronto, Toronto, Ont., Canada M5S IA4 

Received 3 June 1992; revised 25 July 1994 

Abstract 

Consider two parallel lines each containing n intervals, labelled 1 to n, where two intervals 
with the same label define a trapezoid with that label. The intersection graph of such a set of 
trapezoids is called a trapezoid graph. Trapezoid graphs are perfect and strictly contain both 
interval graphs and permutation graphs. 

In this paper we study the structure of trapezoid graphs and show that an operation called 
vertex splitting allows a trapezoid graph to be transformed into a permutation graph with 
special properties. Vertex splitting achieves this transformation by replacing the trapezoid 
representing a certain vertex u by its two end lines joining the ends of the intervals. These two 
lines now represent vertices u1 and uq. Continuing this operation eventually yields a special 
permutation graph. As a corollary of these results we get an 0(n3) algorithm for recognizing 
a trapezoid graph and constructing a trapezoid representation of it. Although other trapezoid 
recognition algorithms are faster, ours is entirely graph theoretical and is easily implemented. 

1. Introduction 

Consider two horizontal parallel lines (denote the top line L1 and the bottom line 
L2) each containing n intervals, labelled 1 to n. Any two intervals with the same label 

define a trapezoid with that label. A trapezoid graph (also called an II-graph, where the 
II denotes interval-interval [3]) is the intersection graph formed from such a set of 
trapezoids and the trapezoid representation of a trapezoid graph G consists of two 
parallel lines and set of trapezoids (determined by one interval on each line) that 
realizes G. See Fig. 1 for a trapezoid graph and a trapezoid representation for it. (Note 
that for a given trapezoid graph, there may be many “different” trapezoid representa- 
tions.) Furthermore, as shown by [6], trapezoid graphs are precisely the complements 
of interval dimension two partial orders. 

It is clear from the definitions that trapezoid graphs contain both permutation 
graphs (on both parallel lines, no two intervals intersect and thus each interval may be 

*Corresponding author. 

0166-218X/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved 
SSDI 0166-218X(94)00158-8 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82625744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


110 F. Cheah, D.G. CorneilJ Discrete Applied Mathematics 66 (1996) 109-133 

3 4 

I L* 

Fig. 1 

considered to be a point; the trapezoids thus become lines) and interval graphs 
(the top parallel line is the mirror image of the bottom line so that two trapezoids 
intersect iff on each of the parallel lines, the intervals intersect; thus we only need to 
consider one line and its set of intervals). In fact there are other subfamilies of 
trapezoid graphs that also contain both permutation graphs and interval 
graphs. A PI-graph (the PI stands for point-interval) is a trapezoid graph which 
has a trapezoid representation where all the trapezoids have consecutive top end- 
points. A PI*-graph (generalized point-interval graph) has a trapezoid representa- 
tion where all trapezoids have either consecutive top end-points or consecutive 
bottom end-points. It is worth noting that the complexity status of PI-graph and 
PI*-graph recognition is still unresolved. As shown in [3], trapezoid graphs 
strictly contain PI*-graphs which strictly contain PI-graphs which strictly contain 
both permutation and interval graphs. In [6, 51 it has been independently shown 
that trapezoid graphs are strictly contained in the class of co-comparability graphs 
(the edges of G, the complement of G, have a transitive orientation) and thus 
are perfect. Furthermore, they are strictly contained in both the family of weakly 
chordal graphs (i.e. neither G nor G contains an induced cycle of size 25) and the 
asteroidal triple-free graphs (an asteroidal triple is a set of three pairwise non-adjacent 
vertices in which any two can be connected by a path that avoids the neighborhood of 
the third) [S, 31. 

As shown in [6], trapezoid graphs can be used to model a channel routing problem 
in a single-layer-per-net model. A channel consists of a pair of horizontal lines with 
points or terminals on each line numbered from 1 to n. All the terminals with the same 
label constitute a net. A routing is a connection of every net by wires inside the channel 
such that no two wires from different nets overlap. A routing is allowed to use more 
than one layer and the problem is to find a routing that uses a minimum number of 
layers. This problem is equivalent to the minimum coloring problem on a trapezoid 
graph where each net is represented by a trapezoid. Dagan et al. [6] present an O(nk) 
trapezoid graph coloring algorithm where n is the number of trapezoids and k is the 
chromatic number of the graph. Their algorithm also requires the input to be 
a trapezoid representation of the given graph. 



F. Cheah, D.G. Comeill Discrete Applied Mathematics 66 (1996) 109-133 111 

In the early 1980s Cogis [4] developed a polynomial time algorithm for the 
recognition of interval dimension two partial orders (see also [7]). In light of the 
equivalence between trapezoid graphs and the complements of interval dimension two 
partial orders, we see that trapezoid graph recognition may be solved in polynomial 
time. Spinrad [13] has pointed out that trapezoid graph recognition can be accomp- 
lished in time of matrix multiplication. Based on Cogis’ result and by the construction 
of an 0(n2) algorithm for the restricted version of matrix multiplication, Ma [lo, 1 l] 
has found a trapezoid graph recognition algorithm which runs in time O(n’) and can 
be modified to produce a trapezoid representation. Habib and Miihring [9] have also 
developed a polynomial time trapezoid graph recognition algorithm. 

In this paper we present new structural results that lead to a recognition algorithm 
which, if presented with a trapezoid graph, also produces a trapezoid representation. 
Our algorithm takes time 0(n3) and thus is slower than Ma’s algorithm; however, 
it is conceptually simpler, easier to code and is entirely graph theoretical. A key 
idea for our recognition algorithm is that of vertex splitting (see Section 4). 
In a trapezoid representation, the splitting of vertex u replaces u with new vertices 
zji and v2 where the trapezoid representing v is replaced by two lines representing 
u1 and v2, respectively. Thus it may be seen that the trapezoid representation 
is “evolving” into a permutation graph representation. In fact we show that a 
graph is a trapezoid graph ifSafter an appropriate sequence of vertex splitting, we end 
up with a permutation graph with a specific condition. The recognition algorithm 
concludes by determining whether this permutation graph does in fact satisfy this 
condition (see Section 5). All algorithms are collected in the Appendix. In Section 3 we 
develop various structural properties of trapezoid graphs that lead to the concept of 
vertex splitting. We now present the notations and definitions used throughout the 
paper. 

2. Graph theoretical definitions 

Given a finite set V, we shall represent a binary relation R: I/ -+ I/ by a set of 
ordered pairs P such that <uvt E P iflv E R(u). A simple directed graph (or digraph) 
G = (I/, E) consists of a vertex set V and an irreflexive binary relation on V repres- 
ented by E. Each member of E is called an arc, and two vertices u and v in G are 
adjacent ifl <mu> E E. G is a transitive orientation iff E is transitive and antisymmet- 
ric. A vertex u is said to precede (or trail) another vertex v whenever there is an arc in 
E directed from u to u (or vice versa). We shall denote the relationship “a precedes v in 
E” (i.e. <uv> EE) by “U +Ev”; and similarly the relationship “U trails v in E” by 
“u eEu”. The E subscript will be dropped whenever there is no ambiguity in our 
context. Note that in a transitive orientation, we may not have the situation that 
u precedes v and v precedes u. We shall denote the disjoint union, El uE2, of arc sets 
El and E, where ElnE2 = 0, as El + E2. 

The digraph G-i = (V,E-‘), where E-’ = {<uv> 1 <vu> EE}, is called the re- 
oersal of G. The digraph G = (V,J?), where I? = {<uv> ( <uv>$E), is called the 
complement of G. Define the symmetric closure of G as G* = (V,E*) where 
E* = EuE-‘. 



112 F. Cheah, D.G. Corneil 1 Discrete Applied Mathematics 66 (1996) 109-133 

A digraph G = (V, E) where E is symmetric (i.e. E = EP ’ or E = E*) is called an 
undirected graph or graph. Notice that in our definition of a graph G = (I/, E), an edge 
(u,v) E E in fact represents the two arcs <uv> and <vu>. 

For graphs G = (V,, E,) and H = (V,, EH), the union graph G + H = 
(VouV’,,E,uE,). If V, 5 V, and EH G EG, then H is called a subgraph of 
G and the graph G - H = (V,, Eo\E,). The induced subgraph of G on V’ c V, is the 
subgraph G[V’] = (V’, {( , ) E ( u v E G u, v EV’}). For any vertex subset V’ E V,, the 
graph G - I/’ = G[I/,\ V’]. 

For a graph G = (V, E), the neighborhood of a vertex subset U c I/, denoted 
T(U), is the vertex subset {v E I/ 1 (u, v) E E for some u E U} VU. The proper 
neighborhood of U, denoted f*(U), is the vertex subset T(U)\U. For notational 
convenience, we shall denote r( {u}) as T(u) and r*( {u}) as r*(u). T’(u) denotes the 
vertices in T*(u) that are only adjacent to neighbors of u and to u itself. Two vertices 
u and v are siblings iflT(u) = T(v). (Note that from our definition of neighborhood, 
siblings must be adjacent.) If G has siblings u and v, it is easily seen that G is 
a trapezoid graph ifsG[V\(u)] is a trapezoid graph. Similarly a disconnected graph is 
a trapezoid graph iff each of its connected components is a trapezoid graph. Thus 
henceforth we may restrict our attention to connected graphs that do not contain any 
siblings. 

A vertex subset U is said to be neighborhood dominated by another vertex subset 
W when T*(U) E T*(W). From the definition, we immediately see that the relation- 
ship of neighborhood domination satisfies transitivity. 

A vertex u is a disconnecting vertex if the graph G - T(U) is disconnected. From this 
definition and the fact that trapezoid graphs are asteroidal triple-free we have the 
following observation. 

Observation 2.1. For any connected trapezoid graph G and a vertex u E V(G), the 
graph (G - T(u)) has at most two connected components in which there are vertices 
not adjacent to T*(U). 

In the following, G is a connected simple graph with a disconnecting vertex u, and 

C1, CZ, . . . ,C, are the connected components of (G - T(U)), w 3 2. Throughout we 
will use Vi to denote V(Ci), 1 < i < CO. 

For an arbitrary graph G, the neighborhood domination closure (also called ND- 
closure) of Vi with respect to u (denoted by D,(V,)), 1 < i d co, is the union of all vertex 
subsets VP, 1 6 p d w, such that VP is neighborhood dominated by Vi in G. A vertex 
subset K is called a master component of u ifs 1 D,(V,)l 3 lD,(Vj)l for all 1 < j 6 w. The 
closure complement of a neighborhood domination closure D,( V,), denoted D,* (Vi), is 
the vertex subset G - T(u) - D,(K). 

A splittable vertex is defined as follows: 

Definition 2.2. For any vertex u of an arbitrary graph G, u is splittable iflone of the 
following is true: 

(1) u is not a disconnecting vertex, or 
(2) u is a disconnecting vertex and for every master component Vi of u, we have 

D,*(y) = 8, or 



F. Cheah. D.G. Corneil 1 Discrete Applied Mathematics 66 (1996) 109-133 113 

(3) u is a disconnecting vertex and for every master component Vi of U, there exists 
vj E D,*(VJ such that D,*(K) E D,(Vj). 

We now turn our attention to the notation used to describe trapezoid representa- 
tions. We also present various ordering relations that follow from the definitions and 
properties presented in this section. 

3. Properties of trapezoid representations 

For any trapezoid representation R, we shall always order the end-points lying on 
Li, i = 1,2, from left to right, and an end-point p is said to precede (or trail) another 
end-point q whenever p and q lie on the same line, and p is to the left (or right) of q in 
R. We shall denote p precedes q by p < q, and similarly p trails q by p > q. Two 
end-points p and r where p -=c r are said to be consecutive ifs there does not exist an 
end-point q such that p < q < r. Without loss of generality, we shall assume that all 
the end-points in a trapezoid representation are distinct. 

In a trapezoid representation R, let t,(R) denote the ith top end-point and hi(R) 
denote the ith bottom end-point. Given a trapezoid graph G with a trapezoid 
representation R and an induced subgraph H of G, let R(H) denote the restriction of 
R to H. Let S be a subset of trapezoids in R; designate the top leftmost end-point of all 
trapezoids of S by *S, the top rightmost end-point by S*, the bottom leftmost 
end-point by .$ and the bottom rightmost end-point by S,. The trapezoid corres- 
ponding to a vertex u is represented by T,. For any trapezoid T,, denote the side 
joining its top left end-point to its bottom left end-point by l(T,) and the side joining 
its top right end-point to its bottom right end-point by r(T,). 

In a trapezoid representation R, trapezoid T, precedes (or trails) another trapezoid 
T, denoted by T,<<, T, (or r,>>, TL,) whenever they do not intersect and all the 
end-points of T, precede (or trail) those of T,. The subscript R will be omitted 
whenever there is no ambiguity in our context. 

A trapezoid T, in a trapezoid representation R is a line if there does not exist any 
end-point lying between 1( T,J and r(T,). It is easy to see that a trapezoid representation 
is also a permutation representation whenever all its trapezoids are lines. For H an 
induced subgraph of G, R(H) is contained in trapezoid T, whenever all the top 
end-points of R(H) lie between *T, and T:, and all the bottom end-points of R(H) lie 
between .+T, and T,.. A trapezoid T, is bounded by two other trapezoids T, and 
T, whenever either TV << T, CC T, or T, >> T, B T,. A vertex u in G is said to realize an 
end-point p in R (denoted by v = p(p)) whenever p is an end-point of T, in R. 

As stated in Section 1, a trapezoid graph G may have many “different” trapezoid 
representations. Furthermore there are various operations that may be performed on 
a trapezoid representation without affecting the underlying graph. One of these is the 
verticul axisjlipping where R’ is obtained from R by reordering all the end-points of 
R such that for any two distinct end-points p and q in the representations, p <R q ifl 
p >R. q. We can view R’ as the mirror image of R along an imaginary line drawn 
preceding Li and L2 and perpendicular to them. Similarly the horizontul axisflipping 
transforms R into R’ by interchanging all the top end-points with the bottom ones 



114 F. Cheah. D.G. Corneil /Discrete Applied Mathematics 66 (1996) 109-133 

while preserving their respective orderings. We can view the II-representation R’ 

obtained as the mirror image of R along an imaginary line drawn parallel to the lines 
L, and L,. 

If u is a disconnecting vertex of G with C1, C2, . . ,& being the connected compo- 
nents of (G - T(U)), cc) 3 2, we immediately have the following observations: 

Observation 3.1. Let R be any trapezoid representation of G: 
(1) Either R(Ci)<<Tu or R(Ci)>>T,, for each i, 1 < i < CO. 
(2) Either R(Ci)<<R(Cj) or R(Ci)>>R(Cj), for all i #j, 1 < i <CO and 1 <j d O. 
(3) Given i, 1 < i 6 O, such that R(Ci)<< T, and any Cj, 1 <j < W, if R(Cj)<< R(Ci), 

then vj is neighborhood dominated by vi, I$ E D,( 6) and O,(vj) s Q,(K). 
(4) Let the vertex subset q be a master component of u such that R(Ci)<< T,, then 

for any y G D:(V,), we must have R(Cj)>> T,. 
(5) Let K be a master component of u such that O,*(P’J # (b and R(Ci)<< T,, then 

R(D,(vi))<<T,<<R(D:(V,)). 

Finally we prove the main result of this section: 

Lemma 3.2. All the vertices in a trapezoid graph G are splittable. 

Proof. Let u be an arbitrary vertex in G. If u satisfies either condition (1) or (2) of 
Definition 2.2, then we are done. Otherwise, let V,, V,, . . . , V, be as defined above. 

Let R be a trapezoid representation of G such that R(Ci)<< T, (such a representa- 
tion exists by Observation 3.1(l)). Observation 3.1(4) implies that R(D,*(Q)>> T,. Let 
vj G D,*(K) be such that for all V, s O,*(K), k #j, R(Cj)<<R(C,). By a vertical axis 
flip of R, and an application of Observation 3.1(3), we have O,*(K) E OJvj). IJ 

We now examine the operation of vertex splitting. 

4. Vertex Splitting Algorithm 

In Section 3, we have shown that all the vertices in a trapezoid graph are splittable. 
Various properties of trapezoid representations were also presented. We shall now 
utilize these properties to obtain an algorithm for “splitting” each of the vertices of 
a trapezoid graph into two new vertices. More definitions and theorems related to 
trapezoid graphs will be presented, concluding with the Vertex Splitting Algorithm. 

For the following discussion, unless stated otherwise, u is an arbitrary vertex in 
a trapezoid graph G. We shall partition G - T(U) into two vertex subsets as follows: 

Definition 4.1. The vertex subsets D, and 0: are defined as follows: 
(1) If u is not a disconnecting vertex, then D, = G - T(u) and D.* = 8. 
(2) If u is a disconnecting vertex with an arbitrarily chosen master component vi, 

then D, = D,(K) and 0: = D,*(VJ. 

Based upon the above partitions, we shall now classify the vertices in T*(u) as follows: 



F. Cheah. D.G. Comeil / Discrete Applied Mathematics 66 (1996) 109-133 115 

Definition 4.2. The vertices in r*(u) are classified into four possibly empty subsets: 
(1) r,(u): vertices adjacent to D, but not 0:. 
(2) I’,(u): vertices adjacent to D.* but not D,. 
(3) r,,(u): vertices adjacent to both II, and 0:. 
(4) P(U): vertices not adjacent to either D, or II,* (since I/ = D,uD,* UT(U) this 

definition of T’(u) is as stated in Section 2). 

Take vertex c of Fig. 2 as an example. Definition 4.1 partitions G - T(c) into 
D, = {u} and 0: = {f). Definition 4.2 then classifies the vertices in r*(c) into 
r,(c) = {b}, r2(c) = {d,e}, I’,,(c) = {h} and T’(c) = {g). 

Definition 4.3. Let U be any vertex subset in a trapezoid graph G. A trapezoid 
representation R(G) is called standard with respect to U if for all vertices u E U, it 
satisfies the following properties: 

(1) R(T’(u)) is contained in T,, 

(2) R(rI(u))<<r(T,), and 
(3) R(r,(u))~Vu). 

For the sake of convenience, we shall also say that R(G) is standard with respect to 
u when U = {a}. 

For the graph G illustrated in Fig. 2, Fig. 3 shows a trapezoid representation which 
is standard with respect to the vertex subset {c}. 

Our goal is to show that given a trapezoid representation R(G) which is standard 
with respect to a vertex set U, we can augment U to U’ and find another trapezoid 
representation R’(G) which is standard with respect to U’. Continuing in this fashion, 
we will eventually construct a trapezoid representation which is standard with respect 
to I/. We shall start by constructing a trapezoid representation which is standard with 
respect to a single vertex u. 

Lemma 4.4. There exists a trapezoid representation for G, say R, such that R(T’(u)) is 
contained in T,. 

Proof. The contrary would imply that for all trapezoid representations of G, R(T’(u)) 
is not contained in T,. Let R(G) be a trapezoid representation with the fewest number 

b 
h 

g 

% 

C d 
a 

e f 

Fig. 2. 



116 F. Cheah, D.G. Corneil/ Discrete Applied Mathematics 66 (1996) 109-133 

b u *c 3 C* /’ h d e 

Fig. 3. 

of end-points of R(T’(u)) not contained in T,. Without loss of generality, we may 
assume that *R(T’(u)) < *T, (due to the flipping operations discussed in Section 3). 
Let w be the vertex in r’(u) which realizes *R(T’(u)). 

Claim. The vertices of G realizing any end-point lying between * T, and * 7;, must be 
a neighbor of u. 

Proof of the Claim. Let TX be a trapezoid with a top end-point in that range (if there is 
no such x, then we can immediately perform the transformation below to derive 
a contradiction). If x is not a neighbor of u, then since T, intersects T,, T, must also 
intersect TX. This implies that w is adjacent to a vertex which is not in T(u), 
contradicting the fact that w Ed’. q 

Using the above claim, we can form another trapezoid representation R’ by moving 
* T, to directly precede *T,,,. R’ must also be a trapezoid representation of G since no 
new adjacency is introduced and all old adjacencies are preserved. Since R’ has at least 
one fewer end-point of R’(T’(u)) not contained in R’(T,) than that of R, the minimality 
of R is contradicted. This proves the lemma. 17 

Lemma 4.5. Given any vertex u of a trapezoid graph G, there exists a trapezoid 
representation which is standard with respect to u. 

Proof. By Lemma 4.4, there exists a trapezoid representation for G such that condi- 
tion (1) of Definition 4.3 is satisfied. By appropriate flipping we may assume that 
R(Ci)<< T, where Ci = G[l$]. By Observation 3.1(5), any such representation also has 
the property that R(D,)<c T, << R(D:). Let R be any such representation with the fewest 
number of end-points contained in R(T,). 

Assume that R(T,) is not entirely to the left of r(T,). Using the flipping operation, we 
can assume that R(I’,)* > T,*. Let z be the vertex in G(u) which realizes R(Tl)*. If 
T,* and T: are consecutive end-points, then R may be modified by moving T,* to 
immediately trail Tf. This results in another trapezoid representation where the 



F. Cheah, D.G. Corneil / Discrete Applied Mathematics 66 (1996) 109-133 111 

number of end-points contained in R(T,) is reduced by one, thus contradicting the 
minimality of R. 

Otherwise, consider a vertex x which realizes an end-point in this range. It is trivial 
to check that x is either adjacent to z or is adjacent to u, implying that x is not in 0:. 
Since R(D,)<< T,, x is not in D, either. Thus x E T(u). We can now form another 
trapezoid representation R’ from R by moving T,* to directly trail R(I’,)*. It is easy to 
check that R’ is a trapezoid representation for G with one fewer end-point contained 
in R’(T,)) than that of R and still satisfies condition (1) of Definition 4.3, thereby 
contradicting the minimality of R. 

The case where R(T,)>> l(T,) can be proven similarly (here we also have to show that 
the new R’ still satisfies conditions (1) and (2) of Definition 4.3). 17 

Lemma 4.6. Let R be a trapezoid representation which is standard with respect to 
u E V(G), and let T, be a trapezoid which is strictly contained in T,. Then vertex v Ed’. 

Proof. Let T, be a trapezoid that intersects T, in R. Since T, is strictly contained in T,, 
such a trapezoid must also intersect T,, implying that v is only adjacent to the 
neighbors of u (i.e. v is not adjacent to either D, or D:). Hence v E r’(u). 0 

Definition 4.7. Define the graph G”(U) obtained by the vertex splitting of u as follows: 

(1) V(G”(u)) = J’(G)\ uv ul,uZ} where u1 and u2 are two new vertices, { 
(2) E(G#(u)) = E(V(G)\u)u((u,,x)Ix~r~(~)ju{(~~,~)l~ l r2(u))u{(ui,.~), 

(u2,.4lx Erl2wj. 

The two new vertices thus obtained are known as the derivatives of u while u is 
known as their source. 

Theorem 4.8. A connected graph G with a splittable vertex u in G is a trapezoid graph if 
and only if the graph G#(u) is a trapezoid graph with a trapezoid representation R where: 

(1) The new vertices u1 and uz are both represented by lines in R. 
(2) The vertex corresponding to any trapezoid in R which lies between the lines of u1 

and uz must be a member of T’(u). 

Proof. ( a) By Lemma 4.5, there exists a trapezoid representation for G, say R, which 
is standard with respect to u. A new trapezoid representation fi can be constructed 
from R by transforming T, into two lines, namely l(T,) and r(T,). By Lemma 4.6, fi is 
indeed a trapezoid representation for G#(u) with the desired properties. 

( c=) Let ii be a trapezoid representation for G”(u) with the given properties. We 
can form a new trapezoid representation R from ii by making the lines [(u,) and e(u,) 
the left and right edges, respectively, of a trapezoid T,. It is then trivial to check that 
R is indeed a trapezoid representation for G. I7 

Definition 4.9. Let W be a vertex subset of a trapezoid graph G. A vertex v E W is 
W-minimal in G if there does not exist vertex w E W such that T,(w) c Tc(v). 

We shall now use the fact that any non-null set W E V(G) always has at least one 
W-minimal vertex in G to “split” all the vertices in G exactly once as follows: 



118 F. Cheah, D.G. Corneil / Discrete Applied Mathematics 66 (1996) 109-133 

Procedure 4.10. (Procedure Split-All) 

Input: Graph G which is sibling-free. 
Outcome: Split each vertex in G exactly once to produce G#. If at some point, there 

are no splittable vertices, then declare FAILURE. 
Steps: 

(1) Set W to V, i to 1, and Hi to G. 

(2) 
(2.1) If W is 8, then set G’ to Hi and HALT, else let Ui be an arbitrary 

W-minimal vertex in G. If ui is not splittable in Hi, then output FAILURE 
and HALT. 

(2.2) Set ri to rg,(Ui). (These ri sets will be needed in subsequent algorithms; see 
the Appendix.) 

(2.3) Perform vertex slitting of Ui to produce Hi+ 1 from Hi. 
(3) Set W to W\{Ui} and increment i by 1. 
(4) Goto step (2). 

For1,<i~n,letUi=(ul,U2,... ,ui) denote the sequence of the first i vertices split 
by Procedure Split-All, and let Wi = V\ Ui- 1 where U, = 8 denote all the unsplit 
vertices before the vertex Ui is chosen and split by Procedure Split-All. Since the 
vertices are split in the order of W,-minimality, given two vertices u and v such that 
T(v) c T(u), Procedure Split-All would have split the vertex u before splitting vertex u. 
This is stated and proven formally by the next lemma. 

Lemma 4.11. Let ui and Uj he any two distinct vertices in G; ifui Ed&, then i <j. 

Proof. This follows immediately from Definition 4.9 and the fact that there is no 
sibling in the input graph G. 0 

The next theorem states that the order used by Procedure Split-All in splitting the 
vertices ensures that a trapezoid representation which is standard with respect to the 
split vertices always exists. The recursive application of this theorem together with 
Lemma 4.5 will then imply that there exists a trapezoid representation which is 
standard with respect to the entire vertex set I/. 

Let G be a trapezoid graph for which there exists a trapezoid representation 
R which is standard with respect to Vi, and let v be the (i + 1)st vertex to be split; our 
proof can be outlined as follows: 

(1) Using the proof technique of Lemma 4.4, we shall show that we can transform 
R into R' such that R’ remains standard with respect to Ui and satisfies condition (1) of 
Definition 4.3 as far as vertex v is concerned, 

(2) Using the proof technique of Lemma 4.5, we will transform R’ into R” where R” 

is standard with respect to UiU{v}. 

Theorem 4.12. Given a trapezoid graph G, there exists a trapezoid representation for 

G which is standard with respect to Ui, 1 d i < n - 1, if and only if there exists 

a trapezoid representation for G which is standard with respect to Ui+ 1. 



F. Cheah, D.G. Corneil 1 Discrete Applied Mathematics 66 (1996) 109-133 119 

Proof. ( *) This is trivially true. 
( F) Let the vertex v be the vertex Ui+ 1 (the (i + l)st vertex split). 

Claim 1. There exists R, a trapezoid representation for G, which is standard with 
respect to Ui and R(T’(v)) is contained in T,. 

Proof of Claim 1. Assume the contrary and let R(G) be a trapezoid representation, 
standard with respect to Ui, with the fewest number of end-points of R(I”(v)) not 
contained in T,. Without loss of generality, we may assume that *R(T’(u)) < *TV (due 
to flipping operations). Let w be the vertex in T’(v) which realizes *R(T’(v)). Using 
a similar argument to that used to prove Lemma 4.4, we have: 

Claim 1.1. The vertices of G realizing any end-point lying between *T, and *T, must he 
u neighbor qf v. 

Using the above claim, we can form another trapezoid representation R’ by moving 
*T, to immediately precede *T,. R’ must also be a trapezoid representation of G since 
no new adjacency is introduced and all old adjacencies are preserved. We shall now 
show that R’ is still standard with respect to Ui. 

Claim 1.2. R’ is standard with respect to Ui. 

Proof of Claim 1.2. Assume that there exists a vertex x E Ui such that R’ is not 
standard with respect to x. Since T, is the only trapezoid which has changed in the 
transformation from R to R’, we need only look at the relationship between x and v. 
Furthermore, since the violation was brought about by moving *TO to immediately 
precede *T,,,, in R a top end-point of TX must lie in that range. We know from Claim 
1.1 that x is adjacent to u. Consider four cases: 

(1) v EI’~~(x). Since all conditions in Definition 4.3 are with respect to r’, r, or r,, 
R’ will still be standard with respect to x. 

(2) u E r,(x). Since R is standard with respect to x, we must have R(I’,(x))c<r(T,), 
implying that T,<<r(T,). Thus R’ will still be standard with respect to x. 

(3) v E T’(x). By Lemma 4.11, we should have split vertex v before splitting vertex x, 
hence a contradiction. 

(4) v Ebb. If T,>>l(T,) in R’, then R’ remains standard with respect to x. 
Otherwise, we must have had *T, < *TX < *T, and *TX < *TV in R, so that when we 
moved *T, to immediately precede *TW, we must have violated condition (3) of 
Definition 4.3. The facts that *T, < *TX and R is standard with respect to x imply that 
w$T’(x) and w$T,(x). Since (x, w) E E, w Ebb or w E r12(x), thus implying that there 
exists a vertex y ED, which is adjacent to w. Since D,* is not empty (as implied by 
u~T,(x)), we know from Observation 3.1(5) that R(D,)c<T,, implying that T,CC TX, 
which in turn implies that y cannot be adjacent to v, which contradicts the fact that 
w d-p,+ 0 

Claim 1 follows. 0 



120 F. Cheah, D.G. Corneil / Discrete Applied Mathematics 66 (1996) 109-133 

By Claim 1, there exists a trapezoid representation R’ for G, standard with respect 
to Vi, such that R’(T’(v)) is contained in TV. Let C, denote the end component of 
v used in the splitting of vertex v. By appropriate flipping we may assume that 
R’(C,)<< T,. By Observation 3.1(5), any such representation also has the property 
that R’(D,)<< T,<< R’(D:). Without loss of generality we may assume that R’ is such 
a representation with the fewest number of end-points contained in R’(T,(v)). 

Assume that R’(I’, (v)) is not entirely to the left of r(T,). Without loss of generality, 
we can let R’(T,(v))* > T:. Consider now a vertex x which realizes an end-point 
between Tz and R(T,(v))*. Since any vertex z in r,(v) which realizes R(P,(v))* is 
adjacent to v,x is adjacent to z and/or is adjacent to v. Thus x is not in 0:. Since 
R’(D,)<< T,, x is not in D, either. Thus x E T(v). We can now form another trapezoid 
representation R” from R’ by moving TB to directly trail R(P,(v))* and R” is still 
a trapezoid representation for G. We shall now show that it is still standard with 
respect t0 Vi. 

Claim 2. R” derived from R’ is standard with respect to Ui. 

Proof of Claim 2. Assume the contrary; then there exists a vertex x E Ui where R” is 
not standard with respect to x. By the same arguments used in the proof of Claim 1.2, 
TX must have a top end-point lying between Ta and T: = R’(T,(v))* and thus x is 
adjacent to v. The cases where v is in r,,(x) or T’(x) derive a contradiction using 
arguments similar to those used in the proof of Lemma 4.4. The case where v E I’,(x) is 
similar to case (2) of the proof of Claim 1.2. We shall now consider the case where 
v ET,(X). 

If TV<< r( TX) in R”, then R” remains standard with respect to x. Otherwise, we must 
have had T,* < T: < T,* and T,. < TX., so that when we moved T,* to immediately 
trail TT, we must have violated condition (2) of Definition 4.3. The facts that T: < Tz 
and R’ is standard with respect to x imply that z$r’(x) and z$r,(x). Since 
(x, z) E E, z E r,(x) or z E r, 2 (x), thus implying that there exists a vertex y E 0: which is 
adjacent to z. Hence D,* is not empty, and by Observation 3.1(5) we have TX<< R’(D,*). 
This then implies that T,<<T,, which in turn implies that T,<tT, in R’ or z$T1(v), 
which is a contradiction. 0 

Our proof of Theorem 4.12 is thus complete. 0 

As a corollary to Theorem 4.12, we have the following: 

Corollary 4.13. Given a trapezoid graph G, there exists a series of trapezoid representa- 
tion RI, R,, . . ,R, for G such that Ri is standard with respect to Ui, for 1 < i < n. 

Lemma 4.14. Let pi denote a trapezoid representation for Hi (the ith graph constructed 
by Procedure Split-All) which satisfies the following property: 

( +) All the vertex derivatives are represented by lines and for any pair of vertex 
derivatives u1 and u2 formed via the vertex splitting of u E Ui, the vertex corresponding 
to any trapezoid in Ri which lies between /(u,) and e(u,) must be contained in T:(u). 

The trapezoid representation Ri exists for all i, 1 < i < n + 1. 



F. Cheah, D.G. Corneil / Discrete Applied Mathematics 66 (1996) 109-133 121 

Proof. By Theorem 4.12, there exists R,, a trapezoid representation for G, such that 
R, is standard with respect to T/. By Definition 4.3, this implies that a trapezoid TX is 
contained in T, if and only if x (the vertex which realizes TX) E&(U). We can now 
transform R, into iii, and Ri into Ri+ i, for 1 < i < n, using the following algorithm: 

(1) Let the vertex u be Ui. 
(2) If i = 1, then branch to (4). 
(3) Given Ai, convert it into Ri+ 1 as follows: 

(3.1) If there does not exist a vertex derivative d in ri such that e(d) is not 
contained in T,, then branch to (4). 

(3.2) If *r: < *To, then move *T, to immediately precede it. Perform the same 
kind of checking on the other end-points, and move the end-points of 
T, until we have r: entirely contained in T,. 

(4) Form Ri+ 1 by converting each trapezoid T, into two lines, namely e(u,) and 
[(o,) such that {(u,) = l(T,) and e(v,) = r(T,). 

Using the arguments similar to the proof of Theorem 4.12, we can verify that the 
trapezoid representations Ri constructed for Hi do satisfy Property ( +). 0 

Lemma 4.15. Given a trapezoid graph G, the graph G” produced via Procedure Split-All 
is a permutation graph of size 21V(G)I. 

Proof. Since at the end of Procedure Split-All the set Ui = U,, = I/(G), the previous 
lemma implies that there exists a trapezoid representation R, for G’, such that all the 
vertices of G# are represented by lines, i.e. G# is a permutation graph. Furthermore, 
since each vertex in G is split exactly once, and each split produces one new vertex, the 
total number of vertices in G” is thus 2jI/(G)I. 0 

Theorem 4.16. A connected graph G is a trapezoid graph if and only if the graph G#, 
constructed by Procedure Split-All, is a permutation graph with a permutation diagram 
D(G#) where: 

(*) For any new pair ofvertex derivatives u1 and uz formed via the vertex splitting of 
u E V(G), the vertex corresponding to any line in D(G#) which lies between f(u,) and 
e(u,) must be a member of P’(u). 

Proof. This theorem follows immediately from Lemma 4.15. 0 

Lemma 4.17. The running time of Procedure Split-All is O(n3). 

Proof. The Vertex Splitting Operation can be performed in time of O(n’) as outlined 
by the following algorithm: 

(1) Decompose (G - T(u)) into its connected components VI, V,, . . . , V, where 
Ir*(Vi)l < Ir*(Vj)l for any i,j such that i d j. 

(2) If k = 1, then split u into u1 = u and an isolated vertex u2 and return SUCCESS. 
(3) There will be two linked lists of connected components with start of list 

pointers D1 and DZ, respectively. These lists will have common end portions. Initially 
the data structure consists of a single record where the component is 8 with both 
D1 and DZ pointing to this record. Set c to 1 and both vertex subsets W1 and W, to 8. 



122 F. Cheah, D.G. Corneil / Discrete Applied Mathematics 66 (1996) 109-133 

(4) If V, neighborhood dominates IV,, then insert V, at the beginning of the D1 list 
and set WI to V,. Goto step (8). 

(5) If W, = 0, then search the D, list until we find a vertex subset V, such that 
V, is neighborhood dominated by V, (such a set is guaranteed since 8 is a 
member of the D1 list). Link V, to V,, and have D, point to V,. Set W, to V,. Goto 
step (8). 

(6) If V, neighborhood dominates W,, then insert V, at the beginning of the D2 list 
and set W, to V,. Goto step (8). 

(7) Conclude FAILURE (there must exist an asteroidal triple). 
(8) If c = k, then goto step (10). 
(9) Increment c by 1 and goto step (4). 

(10) Let rzl (respectively n2) be the total number of vertices in all components in the 
D1 (respectively D2) list. Set the master component V, to be W, if 111 > n2, and to 
W, otherwise. Split vertex u using D,( V,) and D:( V,) according to Definition 4.7 and 
return SUCCESS. 

Since decomposing a graph into its connected components may be performed in 
time of 0(n2) (see [l] or [2] concerning spanning trees and connectiuity), we can easily 
verify that the above algorithm has a running time of 0(n2). Its correctness follows 
directly from the transitivity of the neighborhood domination relation and the fact 
that trapezoid graphs are asteroidal triple-free. Since each vertex of the input graph is 
split by Procedure Split-All exactly once, the total running time of Procedure Split-All 
is 0(n3). 0 

Given any graph G, Lemma 3.2 implies that G can be a trapezoid graph only when 
all of its vertices are splittable. Theorem 4.16 ensures that after all the vertices of 
a trapezoid graph are split, the new graph G’ is a permutation graph with Property 
(*). We shall now present some definitions and theorems which will enable us to test 
Property (*) efficiently. 

5. An 0(n3) trapezoid graph recognition algorithm 

Section 4 has presented an algorithm for transforming an input graph into a permu- 
tation graph with a special property. In this section we will present a characterization 
of this special property in terms of transitive orientations and also construct an O(n3) 
algorithm for testing the property. 

Definition 5.1. Given edge ej = (xj,yj), let i’(Xj, yj) denote the vertices which are 
adjacent to both Xj and yj and let ,!?(xj,yj) denote the edges with one end-point in 
p(xj,yj) and the other in {Xj,Yjj as well as the edge (xi, yj). 

Definition 5.2. An edge neighborhood set Nj = {ej, rj} consists of an edge ej = (Xj, yj) 
together with a vertex subset ri c T(Xj,yj). 

Definition 5.3. Given comparability graph G, an edge ej = (xj,Yj) and a transitive 
orientation F, define the T-interval of ej (denoted by 1,(ej)) to be 



F. Cheah, D.G. Corneil / Discrete Applied Mathematics 66 (1996) 109-133 123 

lF(ej) = 
{Z E V(G) 1 <Xj Z>, <ZJ’j> EF) if <XjYj> EF, 
{z E: I/(G) 1 qjz>, <zx~> E F} otherwise. 

Definition 5.4. A comparability graph G with edge neighborhood sets Ni, N2, . ,Nk, 
and a transitive orientation F such that for all j, 1 < j d k, r> = Ir(ej) (i.e. the 
T-interval of ej is exactly the set of vertices which imply the edge ej by direct 
transitivity), is said to be T-oriented on Ni, NZ, . . ,Nk. Such a transitive orientation is 
called a T-orientation of G, and G is said to be T-orientable on the given edge 
neighborhood sets. 

Recall that for a splittable vertex Ui in a trapezoid graph G, we constructed 
G’ where uts derivatives uii and ui2 were non-adjacent to all vertices in r:. In G#, 
uii and Ui2 are adjacent to each other as well as to all vertices in r:. In G’, (Uil,ui2) 
together with r: form an edge neighborhood set. Thus our recognition algorithm 
will work on the complement of the given graph G# and will try to find a T-orientation 
in G#. 

In the previous section, we have also stated the necessary and sufficient Property (*) 
that the graph G# must satisfy for the original graph G to be a trapezoid graph. The 
following theorem will interpret Property (*) in terms of transitive orientations: 

Theorem 5.5. Given a permutation graph G with edge neighborhood sets N1, N2, . . . , N,, 
there exists a transitive orientation F such that G is T-oriented on the given edge 
neighborhood sets iff there exists a permutation representation for G such that for all j, 
j Q 1 < k, a line e(u) is bounded by e(xj) and d(yj) iff u E~J. 

Proof. This theorem follows directly from the basic definition of a permutation 
representation and the fact that the complement of a permutation graph is also 
a permutation graph. IJ 

The traditional method for transitively orienting a graph uses the notion offorcing 
defined as follows: 

Definition 5.6. Given an undirected graph G = (V, E) and two distinct arcs <ab> 
and <a’b’>, define the binary relation 4 (force) as follows: 

iab>+<a’b’> iff 
either a = a’ and (b, b’)$E 

or b = b’ and (a,a’)$E. 

Procedure Ordinary-force [8] as shown in the Appendix can be used to orient all 
the arcs which are forced by a given arc <uv>. 

What happens when we try to T-orient a graph with respect to some given edge 
neighborhood sets? We shall now introduce another useful relation, called modijied- 

forcing, which will play an important role in recognizing T-orientable graphs. It can be 
illustrated as in Fig. 4. 

Consider the graph G as shown in Fig. 4. Assume that we want to find F, 
a T-orientation of G on the edge neighborhood set N, consisting of the edge el = (a, b) 



124 F. Cheah, D.G. Corneil 1 Discrete Applied Mathematics 66 (1996) 109-133 

and r; = {c, d, e}. If we start by arbitrarily orienting the edge (a,e) from a to e, 
the forcing relation forces us to orient the arcs <ad> and <ac>. Since any 
T-orientation z for G must have the additional property that r; = Z,(e,), 
it is easy to verify that we must orient the edge (e, 6) from e to b, the edge (c, b) from c to 
b, the edge (d, b) from d to b and the edge (a, b) from a to b. We shall call this new 
forcing relation modified-forcing and say that the arc <ae> modified-forces arcs 
<eb>, <cb>, <db>, and <ab>. The orientation of the edge (c,d) is not “modi- 
fied-forced”. 

What happens in the graph of Fig. 4 if our edge neighborhood set N1 consists 
of the edge el = (a, b) and r; = {e,. 17 Arbitrarily orienting the edge (a,e) from 
a to e forces the arcs <ad> and <UC>, and modified-forces the arcs <eb> 
and <ab>. Since the vertex d is not in r;, if F is to be a T-orientation, the edge 
(d, b) must be oriented from b to d. This contradicts the orientation of edge (d, b) 
from d to b forced by the orientation <eb>. We shall later see that this contradiction 
does imply that our graph G cannot be T-orientated on the given edge neighborhood 
set. 

We shall define the relation of modified-forcing as follows: 

Definition 5.7. Given an undirected graph G = (I/, E) and two 
and <a’b’>, define the binary relation 4’ (modijed-force) 
4’ <a’b’> iff 3Ni such that (a, b),(a’, b’) EE(x~, yi) and one 
true: 

(1) If a = xi, and 
If b Er,(u{yi}, then either 

(a) U’ E rl u {Xi} and b’ = yi, or 
(b) a’ = a and b’ E r(. 

Else (i.e. b$Tiu{yi}) then a’ = yi and b’ = b. 
(2) If u = yi, and 

If b E r/ u{ Xi>, then either 
(a) a’ E r,! u(yi} and b’ = Xi, or 
(b) a’ = a and b’ E r,!. 

Else (i.e. b$&‘u{xi}) then a’ = xi and b’ = b. 

distinct arcs <ab> 
as follows: <ab> 
of the following is 

Fig. 4. 



F. Cheah, D.G. Corneil 1 Discrete Applied Mathematics 66 (1996) 109-133 125 

Procedure Modified-force as shown in the Appendix can be used to orient all the 
arcs which are modified-forced by a given arc <uu>. Since any T-orientation will 
also have to be a transitive orientation, our recognition algorithm will have to 
repetitively apply both the forcing and modified-forcing relations. We shall define this 
combination of forcing relations as T-force: 

Definition 5.8. Given an undirected graph G = (V, E) and two distinct arcs <ab> 
and <a/b’>, define the binary relation Qi (T-force) as follows: 

<ab> @<a’b’> iff 
either <ab> q5 <a/b’> 

or <ab>q5’<a’b’>. 

Definition 5.9. An arc <ab> directly T-forces another arc <a’b’> when- 
ever <ab>@<a’b’>. An arc <ab> eventually T-forces another arc <a/b’> (de- 
noted as <ab>@*<a’b’>) iff there exists a sequence of arcs <aobo>, 

<aIbI>, . . . . <a,b,> such that 

<ab> = <a,,bO>@<aIbI>@ ... @i<a,b,> = ia’b’>, where p 2 0. 

We shall call such a sequence of arcs a Q-chain from <ab> to <a’b’>. 

Procedure T-force as shown in the Appendix can be used to orient all the arcs which 
are eventually T-forced by a given arc <au>. 

The following properties concerning T-forcing can be verified easily: 

Property 5.10. 
(1) <ab>@<a’b’> o<ba>@<b’a’>. 
(2) <ab> @<a’b’> o <a’b’> @<ab>. 
(3) The relation @* is reflexive, symmetric and transitive on E. 

Property 5.11. Let F be a T-orientation of G on the edge neighborhood sets 
N1,NZ, . . ..Nk. Given that <ab>@*<a’b’> then <ab> EF iff <a’&> EF. 

Property 5.10(3) states that the relation @* is an equivalence relation on E and 
partitions E into implication classes defined as follows: 

Definition 5.12. An arc subset A is an implication class of E @for any two arcs <ab> 
and <a’b’> E A, we have <ab> @* <a’b’>. 

Definition 5.13. For A, an implication class of E, define A*, the symmetric closure of 
A, as A u A- I. Thus A* may be considered to be a set of undirected edges in E. 

Lemma 5.14. Given a T-orientable graph G and A an implication class of G, then the 
following must be true: 

(1) for F, an arbitrary T-orientation of G, either F nA* = A, or F nA* = A- ‘, 
(2) AnA-’ = 0, and 
(3) A is transitively oriented. 



126 F. Cheah, D.G. Corneil / Discrete Applied Mathematics 66 (1996) 109-133 

Proof. Case (1): Let <ab> E A and let F be any T-orientation of G. If <ab> E F, 

then by applying Property 5.11 recursively we have A E F. By reversing the orienta- 
tions on all the arcs, we see that A -I z F- ‘. Since F is a transitive orientation, 
FnF-’ = 8. This implies that FnA-’ = 8, and hence FnA* = Fn(AuA-‘) = A. 

If <ab>#F, then Property 5.11 implies that FnA = 0. This in turn implies that 
A c F- 1 (since A E E = F u F- ‘). By reversing the orientations on all the arcs, we see 
that A-’ E F. By the arguments used in the previous paragraph, we can derive that 
FnA* = A-‘. 

Case (2): Let F be an arbitrary T-orientation of G. By Case (l), we know that either 
F n A* = A or F nA* = A- ‘. Without loss of generality, let F nA* = A. This implies 
that A c F and A-’ G F- ‘. Since F is transitive, we must have FnF-’ = 0 which 
implies that AnA- ’ = 0. 

Case (3): Since either A or A-’ must be contained in any arbitrary T-orientation 
F which is transitively oriented, A must be transitively oriented also. 0 

Our previous lemma states a necessary condition for a graph to be T-orientable. We 
shall later show that this condition is in fact sufficient, i.e., if AnA-’ = 0 and A is 
transitive for every implication class A of G, then G is T-orientable. In order to do so, 
we will first need an algorithm for partitioning the edges of G into implication classes. 

For the following algorithm, we assume that the input graph G, the edge neighbor- 
hood sets N,, Nz, . . . ,Nk and E’, the set of currently unoriented edges, are always 
accessible (or global). We shall now present the T-forcing Algorithm which uses 
Procedure T-force (as shown in the Appendix) repeatedly to decompose the input 
graph G into implication classes: 

Procedure 5.15 (T-forcing Algorithm) 
Input: Undirected graph G = (V, E) and edge neighborhood sets Nl, NZ, . . . , Nk. 
Output: Using Procedure T-force, decompose E(G) into Y: + Yy + ... + Yz 

where Yjn Yi ’ = 0 for 1 < j < p. Announce FAILURE if such a decomposition is 
impossible. 

Steps: 

(1) Set i to 1 and Ei to E. 

(2) If Ei = 0, then set p to i - 1 announce SUCCESS, output Yj for 1 <j < p 
and HALT. 

(3) Otherwise, 
3.1 Pick any unoriented edge (u, u) from Ei. 

3.2 Perform Procedure T-force on arc <uu> and Ei to obtain the arc subset Y. 
3.3. If Y n Y- ’ # 0 or Y is not transitively oriented, then announce FAILURE 

and HALT. Otherwise, set Yi to Y. 
(4) Set Ei+ 1 to Ei - Yf . Increment i by 1 and goto step (2). 

It is obvious that the T-forcing Algorithm does halt and any Yi generated by the 
algorithm is an implication class of the subgraph Gi = (V, Ei). 

Lemma 5.16. If an arc subset A is an implication class of a T-orientable graph G, then 
there exists i, 1 < i < p, such that A* c YT. 



F. Cheah. D.G. Corneil 1 Discrete Applied Mathematics 66 (1996) 109-133 121 

Proof. Assume that there exists an implication class A such that A $Y* for all 
possible i. Since the Yls form a partition for E, there exists a subset Yy where 
A*nYT #@and A* $Ej. 

Let the arc <uv> e(AnYT), and the arc <xy> E A\(AnYT). Since both <uu> 
and _(xy> are contained in A, there exists a Q-chain in A from the arc iuu> to the 
arc <xy>. Since A* s Ej, the same Q-chain is contained in Ej also. This then implies 
that <uv> @* <xy> in Ej, which contradicts the facts that Yj is an implication class 
of Ej and <?cY>$ Yj. 0 

The following lemma will be useful in proving the correctness of our algorithm: 

Lemma 5.17. Zf G is a T-orientable graph, then for all i, 1 < i < p, there exist 

Al,Az> . . . ,A[, 12 1, such that Aj is an implication class of G for 1 6 j < 1 and 
Yi=Al+AZ+ .‘. + At. Furthermore, each Yi must be transitively oriented. 

Proof. Using the previous lemma and the fact that each arc must be contained in 
some implication class Aj, we can derive that Yi = AI + A2 + ... + At. 

To show that Yi is transitively oriented, we shall use induction on 1. If 1 = 1, then 
Yi = AI and by Lemma 5.14, Yi must be transitively oriented. Assume that any 
Yi decomposable into 1 disjoint implication classes where 1 < 1 < k is transitively 
oriented; we shall prove the transitivity of those decomposable into k implication 
classes. Let Yi = AI + A2 + ... + Ak. Our induction hypothesis states that 
Yi - AI = A2 + A3 + ... + Ak is transitively oriented. Suppose Yi is not transitively 
oriented, then there exist arcs <uu>, <uw> E Yi such that 4UW~~Yi. If (u, w)$Y*, 
then <uv>$_(wv> in Yi and we have a contradiction. Hence, <wu> E Yi. 

Clearly we cannot have both <uu> and <VW> in A, or Yi - AI, or else the 
transitivity of each of them would require that <uw> E Aj and we have a contradic- 
tion. Without loss of generality, let <uv> E AI and <VW> E Yi - AI. Since 
<wu> E Yi, <wu> is either in AI or Yi - AI. If <wu> E AI, then the transitivity of 
AI requires that <WV> E AI, a contradiction. If <wu> E Yi - At then the transitivity 
of Yi - AI requires that <vu> E Yi - A,, also a contradiction. 0 

The Yts constructed by our algorithm are not only decomposible into implication 
classes; they are, in fact, partial T-orientations of G defined as: 

Definition 5.18. A set of oriented arcs X is called a partial T-orientation zff 
(1) X is a transitive orientation, and 
(2) for any edge (x, y) E X* which is ej for some edge neighborhood set Nj = (ej, rj}, 

we must have Ix*(ej) = rJ. 

Clearly any partial T-orientation X where (XI = [El is simply a T-orientation of G. 
The relationship between Yi (an arc subset constructed by the T-forcing Algorithm) 
and partial T-orientability can be stated as follows: 

Lemma 5.19. Given Yi, an arc subset constructed by the T-forcing Algorithm, ifEi+ 1 is 
defined, then Yi is a partial T-orientation of G. 



128 F. Cheah, D.G. Corneil /Discrete Applied Mathematics 66 (1996) 109-133 

Proof. If Ei+ 1 is not defined, then we are done. Otherwise, due to the transitivity 
check done in step 3.3 of the T-forcing Algorithm, Yi must be a transitive orientation. 

Let (x, y) E YT be ej for some neighborhood set Nj = {ej,rj}. Without 10~s of 
generality, we can let <xy> be in Yi. 

If there exists z E rj such that (x, z)$ YF, then by the basic definition of implication 
classes, (x, y) cannot be in YF, which is a contradiction. Hence, all the edges (x,2) 
where z E r’i must be in Y F, similarly for the edges ( y, z) where z E rj. Since all the arcs 
in Yi have gone through the tests in step (5) of Procedure T-force, it is obvious that 
Procedure Modified-force would have been invoked on the arc <xy>, and as 
a result, for all z E rJ’, the edges (x, z) would be oriented from x to z, and the edges (z, y) 
from z to y. Hence, I’, c Z,*(ej). Furthermore, if there exists <xw> (or <wx>) E Yi 
for any w E~;(x, y)\Tj, Procedure Modified-force will also orient the edge from y to 
w (or from w to y). Hence rj = Zx*(ej). 0 

The next two lemmas prove the correctness of the T-forcing Algorithm: 

Lemma 5.20. If the given graph G is T-orientable on the given edge neighborhood sets, 
then the T-forcing Algorithm will return with SUCCESS. 

Proof. To avoid the FAILURE announcement in step 3.3, we have to show that 
Yin Y,rj = 8 for 1 < i d p and Yi is transitively oriented. 

By Lemma 5.17, Yi is transitively oriented and can be expressed as 
Al + A2 + ... + At for 1 > 1 where each A, is an implication class of G. Lemma 5.14 
then implies that AinA;l = 0 for 1 < i < 1. Since Yi- ’ is simply 
A;‘+ A;‘+ ... + A;‘, we have YinYi-’ = 0 for 1 < i 6 p, and the T-forcing 
Algorithm will return with SUCCESS. 0 

Lemma 5.21 If the T-forcing Algorithm returns with SUCCESS, then the given graph 
G is T-orientable. 

Proof. Let S = Yl + Y2 + ... + Y, be the decomposition of E returned by the 
T-forcing Algorithm. 

Claim. Yl + Y2 + ... + Y, is a partial T-orientation of G for 1 < 1 < p, 

Proof of the Claim. We shall prove this by induction on i, 1 < i < 1. 
For i = 1, Lemma 5.19 implies that Yl is a partial T-orientation of G. Assume that 

B = Y1 + Y2 + ... + Y, is a partial T-orientation of G; prove this is also true for 
F=B+ Y,,,. 

Property (1) of DeJnition 5.18: Since BnB-’ = 0 and Y,+lnY;:l = 0, FnF-’ 
must also be 8 (since the Yis are mutually non-adjacent). 

Let <ab>, <bc> E F. If both of these arcs are in B or both in Y,, 1, then we have 
a contradiction either due to our induction hypothesis or Lemma 5.19. Otherwise, 
without loss of generality, we can let <ab> E B and <bc> E Y,, 1. If (a, c)#F*, then 
<ub>$<cb> in B and we have a contradiction. Thus (a,~) E F*. 



F. Cheah, D.G. Corneil / Discrete Applied Mathematics 66 (1996) 109-133 129 

If -<UC>+ F, then <ca> EF. If <ca> EB, then since <ab> EB, we must have 
<cb> EB, which is a contradiction. Otherwise if <ca> E Yk+i, then <bc> E Y,, 1, 
which implies that <ba> E Y,, 1, also a contradiction. 

Thus <UC> EF, and F is transitive. 
Property (2) @Definition 5.18: Using arguments similar to the proof of Lemma 5.19, 

we can show that if ej EF*, then rj E I,(ej). Assume that there exists 
<ub>, <bc> E F such that (a,~) = ej for some j, and b$I’i. Similar to the transitivity 
case above, we only have to consider the case where <ub> E B and <bc> E Yk+ ,. 
This implies that iub>$‘<cb> in B (by the definition of modified-forcing) and 
Procedure Modified-force would have put <cb> in B, contradicting the fact that 
(b, c) E Y k*+ 1. Therefore, rj = IF(ej). 0. 

Using the above claim, and setting 1 to p, we see that S is a partial T-orientation of 
G. Since ISI = lEl, S is also a T-orientation of G. This completes the proof of Lemma 
5.21. 0 

We can now state the following theorem: 

Theorem 5.22. A graph G is T-orientable iff the T-forcing Algorithm returns with 
SUCCESS, in which case F = Y1 + Y2 f ... + Yp is a T-orientation for the given 
graph G on the given edge neighborhood sets. 

Theorem 5.23. Given the input constructed by Procedure Split-All, the running time of 
the T-forcing Algorithm is O(n3). 

Proof. The running time is composed of the time used for constructing Yj’s and 
checking their validity. 

for 

In order to construct all the Yi’s, each arc has to be oriented and considered for 
Procedure T-force; this requires time of O(n’). In Procedure T-force, the Procedure 
Ordinary-force is executed once and Procedure Modified-force is executed once for 
each edge neighborhood set which satisfies the check performed in step (5). Since our 
input comes from the Vertex Splitting Algorithm, there can be at most one such edge 
neighborhood set which satisfies the given condition. Hence, in step (5) of Procedure 
T-force, Procedure Modified-force is executed at most once. 0 

Since the Procedure Ordinary-force and Procedure Modified-force consider at 
most 2n edges adjacent to an arc <uu>, their running times are both of O(n). 

Multiplying the time complexities together, we get a running time of 0(n3) for 
constructing all the Yj’s. Since the input graph is a permutation graph, the checking of 
Yj’s transitivity can be done in time of O(n2) as shown by [12]. We can thus conclude 
that given the input constructed by Procedure Split-All, the T-forcing Algorithm will 
run in time of 0(n3). 

The Vertex Splitting Algorithm has a time complexity of 0(n3) (Lemma 4.19), and 
by the previous theorem, the T-forcing Algorithm has a time complexity of O(n3). 



130 F. Cheah. D.G. Corneil / Discrete Applied Mathematics 66 (1996) 109-133 

Since they are performed one after the other, we conclude that our Trapezoid Graph 
Recognition Algorithm runs in time O(n3). 

Theorem 5.24. The Vertex Splitting Algorithm together with the T-forcing Algorithm 
yields an 0(n3) recognition algorithm for trapezoid graphs. 

Our algorithm transforms a trapezoid graph into a permutation graph with 
a special kind of permutation representation. This permutation representation can be 
easily constructed using the orientation found via the T-forcing Algorithm. We can 
then get a trapezoid representation for the original graph by converting pairs of lines 
(corresponding to pairs of split vertices) into trapezoids (one as the left edge, and the 
other as the right). 

6. Concluding remarks 

In this paper we have presented structural results on trapezoid graphs that lead to 
an easily implemented recognition algorithm. In particular it was shown that vertex 
splitting allows a trapezoid graph to be transformed into a permutation graph with 
special properties. This operation may be viewed as replacing a trapezoid by the two 
lines (as in a permutation diagram) of the opposite sides of the trapezoid. Thus once 
the operation is completed a vertex v in a trapezoid graph is transformed into two 
vertices vl, v2 in a permutation graph. 

Recently, considerable attention has been given to the development of fast algo- 
rithms for various intractable problems when the input is restricted to permutation 
graphs. An obvious implication of our structural results on trapezoid graphs is that 
these permutation graph algorithms may be modified to deal with trapezoid graphs. 
We believe this to be a promising direction for future research. 

Acknowledgements 

The authors wish to thank the National Sciences and Engineering Research 
Council of Canada as well as Teleride Sage Ltd. for their financial assistance. 

Appendix 

Collection of algorithms 

All the algorithms mentioned throughout the paper are collected here. 
Given a connected undirected sibling-free graph G, we would like to decide if G is 

a trapezoid graph. The first step is to split each vertex of G exactly once using 
Procedure Split-All to generate the graph G’ as follows: 



F. Cheah, D.G. Corneil / Discrete Applied Mathematics 66 (1996) 109-133 131 

Procedure Split-All 
Input: Graph G which is sibling-free. 
Outcome: Split each vertex in G exactly once to produce G#. If at some point, there 

are no splittable vertices, then declare FAILURE. 
Steps: 
(1) Set W to I/, i to 1, and Hi to G. 

(2) 
(2.1) If W is 0, then set G# to Hi and HALT, else let ui be an arbitrary 

W-minimal vertex in G. If Ui is not splittable in Hi, then output FAILURE 
and HALT. 

(2.2) Set ri t0 rk,(Ui). 

(2.3) Perform vertex splitting of Ui to produce Hi+l from Hi. 
(3) Set W to W\(ui} and increment i by 1. 
(4) Goto step (2). 

If Procedure Split-All concludes with FAILURE, or if the resulting graph G’ is not 
a permutation graph, then we are done. Otherwise, we have obtained a permutation 
graph G# where for each Ui E V, Ui’S derivatives Uil and Uiz are non-adjacent to all 
vertices in ri. By constructing the edge neighborhood sets Ni = {Uil,Ui2} urf for 
1 d i < n, it is then a matter of testing whether the graph G# is T-orientable on the 
given edge neighborhood sets. This can be done using the following T-forcing 
Algorithm: 

Input: Undirected graph G = (V, E) and edge neighborhood sets Ni, N,, . . . ,Nk. 
T-force, decompose E(G) into YT + Yz + ... + Yz 

j d p. Announce FAILURE if such a decomposition is 
Output: Using Procedure 

where Yjn Yi’ = 0 for 1 < 
impossible. 

Steps: 
(1) Set i to 1 and Ei to E. 
(2) If Ei = 0, then set p to 

HALT. 
(3) Otherwise, 

i - 1, announce SUCCESS, output Yj for 1 9 j < p and 

T-forcing Algorithm 

(3.1) Pick any unoriented edge (u, a) from Ei. 
(3.2) Perform Procedure T-force on arc <uv> and Ei to obtain the arc subset Y. 
(3.3) If Y n Y -i # 0 or Y is not transitively oriented, then announce FAILURE 

and HALT. Otherwise, set Yi to Y. 
(4) Set Ei+ 1 to Ei - Y,. Increment i by 1 and goto step (2). 

The following modules are used by the T-forcing Algorithm: 

Procedure Ordinary-force 
Input: Arc <uv> and an edge subset E’. 
Output: The set of arcs Y such that <u’v’> E Y iff iuu>~<u’u’> in G(V,E’). 
Steps: 
(1) Set Y to 0 and W to the set of vertices adjacent to either u or v but not both in 

G( V, E’). 



132 F. Cheah, D.G. Corneil / Discrete Applied Mathematics 66 (1996) 109-133 

(2) If W = 0, then exit procedure and output Y. Otherwise, pick and remove 
a vertex, say w, from W. 

(3) If (u, w) EE’, then add the arc <UW> to Y, otherwise add the arc <WV> to Y. 
(4) Goto step (2). 

Procedure Modified-force 
Input: Arc <uv>, edge subset E’, integer i such that (u, u) •,!?(q,y~). 
Output: The set of arcs Y such that <u’o’> E Y iff <uv>+‘<u’u’> in G(V,E’). 
Steps: 

(1) Set Y to 8. 
(2) If U is Xi (or yi): 

(a) If v$~L, then add the arc <y{v> (or ~xizI>) to Y. 
(b) Else if v E ri, then for all vertices w E r:, add the arc <uw> and the arc 

<Wyi> (or <Wxi>) to Y. Add also the arc <xiyi> (or <yixi>). 
(3) Else if v is Xi (or yi): 

(a) If u$T,!, then add the arc <Uyi> (or ~uxi>) to Y. 
(b) Else if u l rf, then for all vertices w ~r,(, add the arc <WV> and the arc 

<,ViW> (or <xiw>) to Y. Add also the arc ~yixi> (or <xiyi~). 
(4) Exit procedure and output Y. 

Procedure T-force 
Input: Arc <uv> and an edge subset E’. 

Output: The set of arcs Y such that <u’u’> E Y iff <uu>@*<u’v’>. 
Steps: 
(1) Set the arc subsets X and Y to {<uu>}. 
(2) If X = 8, then exit procedure and output Y. 
(3) Otherwise, pick and remove any arc <u’u’> from X. 
(4) Perform Procedure Ordinary-force on arc <t/u’>. Add the arc subset Y’ 

generated to X and Y. 
(5) For all i such that (u’, u’) E B(xi, vi), perform Procedure Modified-force on arc 

<u’v’>, i and E’. Add the arc subset Y’ generated to X and Y. 
(6) Goto (2). 

References 

Cl] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973). 

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (MacMillan, New York, 1976). 

[3] F. Cheah, A recognition algorithm for H-graphs, Ph.D. Thesis, TR 246/90, Dept. of Computer 

Science, Univ. of Toronto (1990). 

[4] 0. Cogis, On the Ferrers dimension of a digraph, Discrete Math. 38 (1982) 47-52. 

[S] D.G. Corneil and P.A. Kamula, Extensions of permutation and interval graphs, in: Proceedings 18th 

Southeastern Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. 58 (1987) 

267-275. 

[6] I. Dagan, M.C. Golumbic and R.Y. Pinter, Trapezoid graphs and their coloring, Discrete Appl. Math. 
21 (1988) 35-46. 

[7] J.P. Doignon, A. Ducamp and J.C. Falmagne, On realizable biorders and the biorder dimension of 
a relation, J. Math. Psychol. 28 (1984) 73-109. 



F. Cheah, D.G. Corneil / Discrete Applied Mathematics 66 (1996) 109-133 133 

[S] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980). 

[9] M. Habib and R.H. Miihring, Recognition of partial orders with interval dimension two via transitive 

orientation with side constraints Technical report, TR 244/90, Tu Berlin (1990). 

[lo] T.H. Ma, Algorithms on special classes of graphs and partially ordered sets, Ph.D. Thesis, Dept. of 

Computer Science, Vanderbilt Univ., Nashville, TN (1990). 

[l l] T.H. Ma and J.P. Spinrad, Avoiding matrix multiplication, in: R.H. MGhring, ed., Graph-Theoretic 

Concepts in Computer Science, Lecture Notes in Computer Science, Vol. 484 (Springer, Berlin, 1991) 

61-71. 

[12] J. Spinrad, On comparability and permutation graphs, SIAM. J. Comput. 14 (1985) 658-670. 

[ 133 J.P. Spinrad, Private communications (1990). 


